

Berliner University of Applied Sciences and Technology
Faculty VIII Mechanical Engineering, Event Technology, Process Engineering

Bachelor Thesis

„swarm off sound“
Conception, planning and realization of an interactive sound installation

Submitted by:
Sebastian Obel (912707)

In Fulfillment for Requirements
For Bachelor of Engineering (B. Eng.)

Course of Study:
Theater- und Veranstaltungstechnik und -Management

Supervision: Prof. Dr. Alexander Lindau
 Diplom Designer Carsten Stabenow
Review: Magister Artium Alois Späth
Submitted: 29.08. 2024

I

Abstract

This thesis focuses on the artistic conception and development of the interactive

sound installation swarm of sound which allows participants to shape soundscapes

through their movements. Aim of this work is to show the connections between the

artistic concept and the technical solutions, utilizing mainly open-source resources. A

secondary goal is to explore the limitations and boundaries given by the artistic

concept as intentional tools in a creative process.

The projects development included the analysis and realization of the artistic concept,

the identification of problems and solutions for technical requirements through open-

source recourses. Test setups were used to validate the concept functionality and

interactivity of the sound installation.

It was demonstrated that an immersive experience could be achieved without relying

on expensive professional equipment and that those constraints could create

unintended ways of interactions between participants, technology, and the

installation.

Kurzfassung

Diese Arbeit beschäftigt sich mit der künstlerischen Konzeption und Entwicklung der
interaktiven Klanginstallation swarm of sound, die es den Teilnehmer:innen
ermöglicht, durch ihre Bewegungen Klanglandschaften zu gestalten. Ziel dieser Arbeit
ist es, die Verbindungen zwischen dem künstlerischen Konzept und den technischen
Lösungen aufzuzeigen, wobei hauptsächlich Open-Source-Ressourcen verwendet
werden. Ein sekundäres Ziel ist es, die Beschränkungen und Grenzen zu erforschen,
die durch das künstlerische Konzept gegeben sind und diese als bewusste
Werkzeuge im kreativen Prozess einzusetzen.

Die Projektentwicklung umfasste die Analyse und Umsetzung des künstlerischen
Konzepts, die Identifizierung von Problemen und Lösungen für technische
Anforderungen durch Open-Source-Ressourcen. Die Funktionalität des Konzepts
und die Interaktivität der Klanginstallation wurden anhand von Testaufbauten
überprüft.

Es wurde gezeigt, dass immersive Erfahrungen auch ohne teure professionelle
Technik möglich sind und dass diese Einschränkungen unbeabsichtigte Interaktionen
zwischen den Teilnehmern, der Technologie und der Installation schaffen können.

II

Table of Contents
I. List of Figures ... IV
II. List of abbreviations .. VI
III. List of Symbols ... VIII
IV. List of formulas ... VIII
1 Introduction ... 1

1.1 Overview .. 1
1.2 Motivation and Inspiration ... 1

2 Theoretical Framework .. 2
2.1 Sound Perception and Basic Panning Fundamentals 2

2.1.1 Human Perception of Sound .. 2
2.1.2 Stereophonic Panning laws .. 3

2.2 Digital Image Processing and Object Detection/Tracking Methods 5
2.2.1 Digital Image Processing Fundamentals .. 5
2.2.2 Traditional Object Detection using Image Processing 8
2.2.3 Traditional Object Tracking using Image Processing ... 9
2.2.4 Object Detection and Tracking Methods Based on Deep Learning 9

2.3 Network Communication and Protocols .. 10
2.3.1 The TCP Protocol and its Application .. 11
2.3.2 The UDP-Protocol and its Application .. 11
2.3.3 The OSC content format and its Message Structure 13

2.4 An Overview on Single-Board Computers ... 14
2.5 Software solutions for Audio-Visual Applications 15

2.5.1 TouchDesigner ... 15
2.5.2 Max / RNBO ... 15
2.5.3 Pure Data ... 16

2.6 Audio-Visual Art, Sound Art and the Connection to Interactivity 17
2.6.1 Audio-Visual Art ... 17
2.6.2 Sound Art ... 17
2.6.3 Interactivity between Audience and Sound Art .. 17

3 Identifying the Technical Approach for the Sound Installation 19
3.1 Requirements Analysis Based on the Artistic Concept 19
3.2 Ideation for Solutions Based on the Requirements 20
3.3 Finalizing the Technical Approach ... 21

3.3.1 Detection and Tracking Approach .. 21
3.3.2 Solution for Sound Generation and D/A conversion .. 22
3.3.3 Amplification and Sound Reproduction Solution .. 22
3.3.4 Enabling Audience Engagement and Interaction ... 23
3.3.5 Signal Flow Diagram .. 24

III

4 Development, Evaluation and Implementing Improvements of the Sound
Installation .. 24

4.1 Approach for the Object Tracking Algorithm 24
4.1.1 Choice of Camera Integration .. 25
4.1.2 Performing Image Processing to Enhance Tracking Capability 26
4.1.3 Implementing Traditional Object Detection .. 28
4.1.4 Implementing Traditional Object Tracking .. 29
4.1.5 Implementing a Calibration Method ... 29

4.2 Control Data Processing for Human Computer Interaction 31
4.2.1 Clear Assignment of Tracked Participants to the Sound Elements 32
4.2.2 Projecting the Sound Element to the Participants Location 32
4.2.3 Control Data for Interaction with Audio Effects .. 33
4.2.4 Transferring the Control Data from the RPI to the Bela 33

4.3 Performing Audio Processing and Sound Design 35
4.3.1 Receiving and Processing of the Control Data .. 35
4.3.2 Implementing Surround Panning for the Sound Element 36
4.3.3 Creating a Sound Design Framework .. 39

4.4 D/A conversion, Speaker Array, and Amplification 39
4.4.1 Implementing the Digital to Analog Conversion ... 39
4.4.2 Developing a Custom Speaker Design for the 8-Channel Array 40

4.5 Evaluating and Improving the Technical Realization 41
4.5.1 Assessing Key Functions Through a First Test Setup 41
4.5.2 Improvement Implementation based on the First Test Setup 43
4.5.3 Assessing the Improvements Through a Second Test Setup 45

5 Discussion .. 46
6 Conclusion .. 47
7 Outlook .. 48
V. Bibliography .. VIII
VI. Appendix .. XII
VII. Source code .. XXIII

IV

I. List of Figures

Figure 1: Stereo speaker setup with highlighted sweet spot (Weinzierl 2008, p. 611)

 ... 4
Figure 2: Standard stereophonic listening position (Pulkki and Karjalainen 2001, p.

740) .. 5
Figure 3: Example for a binary pixel matrix with 7 x 8 dimensions (Werner 2021, p.

10) .. 6
Figure 4: Applying the 3 x 3 median filter on to the picture element (!, #) (Werner

2021, p. 64) .. 7
Figure 5: The TCP/IP and OSI models (Wendzel 2018, p. 13) 10
Figure 6: Structure of the OSC content format (Schmeder, Freed, and Wessel 2010)

 ... 13
Figure 7: Flow chart showing the technical concept, components, and functions 24
Figure 8: Terminal output object_tracking.py FPS test between YUV420 and RGB 26
Figure 9: Creating a mask as an overlay in order to define the tracking area (Source

code 2) ... 27
Figure 10: Image processing of target frame: inversion, filtering and thresholding

(Source code 2) .. 28
Figure 11 Finding contours and computing moments for PXC extraction (Source

code 2) ... 29
Figure 12: Graphic over few on the relations between the Python scripts executed

on the RPI4 .. 31
Figure 13: Speaker placement with corresponding azimuth angle and octants I - VIII

 ... 32
Figure 14: Calculating new xy coordinates and distance from PCX to origin (Source

code 2) ... 33
Figure 15: Calculating the azimuth angle for the first quadrant (Source code 2) 33
Figure 16: Calculating normalized x, y coordinate and radius (Source code 2) 33
Figure 17: Setting the IP address and port for UDP socket (Source code 2) 34
Figure 18: Creating a message from PD_list and sending over UDP socket to the

Bela (Source code 2) .. 35
Figure 19: Subpatch [upd_data], receiving UDP datagram and data handling 36
Figure 20: Subpatch [pd avr], running average over a four-value window 36
Figure 21: Abstraction [panner-abs], panning operation for one sound element to 8

outlets ... 38
Figure 22: PD sound design framework showing the basic structure of the patch ... 39

V

Figure 23: Custom speaker design from Styrodur 3035 CS panels and the Dayton

Audio DAEX32EP-4 exciter .. 41
Figure 24: Camera unit with HQ v1 Camera, RPI4, Bela + CTAG module 42
Figure 25: Web interface for gain adjustments ... 44
Figure 26: PD Subpatch [pd bella_gui_recive], receiving, handling and saving gain

slider values from web interface ... 44
Figure 27: PD abstraction [id_active], handling fade-in/out of a sound element 45

VI

II. List of Abbreviations

ARM Advanced RISC Machines
CNN Convolutional Neural Networks
CPU Central Processing Unit
D/A Digital to Analog
DAC Digital to Analogue Converter
DHCP Dynamic Host Configuration Protocol
DIN German Institute for Standardization
DNS Domain-Name-System
FPS Frame per Second
GID Global Identification Number
GPIO General Purpose Input/Output
FUDI Fast Universal Digital Interface
HCI Human-Computer Interaction
HDMI High-Definition Multimedia Interface
HHI Human-Human Interaction
HRTF The Head-Related Transfer Function
HTTP Hypertext Transfer Protocol
ICRAM Institute for Research and Coordination in Acoustics/Music
ILD Interaural Level Difference
ITD Interaural Time Difference
LED Light Emitting Diode
MiDaS Monocular Depth Sensing
MIPI CSI-2 Mobile Industry Processor Interface
MTU Maximum Transmission Unit
OpenCV Open-Source Computer Vision library
OS Operating Systems
OSC Open Sound Control
OSI Open Systems Interconnection
PD Pure Data
PD Pure Data
PXC Pixel Coordinate
R-CNN Region-based Convolutional Neural Network
RGB Red-Green-Blue
RMS Root Mean Square
RPI Raspberry Pi
SBC Single-Board Computer
SMTP Simple Mail Transfer Proto
SSD Single-Shot Multibox Detector
SSH Secure Shell
TBD Tracking by detection
TCP/IP Transmission Control Protocol / Internet Protocol

VII

UDP User Datagram Protocol
URL Uniform Resource Locators
VoIP Voice over IP
XLR eXternal Line Return
YOLO You Only Look Once

VIII

III. List of Symbols

Symbols Used in Formulas
$ Perceived Position to the Base Angle
$! Base Angle Stereo Pair
%" Gain Factor Speaker Left
%# Gain Factor Speaker Right
%$ Gain Factor Speaker Left
%% Gain Factor Speaker Right
$& Perceived Position Between 0°	and	90°
-'& Perceived Position Normalized Between 0	and	1
/ Pixel Matrix
0 Number of Rows in the Matrix
- Number of Columns in the Matrix
1 Picture Element
2 Row Index
3 Column Index
4!3 Sine
513 Tangent
674 Cosine

Units Used
Hz Hertz
° Degrees
8 Pi

Ghz Gigahertz
Gbit/s Gigabit per Second
kHz Kilohertz
cm Centimeter
m Meter
dB Decibel

IV. List of formulas

Equation 1: Sine Law ... 5
Equation 2: Tangent Law ... 5
Equation 3: Sine-Cosine Law (degrees) .. 5
Equation 4: Sine-Cosine Law (normalized) .. 5

1

1 Introduction

The following work deals with the conception, development and realization of an

interactive sound installation. The aim was to develop a functional and low-cost

prototype using open-source software and minimizing the use of professional audio

and video equipment. Often an artist’s vision is at odds with a realistic technical

implementation due to limiting factors such as physical space, safety concerns,

budget restrictions, etc. In this work, those limitations were used as an inspiration

rather than a restriction.

1.1 Overview

Chapter 1.2 covers the motivation for this project and gives insights into the inspiration

for the artistic concept. Chapter 2 establishes the fundamental concepts involved in

this project, such as audio, video, network technology, object detection, and the basic

concept of audience engagement in sound art. Chapter 3 describes the design phase,

specifically with the purpose of identifying the technical requirements for the project

in order to find suitable solutions and combine them into the final approach. This part

of the process where the technical solutions are aligned with the artistic concept

before development was crucial in order to achieve the best possible installation.

Chapter 4 deals with the technical development of the installation, highlighting the

technical approach for each solution in relation to the artistic concept. Finally, the

installation was evaluated through real scenario test setups. These focused on the

technical setup, calibration, identifying problems, and gaining insight into how the

installation behaved and which improvements could be implemented. The discussion,

conclusion and outlook analyze the findings and highlight future improvements.

1.2 Motivation and Inspiration

The main inspiration for creating this sound installation is rooted in the author’s own

neurodiversity. Loud and crowded environments can become quickly overstimulating.

In contrast, quiet and calm spaces can be under-stimulating. Listening to music and

body movement has always been a tool to self-regulate stimulation levels in order to

stay functional in changing environments. Without the aid of music, thoughts can run

amuck and focusing is challenging.

Due to these challenges, the author developed a personal interest in exploring the

world of sounds. It even led him to pursue his first career as a hearing acoustic

technician.

2

Despite always having an interest in art, traditional spaces like galleries, exhibitions,

and museums did not feel like welcoming environments due to a perceived lack of

stimulation. The author became fascinated by the concept of integrating an individual

into the overall context of an artwork and was inspired to create an installation where

movement and interaction with others is rewarded. This interaction should be playful

and encourage a curiosity for discovery. The installation would create an intimate,

interactive, and atmospheric soundscape that surrounds participants. The sound and

its origin in the space would be influenced by the movement and collective interactions

of the audience. It would encourage individuals to step out of just being passive

observers and play with their movement individually and with others within a space to

awaken the installation and create their own unique auditory experience. A first sketch

and a mood board are provided in Appendix 1.

The technical concept is limitation as a tool was also used as an inspiration.

Nowadays the seemingly infinite number of technical solutions, tools, and possibilities

can be overwhelming. The author has largely dispensed with the use of expensive

ready-made professional audio and video technology and opted to solve technical

issues creatively with more affordable and accessible options. Not only was how the

author’s own creative process could be promoted through these limitations, but also

how these limitations could open up the installation on a broader spectrum, both in

terms of the spatial conditions and accessibility to a diverse range of communities

were explored. Professional audio and video equipment is expensive and might not

be easily available in many regions. A key motivation was building the installation in

a manner to minimize geographic or economic constraints in order to make it

accessible for anyone no matter who they are or where they are.

2 Theoretical Framework

2.1 Sound Perception and Basic Panning Fundamentals

2.1.1 Human Perception of Sound

Sound is a mechanical wave that results from the back-and-forth vibration of the

particles of the medium through which the sound wave is moving. Sound waves are

longitudinal waves, where the particle movement is parallel to the direction of the

wave propagation1.

1 cf.: Weinzierl, 2008, Handbuch der Audiotechnik, p. 18-19,

3

Binaural localization refers to the ability of the auditory system to determine the

location of a sound source using both ears.2 This subject has been a topic of extensive

study, leading to the discovery of several key concepts and cues underlying this skill.

Interaural Time Difference (ITD) describes the difference in arrival time of a sound

between the two ears. This parameter is crucial for locating the direction of

frequencies below 1.5 kHz.3 The difference in sound pressure level reaching each ear

is known as Interaural Level Difference (ILD). This is important for locating

frequencies above 1.5 kHz.4 The Head-Related Transfer Function (HRTF) explains

how an ear receives a sound from a point in space, incorporating the effects of the,

body, head and outer-ear. HRTFs are unique to each individual and help in spatial

localization5. Variations in the sound spectrum caused by the shape of the ear and

the head, which provide information about the vertical location of the sound source

are generally referred to as spectral cues. Reflections of sound from surfaces can

provide additional spatial cues to help localize sounds in an environment with

reverberation and echoes.6

2.1.2 Stereophonic Panning Laws

To replicate the localization of single sound sources through loudspeaker systems,

binaural localization principles have been used to develop various panning methods

that accommodate different loudspeaker arrangements. In this context, the sound

source is commonly referred to as a virtual source or phantom source, as the sound

does not originate from a natural source.7

This thesis restricts itself on focusing on stereophony and a standard panning concept

which was adapted to a 360° speaker setup is covered in chapter 4.3.2. This concept

applies level differences to the audio signal.8 A pair of speakers create an auditory

soundscape on the horizontal plane, replicating the localization of the phantom

sources in front of the listening position from left to right. The usual speaker

arrangement involves an equilateral triangle between the loudspeakers and the

listening position, resulting in an opening angle of 60 degrees. The DIN 15996

standard allows for an opening angle tolerance of plus or minus 15 degrees.9 Small

movements from left to right of the listening position can lead to misinterpretations of

2 cf.: Möser, 2018, Psychoakustische Messtechnik, p. 23,
3 cf.: Möser, 2018, Psychoakustische Messtechnik, p. 23-24,
4 cf.: Möser, 2018, Psychoakustische Messtechnik, p. 23-24,
5 cf.: Möser, 2018, Psychoakustische Messtechnik, p. 24-25,
6 cf.: Möser, 2018, Psychoakustische Messtechnik, p. 25,
7 cf.: Pulkki and Karjalainen, 2001, Localization of amplitude-panned virtual sources I: stereophonic panning, p. 739,
8 cf.: Weinzierl, 2008, Handbuch der Audiotechnik, p. 727,
9 cf.: Weinzierl, 2008, Handbuch der Audiotechnik, p. 611,

4

the localization of the phantom source, resulting in a narrow corridor of optimal

listening positions, commonly known as the sweet spot, as illustrated in Figure 1.10

Figure 1: Stereo speaker setup with highlighted sweet spot (Weinzierl 2008, p. 611)

In this setup, two principles, ITD and ILD, can be used to reproduce a binaural

listening experience. For ITD, the audio signal for the phantom source can be delayed,

while for ILD, the audio signal can be adjusted to give more level to one speaker. In

most applications, only ILD is used to ensure mono compatibility for the audio signal,

as short time delays can cause comb filtering effects.11 Each loudspeaker receives

the same audio signal with different levels in amplitude. This concept is referred to as

amplitude or intensity panning.12

To determine the appropriate level for driving each loudspeaker to reproduce the

location of a phantom source, several panning laws have been developed. The goal

is to maintain a constant perceived loudness, regardless of the panning position of

the phantom source. Figure 2 describes the standard stereophonic listening position

in relation of the azimuth angle $ representing the perceived position of the phantom

source to the base angle $!.13

10 cf.: Weinzierl, 2008, Handbuch der Audiotechnik, p. 612,
11 cf.: Weinzierl, 2008, Handbuch der Audiotechnik, p. 727,
12 cf.: Pulkki and Karjalainen, 2001, Localization of amplitude-panned virtual sources I: stereophonic panning, p. 739-740,
13 cf.: Pulkki, 2001, Spatial sound generation and perception by amplitude panning techniques, p. 11-12,

5

B. B. Bauer formulated Equation 1: Sine Law which comes with the limitation that it is

only valid with a forward head position and for frequencies below 600 Hz, due to the

frequency-dependent properties of ILD:14

4!3	$
4!3	$!

	= 	%" 	− 	%#%" 	+ 	%#

Equation 1: Sine Law

To account for deviations in head positions, J.C. Bennet reformulated the sine law

into the Equation 2: Tangent Law:15

513	$	
513	$!

	= 	%" 	− 	%#%" 	+ 	%#

Equation 2: Tangent Law

The tangent law can be reformulated as the sine-cosine law with $& = 	0° all left and

$& = 	90° all right applies to Equation 3 normalized to -'& = 	0 all left and -'& = 	1 all

right applies to Equation 4:16

%$ = 674($&)
%% = 4!3($&)

Equation 3: Sine-Cosine Law
(degrees)

%$ = 674 >-'& 	× 	
8
2A

%% = 4!3 >-'& 	× 	
8
2A

Equation 4: Sine-Cosine Law
(normalized)

Figure 2: Standard stereophonic listening position (Pulkki and Karjalainen 2001, p. 740)

2.2 Digital Image Processing and Object Detection/Tracking Methods

2.2.1 Digital Image Processing Fundamentals

Digital image processing is essential for performing and applying computer vision

tasks, such as object detection. To execute computing tasks, digital images are

usually interpreted as a rectangular pixel matrix /(×* 	= 	 (1+,-), where M represents

14 cf.: Pulkki, 2001, Spatial sound generation and perception by amplitude panning techniques, p. 12,
15 cf.: Pulkki and Karjalainen, 2001, Localization of amplitude-panned virtual sources I: stereophonic panning, p. 740-741,
16 cf.: Pulkki, 2001, Spatial sound generation and perception by amplitude panning techniques, p. 12,

6

the rows and N the columns. As shown in Figure 3, each index pair corresponds to a

pixel value that defines the state of each pixel or picture element.17

Figure 3: Example for a binary pixel matrix with 7 x 8 dimensions (Werner 2021, p. 10)

These picture element values depend on the color model used, such as Red-Green-

Blue (RGB). In this thesis, binary images, which consist of only two values, 0 and 1,

are also considered. In addition to more commonly known image manipulations, like

contrast adjustment and color correction, a few other techniques are highlighted

below.

Thresholding: Thresholding, or binarization, is a technique used to transform a

grayscale image, also known as an intensity image, into a binary image. Every pixel

value below a defined threshold is set to 0, while values above the threshold are set

to 1. This can be used to detect objects in front of a uniform background, as long as

the pixel values of the background and the object differ in intensity.18

Binning: To highlight objects with similar pixel values, a technique known as binning

can be used. This technique consolidates neighboring pixel values of the grayscale

image, resulting in a coarser image with areas of uniform pixel value.19

Inversion: One simple but useful operation is grayscale inversion, which subtracts

the value of each pixel from the maximum value, resulting in an inverted image where

darker areas are displayed as bright areas and vice versa. The same technique can

be applied to RGB images.20

Linear Filtering: As these image processing methods are only concerned with each

pixel's value individually, other methods, categorized as neighboring processing, take

into account the state of neighboring pixel values. These types of operations are

usually referred to as rank-order filtering, a type of nonlinear filters.21 This technique

17 cf.: Werner, 2021, Digitale Bildverarbeitung, p. 11,
18 cf.: Werner, 2021, Digitale Bildverarbeitung, p. 55,
19 cf.: Werner, 2021, Digitale Bildverarbeitung, p. 60,
20 cf.: Werner, 2021, Digitale Bildverarbeitung, p. 62,
21 cf.: Werner, 2021, Digitale Bildverarbeitung, p. 63,

7

operates by collecting the grayscale values of pixels within a defined mask matrix

around a target pixel, sorting these values, and then selecting one value from the

sorted list to replace the grayscale value of the target pixel. The specific value chosen

from the sorted list determines the type of filter. Figure 4 illustrates this concept on

the example of a median filter.

Figure 4: Applying the 3 x 3 median filter on to the picture element (!, #) (Werner 2021, p. 64)

The median filter elects the median value from the sorted list, replacing the target

pixel with this median value. 22 The minimum and maximum filters select and replace

accordingly the minimum or maximum value. Those type of filters are typically used

to reduce noise or apply a blurring effect to the image.23

Contour and edge filtering: Another important aspect of image processing for

pattern recognition and object detection algorithms is edge and contour detection.

Edges can be defined as rapid changes in the intensity of pixel values within small

areas, following a directional propagation. Contours are formed by continuous edges

that define the boundaries of objects.24 Common methods for edge and contour

detection include the Sobel method, Laplacian-of-Gaussian method, and Canny

method. These techniques are based on vector analysis principles to evaluate

intensity changes concerning direction and propagation.25

Another essential tool for further image processing, especially for object detection, is

the use of moments as standard characteristics. In the context of image processing,

moments can generally be categorized as moments of points, lines, and areas. They

are used to describe the position and orientation of objects, assist in classifying

objects, and provide information about geometric standard forms like circles,

rectangles, etc., which can be helpful for detecting and matching objects. 26

22 cf.: Werner, 2021, Digitale Bildverarbeitung, p. 64,
23 cf.: Werner, 2021, Digitale Bildverarbeitung, p. 65,
24 cf.: Werner, 2021, Digitale Bildverarbeitung, p. 138,
25 cf.: Werner, 2021, Digitale Bildverarbeitung, p. 138-139,
26 cf.: Süße and Rodner, 2014, Bildverarbeitung und Objekterkennung, p. 515,

8

These are just a few tools used in image processing to help understand the basics of

how images can be evaluated to recognize patterns and associate or match them with

objects or predefined classification criteria.

2.2.2 Traditional Object Detection using Image Processing

To effectively utilize the information about an image provided by the methods

mentioned above, traditional object algorithms are typically divided into several key

steps: preprocessing, segmentation, classification, and the output of analytical data.

Preprocessing is performed to enhance the image, making it more suitable for further

analysis. This step often includes filtering to remove noise, adjusting contrast to

improve visibility, and converting the image into different formats such as greyscale

or binary, depending on the requirements of the specific algorithm.27 The choice of

preprocessing techniques depends on the specific use case and the characteristics

of the data being analyzed.28 For example, converting an image to greyscale might

be necessary to simplify the analysis, while binarization could be useful for tasks

involving edge detection or object recognition.

Segmentation involves dividing the image into meaningful segments or regions that

represent specific features, such as objects, contours, or lines. This step is crucial

because it isolates the areas of interest within the image, which are then analyzed in

subsequent steps.27

Classification is the process of analyzing each segment to determine which

predefined class it belongs to. This involves extracting features from the segmented

regions and comparing these features against a set of predefined classes. The

accuracy of the classification depends on both the quality of the segmentation and

the effectiveness of the feature extraction process. Typical features might include

texture, shape, color, or intensity patterns within the segments.29

Finally, the output of analytical data involves presenting the results of the classification

in a meaningful way. This could be in the form of labeled images, statistical

summaries, or other data representations that provide insight into the characteristics

of the image.30 The nature of the output will depend on the goals of the image

processing task, whether it is for further analysis, decision-making, or visualization

purposes. Typically, data like distance between objects or set coordinates,

geometrical properties or localization of the object inside the image are of interest. In

27 cf.: Süße and Rodner, 2014, Bildverarbeitung und Objekterkennung, p. 211,
28 cf.: Kadam, Fang, and Zou, 2024, Object Tracking Using Computer Vision: A Review, p. 18,
29 cf.: Süße and Rodner, 2014, Bildverarbeitung und Objekterkennung, p. 212,
30 cf.: Süße and Rodner, 2014, Bildverarbeitung und Objekterkennung, p. 211,

9

traditional object detection, each of these stages are manually tweaked to fit the

needed use case or application which narrows down the area in which those detecting

algorithms lead to accurate results.31

2.2.3 Traditional Object Tracking Using Image Processing

Tracking methods take place after object detection. The goal is to reidentify and track

the location of a previously detected object over a sequence of video frames.32 One

method is known as tracking by detection (TBD), where each frame is analyzed and

tracked objects are associated with the objects detected in the next frame using

methods like data association, template matching optical flow, descriptor-based

tracking, or the Kalman filter.33

Data association uses information accrued in the previous detection phase about the

objects, movement pose, or change in appearance to reidentify the object. Template

matching is an image processing technique used to find and locate a specific pattern

or template within a larger image by comparing portions of the image against the

template. It works by sliding the template over the larger image and calculating a

similarity measure at each position to identify the best match.34 Optical flow estimates

the motion of objects or features between consecutive frames in. It provides

information on the direction and speed of motion, helping to track objects or

understand scene dynamics over time.35 The Kalman Filter is an algorithm which

predicting the future state by combining previous estimates with new measurements

tracking moving objects by predicting their future positions and adapting these

predictions in real-time.36

2.2.4 Object Detection and Tracking Methods Based on Deep Learning

Deep learning is a subset of machine learning that uses artificial neural networks with

multiple layers to model and understand complex patterns in data. For object

detection, typically convolutional neural networks (CNN) are used which have been

trained on feature sets to classify and locate objects in a given image.37 Commonly

used CNNs with pretrained datasets that are available are Single-Shot Multibox

Detector (SSD), You Only Look Once (YOLO), Region-Based Convolutional Neural

Network (R-CNN) and Monocular Depth Sensing (MiDaS).38

31 cf.: Süße and Rodner, 2014, Bildverarbeitung und Objekterkennung, p. 18,
32 cf.: Kadam, Fang, and Zou, 2024, Object Tracking Using Computer Vision: A Review, p. 16-17,
33 cf.: Kadam, Fang, and Zou, 2024, Object Tracking Using Computer Vision: A Review, p. 22,
34 cf.: Kadam, Fang, and Zou, 2024, Object Tracking Using Computer Vision: A Review, p. 22-23,
35 cf.: Kadam, Fang, and Zou, 2024, Object Tracking Using Computer Vision: A Review, p. 23,
36 cf.: Kadam, Fang, and Zou, 2024, Object Tracking Using Computer Vision: A Review, p. 24-25,
37 cf.: Sarkar, Bali, and Sharma, 2018, Deep Learning for Computer Vision, p. 499,
38 cf.: Kadam, Fang, and Zou, 2024, Object Tracking Using Computer Vision: A Review, p. 20-21,

10

TBD methods can also be combined with deep learning models in order to train

tracking algorithms following those concepts. In addition to TBD, another approach is

joint detection and tracking, which incorporates the detection and tracking processes

into a single stage which makes it possible to introduce end-to-end trainable models.

This means that a single model could be trained to perform both the detection and

tracking rather training models individually for each stage.39

2.3 Network Communication and Protocols

For modern network communication, the one relevant architecture framework is the

Transmission Control Protocol/Internet Protocol (TCP/IP) suite, which is a collection

of compatible communication protocols. These protocols follow the TCP/IP model,

which is constructed of logical layers representing the communication architecture,

similar to the Open Systems Interconnection (OSI) model.40 The main difference

between the two is that the TCP/IP model consists of four layers instead of the seven

OSI layers, as shown in Figure 5: The TCP/IP and OSI models (Wendzel 2018, p.

13). The application layer combines the functions of the OSI's application,

presentation, and session layers and handles high-level protocols like Hypertext

Transfer Protocol (HTTP), Simple Mail Transfer Protocol SMTP, etc. The Transport

Layer corresponds to the OSI's Transport layer, providing reliable data transfer via

protocols like TCP and User Datagram Protocol (UDP). The internet layer is similar to

the OSI's network layer, managing IP addressing and routing of data packets. The

link layer corresponds to the OSI's data link and physical layers, dealing with the

physical transmission of data in the form of bytes over network interfaces.41

Figure 5: The TCP/IP and OSI models (Wendzel 2018, p. 13)

39 cf.: Kadam, Fang, and Zou, 2024, Object Tracking Using Computer Vision: A Review, p. 25,
40 cf.: Wendzel, 2018, IT-Sicherheit Für TCP/IP-und IoT-Netzwerke, p. 12,
41 cf.: Wendzel, 2018, IT-Sicherheit Für TCP/IP-und IoT-Netzwerke, p. 12-13,

11

2.3.1 The TCP Protocol and its Application

The TCP protocol is a Transport Layer protocol, and in this context, data packets are

referred to as segments. These segments are not sent as separate messages but as

a data stream.42 It is important to keep track of the order and any potential loss of the

transferred data. For this purpose, TCP uses sequence numbers to label each

segment sent by the host. If a segment is successfully delivered to the client, the client

sends an acknowledgment number to the host. If no acknowledgment is received by

the host, the missing segment is resent to the client.43

To perform successful communication between the host and client, the client initiates

a process called passive opening, which involves dedicating a port for TCP

communication. The host performs an active opening by establishing a connection

between the host and client through a process known as the Three-Way Handshake.44

This involves three TCP segments being exchanged between the host and client.

First, the host sends a synchronization flag to the client, indicating a connection

attempt and including a synchronization sequence number. The client accepts by

sending an acknowledgment number and its own synchronization sequence number.

The third segment is an acknowledgment by the host, and the connection is

established.45 To properly end the communication, the connection must be closed

using another Three-Way Handshake, with an active close performed by the host and

a passive close by the client.46

2.3.2 The UDP-Protocol and its Application

The UDP is also a Transport Layer protocol, and in this context, data packets are

referred to as datagrams. UDP falls under the category of connectionless protocols,

which means a connection between the host and client does not need to be

established.47 Datagrams are sent regardless of the connection status. Datagrams

are sent as sequential messages, but unlike TCP, UDP does not have a process to

ensure the correct order or to resend missing packets, meaning lost datagrams cannot

be recovered. Handling this would only be possible at the application layer, which

requires metadata about packet control to be included in each datagram message

42 cf.: Wendzel, 2018, IT-Sicherheit Für TCP/IP-und IoT-Netzwerke, p. 50,
43 cf.: Plenk, 2024, Angewandte Netzwerktechnik kompakt: Dateiformate, Übertragungsprotokolle und ihre Nutzung in Java-
Applikationen, p. 159-160,
44 cf.: Wendzel, 2018, IT-Sicherheit Für TCP/IP-und IoT-Netzwerke, p. 54-55,
45 cf.: Wendzel, 2018, IT-Sicherheit Für TCP/IP-und IoT-Netzwerke, p. 56,
46 cf.: Wendzel, 2018, IT-Sicherheit Für TCP/IP-und IoT-Netzwerke, p. 57,
47 cf.: Plenk, 2024, Angewandte Netzwerktechnik kompakt: Dateiformate, Übertragungsprotokolle und ihre Nutzung in Java-
Applikationen, p. 185,

12

and specified by the application used.48 This means that, in general, applications

using UDP should be insensitive to data loss and the mixed arrival of data packets.

Despite its limitations, UDP offers several advantages that make it a valuable

communication protocol. UDP does not require a connection to be established before

data is sent, eliminating the need for the three-way handshake process used by TCP.

Additionally, UDP does not perform error checking, acknowledgment, or

retransmission, which allows data to be transmitted more quickly, resulting in lower

latency and faster transmission. This makes UDP suitable for real-time applications

such as live video streaming, online gaming, and Voice over IP (VoIP), where slight

delays or loss of data packets are preferable to the delays caused by retransmission

in TCP.49

In addition, UDP is easier to implement in both hardware and software, making it a

preferred choice for simple, resource-constrained systems where minimizing

complexity is important. UDP is typically used in scenarios where datagrams need to

be transmitted at regular intervals or where the loss of a message is not problematic

because requests can be easily repeated, as in Domain-Name-System (DNS) or

Dynamic Host Configuration Protocol (DHCP) requests.50 When implementing the

UDP protocol, an important factor to consider is IP fragmentation. Every network has

limitations on the amount of data that can be transferred over a given time, depending

on the protocols used and, more importantly, the physical network interfaces

implemented. Since UDP does not offer the ability to reorder datagrams,

fragmentation and the mixed arrival of those fragmented frames could corrupt the

data.51

Fragmentation occurs at the link layer within the TCP/IP model. At the link layer,

packets are generally referred to as frames, and the maximum size of each frame is

defined by the Maximum Transmission Unit (MTU). A typical MTU for Ethernet and

WLAN connections is 1,500 Bytes. If a data packet exceeds the MTU, it is fragmented

into two or more fragments and sent as individual frames.52 To prevent fragmentation,

V. Plenk advises to keep the maximum data payload for each datagram under 508

Bytes, accounting for network MTU’s and metadata like IP and UDP headers.53

48 cf.: Wendzel, 2018, IT-Sicherheit Für TCP/IP-und IoT-Netzwerke, p. 49,
49 cf.: Plenk, 2024, Angewandte Netzwerktechnik kompakt: Dateiformate, Übertragungsprotokolle und ihre Nutzung in Java-
Applikationen, p. 186,
50cf.: Wendzel, 2018, IT-Sicherheit Für TCP/IP-und IoT-Netzwerke, p. 49,
51 cf.: Wendzel, 2018, IT-Sicherheit Für TCP/IP-und IoT-Netzwerke, 38,
52 cf.: Wendzel, 2018, IT-Sicherheit Für TCP/IP-und IoT-Netzwerke, p. 37,
53 cf.: Plenk, 2024, Angewandte Netzwerktechnik kompakt: Dateiformate, Übertragungsprotokolle und ihre Nutzung in Java-
Applikationen, p. 188,

13

2.3.3 The OSC Content Format and its Message Structure

In the context of multimedia applications Open Sound Control (OSC) is an established

communication protocol that was developed in 1997 by Adrian Freed and Matt

Wright.54 It is designed to control real-time audio applications and operates at the

Application Layer in the TCP/IP model or the Presentation Layer in the OSI model.

For network communication, OSC relies on underlying transport protocols like UDP

or TCP.55

OSC streams consist of sequences of frames, each associated with a specific

moment in time known as a time tag. These frames are referred to as bundles. Within

each bundle, there are multiple messages, each representing the state of a sub-

stream at the referenced time tag. These sub-streams are identified by a human-

readable string called an address, which is constructed as a hierarchical namespace

similar to Uniform Resource Locators (URL). A visualization of the message hierarchy

is provided in Figure 6.56 Messages within the same bundle are treated as atomic,

meaning their effects should be executed simultaneously by the receiver. This is

crucial in multimedia applications where certain values need to be set at the exact

same time.57

Figure 6: Structure of the OSC content format (Schmeder, Freed, and Wessel 2010)

54 cf.: Wright and Freed, 1997, Open SoundControl: A new protocol for communicating with sound synthesizers,
55 cf.: Freed and Schmeder, 2009, Features and Future of Open Sound Control version 1.1 for NIME,
56 cf.: Schmeder, Freed, and Wessel, 2010, Best practices for open sound control,
57 cf.: Wright and Freed, 1997, Open SoundControl: A new protocol for communicating with sound synthesizers,

14

2.4 An Overview on Single-Board Computers

A Single-Board Computer (SBC) is a compact, self-contained computing device that

integrates all the essential components of a computer, such as the processor,

memory, input/output interfaces, and storage, onto a single circuit board. Unlike

traditional desktop computers, which typically consist of multiple separate

components connected via a motherboard, an SBC is designed to be a low-cost,

energy-efficient solution for a wide range of applications, including embedded

systems, educational tools, hobbyist projects, and industrial automation. SBCs like

the Raspberry Pi (RPI), BeagleBone, and Arduino are particularly popular due to their

affordability, small form factor, and versatility.58

Raspberry Pi: The RPI is an SBC developed by the Raspberry Pi Foundation

designed to promote computer science in education. Known for its affordability, small

size, and versatility, the Raspberry Pi features a powerful Advanced RISC Machines

(ARM) based processor, multiple Universal Serial Bus (USB) ports, High-Definition

Multimedia Interface (HDMI) output, and General-Purpose Input/Output (GPIO) pins

for connecting hardware components. It runs a variety of operating systems (OS),

most notably Raspberry Pi OS.59

BeagleBone Black: An open-source SBC platform developed by the nonprofit

organization BeagleBoard.org Foundation and designed for developers and

engineers requiring more processing power and input/output capabilities than typical

SBCs like the RPi. The BeagleBone boards, such as the BeagleBone Black, feature

an ARM 1Ghz Cortex-A8 processor, various GPIO options, and support for real-time

processing tasks, making them ideal for industrial automation, robotics, and

embedded systems.60

Bela: The Bela is a licensed version of the BeagleBone Black with light modifications.

It is designed for real-time audio applications integrating audio programming

languages like Pure Data (PD), Supercollider, and Csound.61

Arduino: This SBC is a popular open-source electronics platform that combines easy-

to-use hardware and software to create interactive projects. Unlike typical single-

board computers, Arduino boards are microcontroller-based rather than

microprocessor-based, focusing on control and interfacing tasks rather than running

full operating systems. Arduino is widely used in education, prototyping, and hobbyist

58 cf.: Ariza and Baez, 2022, Understanding the role of single-board computers in engineering and computer science
education: A systematic literature review,
59 cf.: Raspberry-Pi, Raspberry Pi hardware, https://www.raspberrypi.com/documentation/computers/raspberry-pi.html,
60 cf.: BeagleBoard.org-Foundation, Our Mission, https://www.beagleboard.org/about,
61 cf.: Bela.io, Bela & Bela Mini, https://bela.io/products/bela-and-bela-mini/,

15

projects due to its simplicity, affordability, and extensive community support. It is used

in tasks such as controlling sensors, motors, and light emitting diodes (LED), making

it a suitable choice to build custom hardware solutions.62

Sensors/Modules: Most of those SBC platforms support a wide range of sensors or

modules, enabling them to interact with the environment by monitoring various

physical properties such as temperature and humidity, motion and proximity, light, or

gas as well as camera modules, accelerometers and gyroscopes, and other

environmental sensors.63

2.5 Software Solutions for Audio-Visual Applications

2.5.1 TouchDesigner

TouchDesigner is a visual development platform that enables users to create

interactive multimedia applications and real-time digital art. Developed by Derivative,

it provides a node-based interface for procedural design, making it highly versatile for

tasks from interactive installations, generative design, and real-time 3D graphics, to

audio-reactive visuals. Its strength lies in its ability to handle complex multimedia

systems and real-time data inputs like audio, video, image processing data, allowing

artists, designers, and developers to create dynamic, immersive experiences.

TouchDesigner integrates seamlessly with various hardware devices, making it a

popular choice for creating interactive installations, live performances, and projection

mapping projects.64 65

2.5.2 Max / RNBO

Max is a visual programming language originally developed by Miller Puckette at the

Institute for Research and Coordination in Acoustics/Music (ICRAM) and later the

rights were acquired by Cycling '74. Max is designed to create complex audio-visual

applications. It operates through a graphical interface where users connect objects

representing different functions, such as sound synthesis, visual rendering, and data

processing which are called patches. Max is particularly known for its flexibility in

audio-visual programming, making it a popular tool for creating custom software

instruments and audio effects, interactive installations, and live performance systems.

Its extensive library of objects and compatibility with various external hardware

62 cf.: Arduino-S.r.l., Hardware, https://www.arduino.cc/en/hardware,
63 cf.: Sertronics-GmbH, senasoren-module, https://www.berrybase.de/sensoren-module/,
64 cf.: Kraus-[GbR], About TouchDesigner, https://thenodeinstitute.org/about-touchdesigner/,
65 cf.: derivative, Features, https://derivative.ca/feature,

16

devices make Max a powerful environment for creative coding and multimedia

experimentation.66 67

RNBO is an extension of the Max environment designed for creating audio

applications that can be easily exported to multiple platforms, including web, mobile,

and embedded systems. RNBO enables users to design audio signal processing

algorithms visually within Max and then compile them into portable code that can run

independently outside of the Max environment like JavaScript, C++, or directly

compiling onto an RPI. This makes RNBO a valuable tool for developers looking to

deploy their custom audio tools and instruments across different platforms without

rewriting code.68

2.5.3 Pure Data

Pure Data (PD) is a visual programming language developed by Miller Puckette as

an open-source alternative to Max for creating interactive multimedia applications,

with a particular emphasis on real-time audio processing. Like its commercial

counterpart Max, PD allows users to build complex systems by visually connecting

objects that perform various functions, such as sound synthesis, signal processing,

and data manipulation which are also refed to as patches. PD is widely used in

experimental music, sound art, and interactive installations due to its flexibility,

extensibility, and free accessibility. It also supports the creation of custom audio

effects, virtual instruments, and interactive interfaces. The modular architecture and

cross-platform compatibility of PD make it a powerful tool for artists, musicians, and

developers seeking to explore creative coding and digital media.

The PD community has developed numerous additional functions, known as externals

or external libraries, which extend its capabilities to include video processing, 3D

object manipulation, and more.69 The integration of PD on the Bela comes with certain

limitations and challenges. It is important to note that this is not the full Pd Vanilla

version but rather libpd a lightweight, headless version that allows patches to be

loaded and run but not edited directly on the platform. This can be limiting for users

who need to tweak patches on the fly, as the standard PD interface is not available.

66 cf.: Cycling'74, What is Max, https://cycling74.com/products/max,
67 cf.: Institute-of-Electronic-Music-and-Acoustics, Home, https://puredata.info/,
68 cf.: Cycling'74, Introducing RNBO, https://cycling74.com/products/rnbo,
69 cf.: Institute-of-Electronic-Music-and-Acoustics, Home, https://puredata.info/,

17

2.6 Audio-Visual Art, Sound Art and the Connection to Interactivity

2.6.1 Audio-Visual Art

Audio-visual art is an artistic form that combines auditory and visual elements to

create immersive experiences. Within this context, sound art plays a crucial role,

contributing to the overall sensory impact of the work.70 Sound art in audio-visual

contexts encompasses elements of the tonal, spatial, and visual.71 This integration

challenges traditional boundaries between disciplines, drawing from fine art, music,

and technology to create a complex and rich artistic medium.

2.6.2 Sound Art

The emergence of sound art as a distinct form within audio-visual art can be traced

back to the early 20th century. Sound artist and composer Alan Licht points to the

development of technologies like the telephone and sound recording equipment as

key moments when sound could be detached from its physical sources and cultural

contexts.72 The incorporation of sound in non-musical artistic contexts represented a

profound challenge to established aesthetic norms, offering artists new ways to

explore space, time, and sensory perception.

2.6.3 Interactivity between Audience and Sound Art

Interactivity in the context of art refers to the dynamic relationship between the artwork

and its audience, where the viewer or participant plays an active role in influencing or

shaping the experience of the piece. Unlike traditional art forms, where the audience

passively observes, interactive art invites engagement, allowing participants to alter

or affect the outcome, appearance, or behavior of the artwork through their actions,

inputs, or decisions.73

In this paper, the definition of Interaction in sound art mainly followed the framework

from Visda Goudarzi and Artemi-Maria Gioti which they discussed engagement and

interaction in participatory sound art.74 It explored the role of different actors in

interactive sound systems, focusing on how technology and creative processes

intersect. They discussed the blurring of roles between technology creators,

composers, performers, and spectators in participatory sound art and the challenges

associated with ownership of technical and aesthetic components.75

70 cf.: Shoer, Kopru, and Erzin, 2022, Role of Audio in Audio-Visual Video Summarization,
71 cf.: Holmes, 2022, Sound Art: Concepts and Practices,
72 cf. Garrelfs, 2015, From inputs to outputs: an investigation of process in sound art practice, p. 21,
73 cf.: Candy, Interaction in Art and Technology, https://crossings.tcd.ie/issues/2.1/Candy/,
74 cf.: Goudarzi and Gioti, 2016, Engagement and interaction in participatory sound art,
75 cf.: Goudarzi and Gioti, 2016, Engagement and interaction in participatory sound art,

18

They laid down different aspects of audience participation within participatory sound

systems, highlighting several key parameters that influenced how audiences engage

with such systems into three main categories: Audience Engagement, Human-

Computer Interaction, and Human-Human Interaction.76

Audience Engagement can range from crowdsourcing, where the audience

passively provides data for the sound creation process. Performance agency, where

they take on an active role, controlling sound parameters in real-time within a

framework set by the composer or designer. The highest level of engagement is co-

authorship, where the audience not only performs but also participates in the creative

decision-making process, shaping the artwork itself and also democratizes the

creative process.77

Human-Computer Interaction (HCI) focuses on strategies for audience-system

interaction, focusing on the following aspects. Multiplicity of control separates

between single-user and multi-user systems, with the latter allowing simultaneous

interaction by multiple users. The type of control the various interfaces used for

interaction, which can range from haptic to non-tactile inputs, influencing the nature

of the interaction. The mapping of control action is the process of mapping user

actions to sound parameters, which can be linear or dynamic, affecting how

transparent and intuitive the control feels to the user. Control parameters refer to

specific sound elements that users can manipulate. And control modality is whether

the control is discrete or continuous influencing the precision and style of interaction.78

Human-Human Interaction (HCI) emphasizes the concept of collaborating between

participants and highlights factors such as location, remote or co-located interactions,

levels of communication and collaboration between experts and not experts.79

The core idea is that the artwork is not complete without the viewer’s participation,

making the experience of the art unique and personal for each individual. Interactivity

transforms the role of the audience from passive observer to active participant, soften

the boundaries between artist and viewer, and often leading to unpredictable and

evolving outcomes.

76 cf.: Goudarzi and Gioti, 2016, Engagement and interaction in participatory sound art,
77 cf.: Goudarzi and Gioti, 2016, Engagement and interaction in participatory sound art,
78 cf.: Goudarzi and Gioti, 2016, Engagement and interaction in participatory sound art,
79 cf.: Goudarzi and Gioti, 2016, Engagement and interaction in participatory sound art,

19

3 Identifying the Technical Approach for the Sound Installation

In this project, the artistic concept and the technical realization through engineering

were closely linked together. In order to find suitable solution for this installation, it

was crucial to understand the artistic motivation and the reason why a specific

requirement was important to the final result.

Technical solutions come with limitations, which could contradict the artistic concept.

External limitations, such as budgeting, schedules, personal capacities, supply

chains, etc. could also stand in the way of the technical implementation process. This

project was an exercise in acknowledging limitations and transforming them into

artistic features. This chapter analyzes the artistic concept described in chapter 1.2 to

identify the requirements necessary to create a successful installation.

3.1 Requirements Analysis Based on the Artistic Concept

Before it was possible to create an adequate list of the most important requirements,

it was important to understand the purpose of the installation and what it should do.

The most important part was the interaction between participants, and the installation

itself. The idea was to assign one sound element to each participant when they

entered the installation space. The participants’ movement in the horizontal plane

should influence the sonic characteristics of the sound. At the same time, the location

of the origin of the sound should correspond to the location of the participant. This

should enable nonverbal communication between the participants through

observation and listening.

At the same time, it was important to keep the use of professional audio-visual

equipment to a minimum in order to keep the overall cost of the installation as low as

possible. A second cost-minimizing approach was to use as many open-source

software solutions as possible to enable communities to adapt the installation to their

needs or interests as needed. Keeping the size and weight at a minimum would

ensure shipment of the installation was easier and cheaper as well maintaining a small

footprint for storage. It was also important to ensure that the setup process could be

performed by a non-professional individual.

A special requirement for a minimum footprint for the installation was set for a

minimum ceiling height of 3.5 meters and a diameter of 5 meters.

20

In summary, the key technical requirements were:

• Detection and tracking • Communication protocols
• Sound generation • Cost, size and weight efficiency
• Digital to Analog (D/A) conversion • Use of open-source software
• Amplification • Easy set up process
• Sound reproduction • No professional audio/video

equipment

3.2 Ideation for Solutions Based on the Requirements

The next step involved identifying solutions that best met the majority of the technical

requirements. In order to demonstrate the variety of possible solutions, the

requirement to not to use professional audio and video technology was ignored. The

chosen solutions are highlighted in bold.

Detection and tracking Sound generation

• Ultrasonic sensors
• Pressure sensors in the floor
• Camera object tracking
• Manual tracking with operators
• Tracking transmitter
• Production-ready software

(TouchDesigner, Max)

• Modular synthesizer
• Digital audio workstation
• Live performance
• Visual programming language

(Max or PD)
• Audio programming language

(Faust, Csound, Supercollider)

D/A conversion Communication protocols

• Traditional audio interface
• Stage box
• Network audio converter
• SBC + D/A converter module

• Network protocol (OSC, TCP, UDP)
• Serial
• GPIO connection

Amplification and sound reproduction

• Active loudspeaker system
• Passive loudspeaker system
• Custom speaker design
• 8 x 1-channel amplifier
• 8-channel amplifier
• Network amplifier

21

3.3 Finalizing the Technical Approach

Chapter 3.2 gives a rough insight into the available solutions, most of which could be

interchangeably combined to create a functional overall solution in order to realize the

sound installation from a technical perspective. The use of a professional small form

factor Network Device Interface (NDI) camera with a connection to a computer

running TouchDesigner to control an Ableton session or Max patch feeding an active

array of 8 to 12 speakers over a digital to analogue converter (DAC) would be a

suitable choice.

However due to the requirements outlined in chapter 3.1, a more out-of-the-box

thinking approach had to be explored, which is detailed below.

3.3.1 Detection and Tracking Approach

Camera-Based Object Tracking

Object tracking was accomplished through a camera-based tracking solution that

followed a traditional TBD approach based on the principles discussed in chapters

2.2.2 and 2.2.3. This solution had some technical and artistic benefits. From a

technical perspective, one advantage was that prebuilt hardware and software

solutions were widely available, and resources and knowledge bases were

accessible. This enabled a wide range of combinations of hardware and software to

choose from.

Since the goal was to create a small, light, and cost-effective solution, the use of a

small but powerful SBC was a fitting choice. The Raspberry Pi 4 was a suitable choice

not only since it is widely available for an affordable price but one was already

available on hand. There is an active community around the RPI which enabled easy

access to resources, code examples, and tutorials online. This platform also offered

a huge variety of aftermarket hardware extensions like battery packs, DACs, sensors,

and cameras.80 Due to the small form factor cameras which are available, it would be

possible to create a compact computing and camera unit.

The above-mentioned arguments supported the camera-based tracking approach

from an artistic perspective as it was crucial for the participants to enter the installation

space seamlessly to avoid spoiling what might happen after entering. This would lead

to a more connected experience and encourage participants to explore and

experiment.

80 cf.: Sertronics-GmbH, senasoren-module, https://www.berrybase.de/sensoren-module/,

22

3.3.2 Solution for Sound Generation and D/A conversion

SBC + D/A Converter Module

Similar to the approach taken for object tracking, the preferred choice was also for the

SBC to handle the audio processing. Max, RNBO or PD would be fitting software

solutions to perform the audio processing on an SBC. While Max has the capability to

export patches using the RNBO extension directly onto an RPI, it required a license

to operate and therefore conflicts with the artistic premise to keep the project open

source as much as possible.81 PD was the open-source alternative and therefore

preferred for this application.

Once the sound engine was decided, it was necessary to find a suitable SBC to run

PD. At first, an RPI seemed to be a fitting solution to handle the audio processing and

was actively considered. However, during the first prototyping phase, it was

discovered that outputting an 8-channel audio signal on a RPI would be more

challenging than expected. It was possible to connect the RPI to USB audio interfaces

that support multichannel D/A conversion, but this was considered to be too big of a

compromise to the artistic concept and was not pursued. A more suitable SBC was

the Bela. It offers native PD support and, in combination with the CTAG module, D/A

conversion for up to 16 channels was possible. The optimized architecture for real-

time applications was an additional benefit for this project82.

3.3.3 Amplification and Sound Reproduction Solution
Custom Speaker Design + 8-channel Amplifier

Since a key part of the artistic concept was the localization of the origin of each sound

element corresponding to the participants' positions inside the installation, a multi-

channel surround speaker array was desired. Early in the process, it became apparent

that a speaker array with 16 or 32 individual speakers would not be possible due to

access to resources. Therefore, the decision was made to reduce the number of

speakers to 8 to form a 360-degree speaker array in the horizontal plane.

The speakers used in this project were self-built, using mostly materials available in

hardware stores. Even though active studio monitors would have saved valuable

development time, this extra effort was important for the artist. Aesthetically, a

speaker could immediately provide some insight about the installation and hint

towards sound reproduction. A 360-degree speaker array could also give a lot of

insight into the installation before a participant even has entered the installation space.

81cf.: Cycling'74, Max, https://cycling74.com/shop/max,
82 cf.: Bela.io, CTAG multichannel audio board, https://learn.bela.io/products/multichannel/ctag-multichannel-board/#ctag-
multichannel-audio-board,

23

The goal was to integrate them in such a way that they did not immediately reveal

themselves as speakers this could influence the participants' experience.

Due to time and capacity constraints, it was decided to use a professional-grade 8-

channel Class D amplifier, leaving this as the last area in the entire signal chain not

conforming to the set requirements.

3.3.4 Enabling Audience Engagement and Interaction

To enable participants to engage and interact with the installation, several concepts

presented in Chapter 2.6 were incorporated. The installation remains silent when

unoccupied to capture the participants attention, and when they interact with it, their

direct influence on the sound should be immediately apparent. The primary goal was

to design the installation according to the concept of performance agency, allowing

the audience to control key aspects like pitch and effect parameters in real-time. HCI

should support simultaneous multi-user interaction, with participants’ movements and

collaboration within the installation serving as the main form of control. Chapter 4.2

delves deeper into the process of mapping control actions and explains how control

parameters and values are generated.

24

3.3.5 Signal Flow Diagram

A flow diagram visualizing the intended signal chain is shown in Figure 7.

Figure 7: Flow chart showing the technical concept, components, and functions

4 Development, Evaluation and Implementing Improvements of

the Sound Installation

This chapter highlights the development, evaluation and implementing improvement

in relation to the most important components and solutions: the object tracking

algorithm, control data processing, audio processing, D/A conversion and speaker

array. The aim is to give insight into the development process and the ideas behind

it. Furthermore, an attempt is made to show the decision-making process for each

technical solutions and to clarify their technical and artistic motivations.

4.1 Approach for the Object Tracking Algorithm

As already discussed in chapter 2.2, many approaches to realize camera-based

object tracking were available. At first, it was considered to use deep learning-based

methods. Tests in the early stages showed that pretrained models like YOLO caused

Raspberry PI 4

Python Programm

Bela

Pure Data

RPI v1 HQ camera

Image
Processing

Object
Detection

Objekt
Tracking

Handeling
Control

Data

360 Surround Panning

D/A Conversion

Amplifier

Speaker
1 (0°)

Speaker
2 (45°)

Speaker
3 (90°)

Speaker
4 (135°)

Speaker
5 (180°)

Speaker
6 (225°)

Speaker
7 (270°)

Speaker
8 (315°)

USB -
Ethernet
interface

Sound Design

Handeling Control Data

25

high Central Processing Unit (CPU) loads on the RPI4 resulting in frame rates of one

frame per second (FPS), which was not responsive enough. It was decided to follow

a different strategy instead of developing a self-trained model and optimizing the

approach.

Inside of Max, it is possible to create a simple tracking technique. David Tinapple

highlights his approach, which he refers to as blob-tracking, in his online course

"Motion Responsive Soundscapes".83,84 His technique served as the main influence

to develop a similar approach in Python to perform the image processing and

computing operations. The concept is to detect differences in pixel intensity by

assuming moving participants entering the scene appeared less bright in front of a

white background. Because the installation takes place in a controlled environment,

the floor color and lighting could be predetermined.

The object tracking algorithm was programmed in Python using the Open-Source

Computer Vision library (OpenCV), which is designed for image processing and

computer vision operations.85 The algorithm is handled in the script

objeckt_tracking.py86 and followed a traditional approach using standard image

processing and the concept of TBD. The foundation of this tracking algorithm is based

on the code example by Sergio Canu, which used the YOLO4 algorithms for detection

and classification.87 This foundation has been modified in a variety of ways to

accommodate the technical approach and given requirements. The detection and

classification have been replaced; however, the re-identification aspect of the

algorithm is still present.

4.1.1 Choice of Camera Integration

The camera chosen was the RPI v1 HQ camera, as this camera was already in

inventory. To maximize the field of view for spaces with limited ceiling heights, an

aftermarket fisheye lens was chosen. The camera uses the Sony IMX477 sensor with

an optical size of 1/2.3", 12.3 megapixels, and a sensor resolution of 4056 x 3040

pixels. In video mode, the maximum resolution is 2028 × 1520 for 40 FPS.88

The physical connection between the RPI and the camera was a second-generation

Mobile Industry Processor Interface (MIPI CSI-2). It is a high-performance, multi-layer

83cf.: Tinapple, Max/MSP - Blob-tracking, https://www.youtube.com/watch?v=cytx9NqSQNA,
84 cf.: Tinapple, Tracking - Blob Tracking, https://tinapple.notion.site/Tracking-Blob-Tracking-
9b5b314087074429808b53bf4598e4de,
85 cf.: OpenCV, Introduction, https://docs.opencv.org/4.x/d1/dfb/intro.html,
86 Source code 2: Object tracking object_tracking.py
87 cf.: Sergio-Canu, Object tracking from scratch – OpenCV and python, https://pysource.com/2021/10/05/object-tracking-
from-scratch-opencv-and-python/,
88 cf.: Raspberry-Pi, About the Camera Modules, https://www.raspberrypi.com/documentation/accessories/camera.html#hq-
camera,

26

protocol designed for low-power video applications and supports a maximum

bandwidth of 10 Gbit/s. The support for the MIPI D-PHY layer enables embedded

communication with the application processor.89 The MIPI CSI-2 interface is more

efficient for this application. Even though the SDI standard SMPTE ST-2082 supports

a bandwidth of 12 Gbit/s, the need for format conversions and interfacing over the

USB standard would make this a less efficient solution.

4.1.2 Performing Image Processing to Enhance Tracking Capability

Before the object detection algorithms can operate, a few image processing steps

were necessary after establishing a connection to the camera module.

The first step was setting the basic camera configurations. The color format was set

to YUV420, which has the benefit of accessing a grayscale image directly through its

Y channel, saving the step of converting an RGB signal to grayscale.90 The resolution

was set to 1520 x 1520 to maximize vertical information and minimize data size, as

the extra horizontal information was not necessary since the region of interest was a

circle, corresponding to a 1:1 aspect ratio. The frame rate was set to 30 FPS.

To quantify processing efficiency and the benefit of using the YUV420 color format,

the time needed to compute a single frame by the tracking algorithm was averaged

over 30 seconds. Using the total number of computed frames during that timeframe,

the average frame rate could be calculated.

final test yuv420

Total frames: 859
Total time: 29.18 seconds
Average FPS: 29.44

final test with rgb

Total frames: 593
Total time: 29.46 seconds
Average FPS: 20.13

Figure 8: Terminal output object_tracking.py FPS test between YUV420 and RGB

The results showed that using the YUV420 format, it was almost possible to operate

within the predefined frame rate range. In comparison, using the RGB format caused

the average frame rate to drop by about 32%.

Because the tracking was is based on detecting brightness levels, a grayscale image

contained all the information necessary. The image processing and tracking algorithm

was performed for each frame individually. Therefore, the entire processing was

wrapped inside a for loop, where, at the beginning of each iteration, a new frame

was captured from the camera as a bit array and stored as frame.

89 cf.: MIPI-Alliance, DRAFT MIPI Alliance Specification for
Camera Serial Interface 2 (CSI-2), https://caxapa.ru/thumbs/799244/MIPI_Alliance_Specification_for_Camera_S.pdf,
90 cf.: Schmidt, 2013, Professionelle Videotechnik: Grundlagen, Filmtechnik, Fernsehtechnik, Geräte-und Studiotechnik in
SD, HD, DI, 3D,

27

To prevent unnecessary processing the tracking algorithm should only be applied to

the area inside the speaker array. For this purpose, a mask called mask_read is

created to overlay onto the frame. The mask_read is filled as a pixel array with the

same dimensions as the frame with white pixel values. A black circle is then drawn

with its center point in the center of the image and the radius defined by the variable

radius_circle. This variable can be set by the user to adjust the size of the

tracking area. The mask_read is applied to the frame, creating frame_mask, using

a bitwise OR operation, which keeps the region of the original image inside this circle

intact while turning the area outside the circle white see Figure 9.

300 # create a mask to define tracking area and overlay
onto frame

301 mask_read = np.zeros_like(frame)
302 mask_read = 255 - mask_read
303 mask_read = cv2.circle(mask_read, center_xy,

radius_circle, (0,0,0), -1)
304 frame_mask = cv2.bitwise_or(frame, mask_read)

Figure 9: Creating a mask as an overlay in order to define the tracking area (Source code 2)

The next steps highlighted in Figure 10 involved the inversion of the image into

img_inv and applying a linear filter function cv2.blur, similar to the ones presented

in chapter 2.2.1, However, this filter is called a box filter, which performs arithmetic

averaging to create a blurring effect.91,92 The goal is to merge local intensity

differences, adjusting for variations in brightness due clothing, backpacks, and other

factors to create a more uniform and trackable object. The purpose of the if statement

was for error handling, due to user input for system calibration.

The last step involved thresholding to separate the objects of interest from the

background using the cv2.threshold function.93 The threshold can also be adjusted

by user input for calibration purposes. To further enhance the thresholding, the

adaptive OTSU algorithm is used to account for local intensity differences.94

91 cf.: McDonnell, 1981, Box-filtering techniques,
92 cf.: OpenCV, Smoothing Images, https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html,
93 cf.: OpenCV, Image Thresholding, https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html,
94 cf.: Xu et al., 2011, Characteristic analysis of Otsu threshold and its applications,

28

A visualization of all image processing steps is provided in Appendix 2 using a custom

test image showing different shapes in different colors.

309 # prosses frame invert blurr and convert to binary
310 img_inv = cv2.bitwise_not(frame_mask)
311 # apply blur (liniar filter - type box)
312 if kernel_size > 1:
313 img_blurred = cv2.blur(img_inv, (kernel_size,

kernel_size))
314 else:
315 img_blurred = img_inv.copy()
316 # perform thresholding
317 ret, img_binary = cv2.threshold(img_blurred,

binary_thresh1, binary_thresh2, cv2.THRESH_BINARY +
cv2.THRESH_OTSU)

Figure 10: Image processing of target frame: inversion, filtering and thresholding (Source code 2)

4.1.3 Implementing Traditional Object Detection

The object detection method primarily relied on the OpenCV function

cv2.findContours to identify all contours of nonzero regions.95 The contours are

stored as pixel arrays referred to as cnts. A for loop is used to analyze all contours

found in the current frame. To filter for nonzero regions too small to represent a

person, a minimum threshold for the number of pixels forming a contour is defined

through user input as contour_size. Only contours above this threshold are

processed further.

The next step shown in Figure 11 identified the center point of each contour using the

cv2.moments function. This function calculates image moments for all detected

contours, such as m00 the number of pixels forming the contour, m10 the sum of all x-

axis pixel coordinates, and m01 the sum of all y-axis pixel coordinates96. Dividing m10

by m00 and m01 by m00 results in the average x and y pixel positions. Each set of pixel

coordinates (PXC) is converted to an integer, as PXC values are discrete, and saved

to the list center_points_cur_frame.

95 cf.: OpenCV, Contours : Getting Started, https://docs.opencv.org/4.x/d4/d73/tutorial_py_contours_begin.html,
96 cf.: OpenCV, Image Moments, https://docs.opencv.org/3.4/d0/d49/tutorial_moments.html,

29

329 # find contours and find total area
330 cnts = cv2.findContours(img_binary, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)
331 cnts = cnts[0] if len(cnts) == 2 else cnts[1]
332 for c in cnts: # find center of contoure
333 pxc = np.count_nonzero(c)
334 if pxc > contour_size:
335 # compute the center of the contour
336 M = cv2.moments(c)
337 if (M["m00"] != 0):
338 cX = int(M["m10"] / M["m00"])
339 cY = int(M["m01"] / M["m00"])
340 center_points_cur_frame.append((cX, cY))
341 else:
342 cX,cY=0,0

Figure 11 Finding contours and computing moments for PXC extraction (Source code 2)

4.1.4 Implementing Traditional Object Tracking

All relevant objects were detected in the current frame and their positions were saved

as a PXC. As TBD was used, it was necessary to compare and identify objects

detected in the previous frame with those in the current frame. Each PXC saved in

center_points_cur_frame was assigned a Global Identification number (GID),

which was an integer that incremented by one for each new object detected. Both the

PXCs and the GID were saved in tracking_objects, and the contents of

center_points_cur_frame were copied to center_points_prev_frame. After the

first frame had been processed, the distance between all PXCs from the current and

previous frames was calculated. If the distance was below a user defined threshold

called tracking_distance, it could be assumed that both PXCs belonged to the

same object, and the updated PXC could be assigned to the object's GID. All detected

objects in center_points_cur_frame that did not meet these criteria were added as

new objects and given a new GID. The final step involved checking

center_points_prev_frame for old objects that also did not meet these criteria and

could now be deleted. This was handled in lines 346-379 in Source code 2.

4.1.5 Implementing a Calibration Method

To minimize tracking errors, system calibration was essential. Since the tracking

process relied heavily on detecting variations in brightness, its reliability depended on

several key factors, including ambient lighting, background color, camera exposure,

aperture, positioning, and the color contrast between the visitor and the background.

Given that the installation is situated in a controlled environment, ambient brightness

and background color could be predetermined. Ideally, a bright, evenly lit environment

with a light-colored floor was preferred.

30

While the goal was to create a setup that eliminated the need for manual calibration,

an automated and adaptive calibration process would be ideal. However, given that

this was a prototype, the focus was placed on more critical aspects of development,

with the possibility of integrating automated calibration in the future.

Despite this, the ability to calibrate the system during the prototype stage remained

crucial. Visual feedback at various stages of image processing and tracking, real-time

parameter adjustments, and a wireless connection were necessary to streamline the

setup process and maintain flexibility in connecting to the unit without relying on long

HDMI cables.

To meet these requirements, a web interface was developed to receive a video stream

from the RPI4 and provide sliders for controlling image processing and tracking

parameters. This web interface is hosted on the RPI4.

During the prototype phase, running the main installation program required

connecting to the Wireless Local Area Network (WLAN) hotspot that was

automatically initialized on the RPI at startup. A Secure Shell (SSH) connection could

be established to launch the program via terminal commands. Upon executing the

main Python program called main.py97, user input is required to either initialize a

web server through executing the http_video.py98 script or running the tracking

algorithm script object_tracking.py99 independently for enhanced performance.

If the user opted to initialize the web server, the HTML login.html100 and

index.html101 are sequentially executed. The user could then access the calibration

web interface through a standard browser using the IP address printed in the terminal.

Parameter changes are handled with the config.py102 script, saving changes to the

config.json103 file, ensuring that settings could be reloaded after a system reboot.

Figure 12 shows a graphic overview of the Python scripts executed on the RPI4.

Appendix 3 shows the calibration web interface and demonstrates a basic calibration

process: adjustment of the tracking area, toggling of the binary image, adjustment of

the threshold, and specifying the amount of average filtering. The footage was taken

during the second test setup which will be covered in chapter 4.5.3.

97 Source code 1: Object tracking
98 Source code 3: Object tracking http_video.py
99 Source code 2: Object tracking object_tracking.py
100 Source code 7: Object tracking login.html
101 Source code 6: Object tracking index.html calibration web interface and receiving video stream
102 Source code 4: Object tracking
103 Source code 5: Object tracking config,json saved

31

Figure 12: Graphic over few on the relations between the Python scripts executed on the RPI4

4.2 Control Data Processing for Human Computer Interaction

The results of the tracking algorithm must be converted into control data optimized for

PD to control various aspects of the sound design to enable HCI. Therefore, it was

important to understand the key requirements of the artistic concept, even though the

final sound design was not yet determined at this stage.

The key requirements were a clear assignment of each tracked participant to a

specific sound element, spatial-acoustic projection of the assigned sound element to

the spatial position of the tracked object, and control of effect parameters of the sound

engine, such as reverberation times and delay times through participants’ movement.

From this, it followed that the control data should be as neutral as possible to allow

flexibility in applying it to later parameters, without knowing the exact threshold values,

quantity, or scope at this time. Since the audio processing took place on the Bela a

communication between the RPI4 and Bela needed to be established.

main.py

Raspberry Pi 4

Bela

Pure Data - Main Patch

object_tracking.py

RPI v1 HQ camera

Image
Processing

Object
Detection

Object
Tracking

Handling
Control Data

Control Data
Transmission

http_video.py

Initializing
Server

Calibration
Handling

Initializing
object_tracking.py

Handling
Video Stream

login.html
index.html

config.py

Initializing
Variables

Saving
Variables/

Calibration to
config.json

sketch.js

Sound 1 Sound 2 Sound 3 Sound 4 Sound 5 Sound 6 Sound 7 Sound 8

id_active id_active id_active id_active id_active id_active id_active id_active

panner_360

DAC CTAG cape

Amplifier

Speaker
1 (0°)

Speaker
2 (45°)

Speaker
3 (90°)

Speaker
4 (135°)

Speaker
5 (180°)

Speaker
6 (225°)

Speaker
7 (270°)

Speaker
8 (315°)

pd bella_gui_recive
Sub Patch

Receiving/Saving Gain
Adjustment

pd udp_data - Sub Patch - Receiving Control Data from RPI

azimut angle x-coordinate y-coordinate distance center id-active

Running Web
Interface

for Gain Adjustment

Device connected over WLAN to access
calibration & gain adjustment

Hosting
WLAN

Hotspot

USB -
Ethernet
Interface

tonal
Hervorheben

32

4.2.1 Clear Assignment of Tracked Participants to the Sound Elements

Regardless of the type and format of the control data, it had to be ensured that each

object was uniquely assigned to a sound element. As there was a finite number of 8

sound elements, but the GID is assigned in an infinite sequence. Another requirement

by the artistic concept was to ensure that the 8 available slots are continuously refilled

starting from the first slot. To prevent confusion within the tracking algorithm, an

additional data structure was created which consists of a limited number of possible

entries all indexed from 1 to 8. called rnbo. Each indexed entry was filled sequentially

with the current detected GID’s and PXC’s. This was handled in lines 380-577 in

Source code 2.

4.2.2 Projecting the Sound Element to the Participants Location

It was important to convert the PXCs into a more suitable format for later use in PD.

Since the speaker array and tracking area were circular, a polar coordinate system

with its origin located at the center of the image was used. The azimuth angles and

octants were defined as shown in Figure 13. A coordinate transformation was

performed, with the center PXC of the image as the new origin. The distance from the

center point to the new coordinate was calculated using trigonometric operations as

shown in Figure 14.

To calculate the azimuth angle, it was necessary to determine in which quadrant the

object is positioned. This step was handled by two nested if-else statements that

checked the signs of the coordinates. For example, if the x-coordinate was less than

zero, the object is either in quadrant 2 or quadrant 3. If the x-coordinate was greater

than zero, it was either in quadrant 1 or quadrant 4. Once the quadrant was identified,

the angle relative to the quadrant could be calculated using the arctangent operation.

Adding the appropriate angle components 90°, 180°, or 270° resulted in the azimuth

angle relative to the entire circle. The operation for quadrant 1 was shown in Figure

15.

Figure 13: Speaker placement with corresponding azimuth angle and octants I - VIII

0°

180°

90° 270°

45° 315°

135° 225°

I

II

III

IV

VI

VII

VIII

V

33

444 #calculate relative xy koordinats to the center of
Frame

445 angel_xy = tuple(map(operator.sub, pt, center_xy))
446 #calculate distance angle_xy to center_xy
447 angel_radius =

np.sqrt((angel_xy[0]**2)+(angel_xy[1]**2))

Figure 14: Calculating new xy coordinates and distance from PCX to origin (Source code 2)

448 # calculate the azimut angel of each position
449 if angel_xy[0] < 0:
450 if angel_xy[1] < 0:
451
452 angel_devision= (angel_xy[1]/ angel_xy[0])
453 #print(angel_devision)
454 azimut = (math.degrees(math.atan(angel_devision)))
455 azimut_1 = (90-azimut)

Figure 15: Calculating the azimuth angle for the first quadrant (Source code 2)

4.2.3 Control Data for Interaction with Audio Effects

As a method to find control data that could be used to control effects in PD, there was

the artistic directive to transfer the movement of the objects as an XY-matrix. Two

types were already established, the pixel and polar coordinate systems. Using one of

those two might result in similar control patterns and could appear repetitive, so it was

artistically sensible to use a new coordinate origin to increase variation. The choice

falls on the classic Cartesian coordinate origin, only using positive axes. The origin

was defined by the intersection of the 90° and 180° tangent and the axes maximum

limits are defined by the diameter of the tracking circle. The coordinate system scales

with the adjustable circle radius of the tracking mask. A coordinate transformation was

performed and, to ensure the usability for PD, the x and y coordinates were

normalized. The last data type was the distance from the PXC to the center point of

the image which was also normalized. Both steps were handled as shown in Figure

16.

480 x_dict[k] = "%.3f" % ((pt[0] - x1) / (2 *
radius_circle))

481 y_dict[k] = "%.3f" % ((y1 - pt[1]) / (2 *
radius_circle))

482 radius_dict[k] = "%.3f" % (angel_radius /
radius_circle)

Figure 16: Calculating normalized x, y coordinate and radius (Source code 2)

4.2.4 Transferring the Control Data from the RPI to the Bela

After all of the control data as processed and assigned to the corresponding objects,

the next step involved transferring the data from the Python script running on the RPI4

to PD running on the Bela. Several communication methods could be established

between the RPI4 and the Bela: serial connection through USB or breakout pins, a

34

network connection through USB, or an ethernet connection. Since the Bela opened

a network connection with a static IP address by default over the mini-USB port, this

proved to be the quickest implementation. PD Vanilla has pre-built objects to handle

network communication using UDP, TCP, or OSC protocols.104 While OSC would be

a suitable choice for music and audio applications as highlighted in chapter 2.3.3, it

was not necessary for this application since the message structure was expected to

be simple. Therefore, the choice was between UDP and TCP.

As discussed in chapter 2.3.2, UDP had the downside of potential packet loss and no

guarantee of packet ordering during communication. However, it was still chosen for

this application. The main reason was the prioritization of a continuous running sound

installation over precise network communication. An unexpected loss of connection

leading to a program crash if the TCP server and client where not written with precise

error handling was anticipated and would extend development time and require more

debugging processes. As this was an interactive real-time application, the

transportation speed was preferred over eventual data loss. The maximum size for a

floating-point number is 8 bytes defined by the Institute of Electrical and Electronics

Engineers.105 The total size of each message consists of a set of 4 x 8 floating-point

values, resulting in a total message size of 256 bytes. Since these messages are sent

sequentially and each message does not exceed the MTU of 507 bytes, UDP was

deemed sufficient for transmission and leaves room for expansion of the data set.

The first step involved the preparation of the data sets: azimuth angle, x-coordinate,

y-coordinate, and radius. Each of these consisted of eight float or integer values, all

in the order of the corresponding object id. These four data sets were consolidated

into the list PD_list, which was then converted into a single string and saved as the

variable MESSAGE. Next, an internet and UDP socket was created, and for every

processed frame, one message as sent using the socket.sendto function. This was

done by encoding the MESSAGE into a binary format and specifying the client’s IP

address and port number, as shown in Figure 17 and Figure 18.

This was the last essential step performed on the RPI4, all remaining processes were

handled directly on the Bela.

207 #set variables for UDP-Socket for Controldata to Bella
208 UDP_IP1 = ip_adress #Bella IP
209 UDP_PORT1 = 3001

Figure 17: Setting the IP address and port for UDP socket (Source code 2)

104 cf.: IEM, [netreceive], https://pd.iem.sh/objects/netreceive/,
105 The Institute of Electrical and Electronics Engineers, 2008, IEEE Standard for Floating-Point
Arithmetic,

35

550 # Sending Message to Bella/Pure Datat over UDP Socket
551 MESSAGE = " ".join(str(x) for x in PD_list)
552
553 sock = socket.socket(socket.AF_INET, # Internet
554 socket.SOCK_DGRAM) # UDP
555 sock.sendto(MESSAGE.encode(), (UDP_IP, UDP_PORT))

Figure 18: Creating a message from PD_list and sending over UDP socket to the Bela (Source code 2)

4.3 Performing Audio Processing and Sound Design

4.3.1 Receiving and Processing of the Control Data

In order to receive the messages sent from the RPI4 over UDP to PD the

[netreceive -u -b 3000] object acted as the UDP client inside the subpatch

[upd_data] as illustrated in Figure 19. The parameter -u specified the use of the

UDP protocol, the parameter -b set the message type to binary and the 3000 set the

port number.106 The following object [fudiphrase] converted the received

message to the PD message protocol Fast Universal Digital Interface (FUDI) which

resulted in the initially sent list PD_list.107,108 To separate the list and isolate each

value, the object [list split] and [unpack] was used in sequence. Following

the [unpack] object, a simplified data smoothing function was performed. The object

[pd avr] was a custom subpatch in which a running average over a four-value

window is calculated as illustrated in Figure 20. All incoming numeric values were

added to the first position of a list limited to a total of four elements in the

[pack f f f f] object. This list was unpacked, and element 1 is added to the

second position, element 2 to the third position, and element 3 to the fourth position

of the original list, and element 4 was discarded. At the same time, the [unpack]

object forwarded the numeric values into a summing operation. The multiplication by

the factor 0.25 resulted in the running average.

After the receiving and smoothing process is handled inside the PD subpatch, every

value is sent into a [send 1x] object. The first number referred to the assigned

tracking id and the letter specified the data type: x = x-coordinate, y = y-coordinate,

a = azimuth angel, and r = radius. This assignment using the send object ensured the

access to each value inside the entire PD patch. For easy access, all corresponding

returns were listed at the beginning of the main patch.

106 cf.: IEM, [netreceive], https://pd.iem.sh/objects/netreceive/,
107 cf.: IEM, [fudiparse], https://pd.iem.sh/objects/fudiparse/,
108 cf.: IEM, [fudiformat], https://pd.iem.sh/objects/fudiformat/,

36

Figure 19: Subpatch [upd_data], receiving UDP datagram and data handling

Figure 20: Subpatch [pd avr], running average over a four-value window

4.3.2 Implementing Surround Panning for the Sound Element

A key feature of the installation was positioning each sound element within the

installation space at the same location as the corresponding person controlling the

sound element. This allowed for observing others and recognizing which individual

sound element was assigned to them based on their location.

The fastest solution to fit the scope of the project considered was to be a direct

implementation within the PD patch. Several open-source surround panning externals

were available for PD, such as Ambisonics Toolbox, abclib, and spat8~.109,110,111

Compatibility issues arose with the libpd versions.112 Bela supported version 5.2 of

PD, which was not fully compatible with the current PD Vanilla version 5.4. This

discrepancy affected the ability to easily use externals on the Bela. Externals relying

109 cf.: Pisano and Lindborg, 2023, Introducing the Open Ambisonics Toolkit,
110 cf.: Bonardi, abclib, https://github.com/alainbonardi/abclib,
111 cf.: solipd, AudioLab, https://github.com/solipd/AudioLab,
112 cf.: Bela.io, Libpd, https://learn.bela.io/using-bela/languages/pure-data/#libpd,

37

on other audio programming languages like Csound, SuperCollider, or Faust could be

especially challenging to implement on Bela, as they often require complex

compilation directly on the board using CMake.113

During testing, it was revealed that these externals could not be successfully compiled

on the Bela or exceeded the processing capabilities of the Bela for this application.

As the installation aimed to provide spatial orientation rather than precise spatial

representation, a custom, low-performance, stereo-based surround panner had to be

developed. To keep the panner simple and quick to program, the reformulated tangent

law expressed as Equation 4 covered in chapter 2.1.2 was selected.

Figure 3 shows the created PD abstraction [panner-abs] to pan the incoming audio

signal from [inlet~ $1] to eight [outlets~] corresponding to the speaker

outputs. Four feed values are calculated: [feed1] is the azimuth angle divided by

45° resulting in a floating-point number from 0 to 8 and determines which two

speakers receive the audio signal. [feed2] is the decimal part of [feed1]

representing the normalized ratio of the angular position between a stereo pair, and

[feed3] being the inversion of [feed2]. [feed4] is the integer part of [feed1]

and determents if [feed2] or [feed3] is used to calculate the gain factor.

The stereo panning was only performed once and to calculate the correct gain factor

using [feed2] or [feed3] an if else statement was used to check if [feed4]

was even or odd. If [feed4] was even, the phantom source was located in octant

one, three, five or seven. Speaker one, three, five or seven would act as the right

channel, receiving [feed3] and speaker two, four, six or eight would act as the left

channel receiving [feed2]. For odd numbers, this relation was conversely.

After the panning process, another series of if statements determined which of the

eight speakers received the panned audio signals. To ensure a smooth transition and

minimize artifacts, a ramp was used to fade the signal from 1 to 0 in 0.01 seconds.

113 cf.: Bela.io, Abstractions, https://learn.bela.io/using-bela/languages/pure-data/#abstractions,

38

Figure 21: Abstraction [panner-abs], panning operation for one sound element to 8 outlets

Eight [panner-abs] abstractions were combined to [panner-360] to pan the

eight sound elements individually, then all outlets are summed and sent to DAC.

This approach was chosen to ensure efficient performance, considering the limited

CPU capacity of the Bela. An initial version consisted of eight individual panning

functions for each outlet, performing the panning function. This resulted in a 60% CPU

load running the [panner-360] in isolation without running audio signals through.

Primarily this was caused due to the [line~] object, which acted as an audio ramp

generator running at sample rate, enabling sample-accurate value changes of an

audio signal without creating audible artifacts.114 It took two float numbers as its

argument: the first was the value change, and the second was the ramp speed in

milliseconds. Even if no new value changes were sent, the [line~] object remained

active, generating an audio signal.115 As eight panners for eight audio signals were

needed, this resulted in 64 [line~] objects constantly running at sample rate.

The final approach, using two panning functions for each audio signal, reduced the

number of [line~] objects to 16. Both version of the [panner-360] were loaded

onto the Bela in isolation for CPU load comparison, showing a reduction from 60% to

34%.

114 cf.: IEM, [vline~], https://pd.iem.sh/objects/vline~/,
115 cf.: IEM, [line~], https://pd.iem.sh/objects/line~/,

39

4.3.3 Creating a Sound Design Framework

Due to time constraints, the final sound design could not be fully developed. However,

it was possible to provide a suitable framework with room for adaptability during future

development. To later evaluate the functionality of the installation, experimental sound

designs were tested during the test setups covered in chapter 4.5.

The basic framework shown in Figure 22 consisted of eight individual sound elements.

For the first sound design experiments, a few different patches offering various

approaches were prepared. These patches used noise generators and oscillators to

provide simple placeholder sources to represent future sound elements. These

elements could be panned using the [panner-360] and included some pitch and

filter modulation. Another approach utilized pre-produced audio samples. Three audio

samples represented one sound element: one being the dry signal, one a 100% wet

signal of a delay, and one a 100% wet signal of a reverb. The x and y coordinates of

the control data were used to fade in the two effect samples according to the x and y

position of a participant. Another experiment involved a simple synthesizer sound with

its pitch modulated by the distance from the participant to the center point.

Figure 22: PD sound design framework showing the basic structure of the patch

4.4 D/A conversion, Speaker Array, and Amplification

4.4.1 Implementing the Digital to Analog Conversion

The digital-to-analog conversion of the eight audio signals was managed by the Bela

in combination with the FACE Cape by CTAG. The FACE Cape is a sample-accurate

ADAC that supports four analog input and eight analog output channels, as well as

real-time environment compatibility using Pure Data, resulting in overall latency times

Pure Data - Main Patch

Sound 1 Sound 2 Sound 3 Sound 4 Sound 5 Sound 6 Sound 7 Sound 8

panner_360

DAC CTAG Module

pd udp_data - Sub Patch - Receiving Control Data from RPI

azimut angle x-coordinate y-coordinate distance center id-active

40

as low as 1 millisecond.116 For this specific application, the FACE Cape is configured

to run with a 22 kHz sample rate, 16-bit depth, and a buffer size of 256 samples.

Analog signals are outputted over four unbalanced stereo channels.

4.4.2 Developing a Custom Speaker Design for the 8-Channel Array

The choice of speaker was primarily dictated by the artistic concept of the installation.

The goal was to find a custom speaker design that met the following specific

requirements: low cost, no professional equipment, and not instantly discernible as a

traditional speaker. The speakers were to be an integral part of the installation,

essential for defining a space for participants to enter. The speakers were intended

not just as sound reproduction tools but also as aesthetic components of the

installation.

The fabrication and assembly of the speakers would need to be possible with minimal

tools and materials, allowing for future design adaptations. It was decided to create a

self-standing speaker design using exciters as the drivers. The driver assembly

consists of a magnet, voice coil, suspension system, and electrical connection

terminals. This type of driver was designed to be attached to a rigid surface to

stimulate vibrations and create sound. The chosen exciter was the Dayton Audio

DAEX32EP-4, a 4-ohm driver capable of handling 40 watts RMS and 80 watts peak

power117,118.

To accommodate the fabrication and assembly requirements, materials and tools

commonly available in construction stores were selected. The main construction

material chosen was Styrodur 3035 CS panels. They are lightweight, rigid,

inexpensive, and have a B1 fire class rating, making them suitable for the desired

application119. Connection elements such as gaffer tape, double-sided tape, and nails

were used. To dampen vibrations between panel connection points, self-adhesive felt

gliders were employed.

All design choices aimed to minimize material waste and maintain a straightforward

fabrication approach, with a cutter knife as the only required tool. The main panel,

acting as the loudspeaker's membrane, can be used in its original shape. Additionally,

two panels were cut into eight equal strips from the shorter side to serve as the base

of the loudspeaker. The main panel and the base were connected with two nails at

equal distances apart. For additional support, a 15 x 15 cm panel was used to provide

116 cf.: Bela.io, CTAG multichannel audio board, https://learn.bela.io/products/multichannel/ctag-multichannel-board/#ctag-
multichannel-audio-board,
117 cf.: Dayton-Audio, EXCITERS & TACTILE TRANSDUCERS 101, https://www.daytonaudio.com/topic/excitersbuyerguide,
118 Appendix 4: Data sheet Dayton Audio exciter
119 Appendix 5: Safety certificate Styrodur 3035Error! Reference source not found.

41

more stability, connected with two nails through the base and one nail through the

main panel at the front. At each contact point between the panels, 2-4 felt gliders

(2 cm x 2 cm) were positioned. To improve the adhesive connection between the felt

gliders and the panels, longer pieces of gaffer tape were used to maximize the

adhesive area to the panel. The exciter placement followed the manufacturer's

recommendations.

Since the speaker design was not intended for source-accurate playback and

acceptable results for this application were achieved, analyzing the frequency

response of the speaker was not considered to be necessary due to time constraints.

Likewise, the selection of a suitable amplifier was influenced by time and resource

constraints which led to the Sirus I-Amp 8.150 to be chosen. It is an 8-channel Class-

D amplifier with 8x 130 Watt @ 4 Ohm / 8x 70 Watt @ 8 Ohm RMS power. A

visualization of the entire processing chain is shown in Appendix 6.

Figure 23: Custom speaker design from Styrodur 3035 CS panels and the Dayton Audio DAEX32EP-4
exciter

4.5 Evaluating and Improving the Technical Realization

4.5.1 Assessing Key Functions Through a First Test Setup

After the initial development phase, a test setup was conducted to assess the key

functions of the installation and gain insights for improvements. The first test setup

was scheduled for one day at the light studio at BHT-Berlin.

For this setup, the minimum spatial requirement of a 5m diameter and the minimum

camera height of 3.4m was replicated. The entire camera unit consisted of the

camera, the RPI4, the Bela, and four External Line Return (XLR) sockets wired to

42

output eight unbalanced audio channels, which were all housed between two

aluminum plates shown in Figure 24. To accommodate different rigging applications,

three M6 eye nuts were added to the back plate in a triangular formation, and one M6

eye nut was added in the center. A custom-made 20m multicore cable was used to

connect the four XLR outputs to the amplifier.

The camera unit was rigged 3.4m above the center point of the tracking area using

an 8mm steel wire cable with an additional safety line. The video stream from the

RPI4 to was used to adjust the tracking area to the required 5m diameter. All eight

speakers were placed at their predefined azimuth angle positions using basic

measurements from the center point of the camera position. It was discovered that

the visual feedback from the video stream provided a beneficial reference to verify the

speaker positions.

Figure 24: Camera unit with HQ v1 Camera, RPI4, Bela + CTAG module

After all speakers were connected to the amplifier, the output gain for each speaker

had to be set. To keep this process approachable for untrained personnel, the plan

was to position a chair as a guide for equal positioning and use a smartphone with a

decibel meter app to set equal gains for all speakers by playing white noise

sequentially from each speaker. However, it was discovered that the gain adjustment

on the amplifier was not sufficient for precise gain adjustment. Due to time constraints

during setup, the gain was roughly adjusted by ear.

The calibration process as covered in 4.1.5 and Appendix 3 was straightforward and

worked as planned. The thresholding and blur factor could be set until useful tracking

results were achieved. The adjustability of the tracking circle also worked as expected

and even provided unexpected assistance in the speaker placement. At this stage, a

final sound design had not yet been developed. The tracking ability and spatial

43

reproduction of sound elements in relation to the position of each person within the

installation were tested using simple noise and sine wave signals. The surround

panning feature functioned within the project's scope. It was clearly audible that

sounds followed a person's movements, which was sufficient for this installation and

aligned with the intent of the installation.

To identify the systems limitations, a new patch was loaded in which a composition

draft was played as eight individual samples. It became evident that with more

complex audio signals, the surround panning feature lost some of its impact as the

higher sonic complexity could overwhelmed the listener. Also, due to tracking errors,

sound elements would cut in and out quickly if a person was misdetected, lost or

erroneously detected more the once. This provided critical insights into the

possibilities and requirements for the sound design.

4.5.2 Improvement Implementation Based on the First Test Setup

Creating Custom Solution for Output Gain Adjustment

The first test setup provided useful ideas for improving the installation's features. To

further enhance the setup process, markings were added to the displayed tracking

circle for each angular speaker position, speeding up speaker placement and

reducing reliance on on-site measurements.

To perform better output gain adjustments, a gain adjustment web interface was

created that is hosted on the Bela, written in P5.js, and called sketch.js120. The

web interface displayed eight gain sliders vol1-8 for setting the output gain and eight

sliders for adjusting the internal gains snd1-8 for the sound elements, along with a

save button to store all gain values as shown in Figure 25. The snd1-8 sliders were

only relevant during development and would not be visible to the end user. All gain

values were combined into an array to be received within the PD patch. The PD

version preinstalled on the Bela included pre-built objects for sending and receiving

data to and from the web interface. Inside the main PD patch, a subpatch

[pd bellapdbella_gui_recive], is created to perform the data handling. 121 To

ensure the gain levels are saved and reloaded after a system reboot, the subpatch

[pd bella_gui_recive], writes all values to a text file, located inside the main

patch directory, when the save button on the web interface is pressed. This patch is

shown in Figure 26.

120 Source code 8: sketch.js web interface script for output gain adjustment
121 cf.: Bela.io, Controlling Bela from a GUI, https://learn.bela.io/tutorials/pure-data/communication/controlling-bela-from-a-
gui/,

44

Accessing the web interface works similar as accessing the calibration web interface

by connecting a Wi-Fi-capable device to the RPI4 WLAN hotspot and entering the

URL into a browser. This made the process of setting the output gains straightforward

by using one smartphone for the dB measurement and another smartphone or tablet

to adjust the output gains via the web interface.

Figure 25: Web interface for gain adjustments

Figure 26: PD Subpatch [pd bella_gui_recive], receiving, handling and saving gain slider values from
web interface

Improving the Error Handling of the Tracking Algorithm

The tracking algorithm produced some unintended behaviors. These included the

misdetection of a single person due to drastic intensity changes introduced by clothing

colors that are too close to the set threshold value and by detecting more than one

person who were close to each other as one individual. As discussed in chapter 4.1.5,

these errors could be mitigated by adjusting the threshold, blur factor, and contour

size. However, a complete elimination of these errors could not be achieved at this

time.

45

These errors resulted in audible cutting in and out of the audio signals. Additionally, if

one than one person were too close to each other, they were recognized as one

object, leading to the disappearance of multiple sound elements, which was not

desired. To counteract this behavior, a fifth control value called id_active was

created and sent from the RPI4 to the PD patch. If a previously detected object was

lost, the GID is updated to -1 within the object_tracking.py122 script, and all

GIDs are sent to the PD patch.

Since the tracking area was a closed environment, it could be assumed that a lost

object was valid only if the participant has left the tracking circle. By using the radius

as an additional argument, the status of the object could be verified. To handle this

scenario, an abstraction called [id_active] was created to verify the state by

checking if the GID is -1 and the last tracked radius value is greater than 0.9. If this

condition returns true, it could be assumed the person had left the circle, and an audio

ramp faded out the signal from 1 to 0 over 2 seconds. The audio ramp was also

applied when reassigning a person to a sound element to gradual fade in the audio

signal. This approach was also useful in the event of rapid loss and reassignment,

making the entire system less reactive to abrupt identifications. The [id_active]

object is shown in Figure 27.

Figure 27: PD abstraction [id_active], handling fade-in/out of a sound element

4.5.3 Assessing the Improvements Through a Second Test Setup

In order to validate the effect of these improvements, a second test setup was

conducted over 4 days at the Laboratory for Theater and Event Technology at BHT-

Berlin.

At the second test setup, these improvements performed sufficiently. Setting up the

speakers was improved by using a smartphone to view the real-time camera footage

and using the speaker position marks as a reference. Setting the output gains worked

122 Source code 2: Object tracking object_tracking.py

46

as intended. And the improvements made to the identification assignment and

reassignment improved the behavior of the system. A pleasant discovery during the

second test setup was that the tracking algorithm performed even less misdetections

than anticipated despite nonideal floor color conditions.

It was revealed as well that that more subtle adjustments to the generated sounds

such as volume, low pass filter, delay and reverb times in response to participants’

movements did not lead to the hoped connection between participant and the sound

element. Those adjustments had to be greatly exaggerated to have the intended

effect. It stood out that changes in pitch and tonality could form a quicker connection

between the participant and sound element. This formulated the idea that the final

sound design could incorporate a drone-like synthesizer where each participant

controls the pitch of a voice, tuning and modulating the sound in collaboration with

other participants. Photos of the rigged camera unit and the speaker array are shown

in Appendix 7.

5 Discussion

The goal of this work was to develop an interactive sound installation that is functional,

cost-effective, utilizes open-source software and has minimal reliance on

professional-grade audio and video equipment. The use of open-source resources to

develop the installation was proven. Open-source software such as Python, OpenCV

and PD were responsible for object detection, tracking, data transfer, sound creation

and panning. Utilization of the open-source SBCs, RPI and Bela, also proved to

perform reliably. Additionally, the self-built speakers proved to be a suitable choice for

the intended application.

The evaluations in chapter 4.5 demonstrates that the installation's key functions met

the initial artistic intent. The test setups validated that all key functions of the

installation operated according to the artist's requirements. Specifically, the tracking

algorithm implemented on the RPI4 performed reliably, with tracking errors remaining

within an acceptable range, despite the suboptimal floor color. This suggests that the

system could function effectively under less-than-ideal conditions. Participants’

movements had a direct impact on the perceived location of sound elements within

the installation and on the sonic characteristics of each sound. This demonstrates the

capability for audience engagement through the concept of performance agency of

the installation as outlined in chapter 2.6.3. The chosen panning approach highlighted

in chapter 4.3.2 produced satisfactory results. This allowed for the clear localization

47

of different sound elements and enabled collaboration between participants through

observation, thus demonstrating that the installation was capable of not only HCI but

also HHI.

The secondary goal of this project to utilize limitations as a tool and source of

inspiration was fulfilled. The limitations imposed by the processing power of the RPI

and Bela required a simplified approach to both the tracking and sound design. The

tracking algorithm, while functional, demonstrated anticipated sensitivity to

environmental factors such as lighting, floor color, and participants’ clothing, leading

to the occasional misdetections of participants. These imperfections became integral

features of the installation, introducing an element of unpredictability that enhanced

the artistic experience. For example, the multi-assignment of one participant or the

single assignment for multiple people introduced an organic and unpredictable

element to the auditory experience by bringing more sound elements into the space

than there were detected participants.

The CPU load constraints of the Bela forced an "out-of-the-box" panning approach, a

reduction in sound design elements, and a strict focus on only essential components.

These constraints ensured that every element of the PD patch contributed crucially to

the installation, keeping the CPU load within an acceptable range. Additionally, a

calibration solution was developed to optimize the tracking behavior and adjust the

output gain. By using the RPI4 as a Wi-Fi hotspot, the user could connect to it and

access a URL via a browser to achieve a suitable calibration.

6 Conclusion

This work has successfully demonstrated that it is possible to create a compelling

artistic experience with limited resources by embracing the constraints of open-source

technology. In addition, it was shown how technical constraints can be harnessed

creatively to enhance artistic expression in an interactive sound installation. The

project not only met its technical objectives but also opened up new possibilities for

HCI that could inspire future developments. Importantly, the unintended HCI

facilitated by the technical limitations represent a significant outcome of this study.

The need for technical simplification created a unique connection between the

participant, the sound, and the technology, highlighting an interesting aspect of

unintended HCI as well as HHI.

48

7 Outlook

Moving forward, several enhancements could further improve the system’s

performance and artistic potential. One of the primary areas for future development is

the finalization of the sound design to explore the full potential of the current state of

the sound installation. Furthermore, refinement of the tracking algorithm,

implementation of an automated calibration feature to adjust the tracking algorithm for

varying lighting conditions, and an automated output gain adjustment would enhance

usability.

Another promising direction is exploring the concept of unintended HCI more deeply.

This could involve studying how participants perceive and react to system behaviors

that deviate from their expectations, potentially leading to new insights in both HCI

and interactive art.

Additionally, expanding the installation to include networked or distributed

environments, where multiple installations communicate and interact with each other,

could open up new possibilities for collective and shared experiences, further pushing

the boundaries of interactive sound art.

While this project has reached its initial goals, the possibilities for expansion and

refinement are present. The insights gained lay a solid foundation for future

improvements that could lead to exciting developments at the intersection of art,

technology, and human interaction.

VIII

V. Bibliography

Arduino-S.r.l. "Hardware." Accessed 14.08.2024.
https://www.arduino.cc/en/hardware.

Ariza, Jonathan Á., and Heyson Baez. 2022. "Understanding the role of single-board
computers in engineering and computer science education: A systematic
literature review." Computer Applications in Engineering Education 30 (1):
304-329. https://doi.org/https://doi.org/10.1002/cae.22439.

BeagleBoard.org-Foundation. "Our Mission." Accessed 16.08.2024.
https://www.beagleboard.org/about.

Bela.io. "Abstractions." Accessed 16.08.2024. https://learn.bela.io/using-
bela/languages/pure-data/#abstractions.

Bela.io. "Bela & Bela Mini." Accessed 16.08.2024. https://bela.io/products/bela-and-
bela-mini/.

Bela.io. "Controlling Bela from a GUI." Accessed 16.08.2024.
https://learn.bela.io/tutorials/pure-data/communication/controlling-bela-from-
a-gui/.

Bela.io. "CTAG multichannel audio board." Accessed 16.08.2024.
https://learn.bela.io/products/multichannel/ctag-multichannel-board/#ctag-
multichannel-audio-board.

Bela.io. "Libpd." Accessed 16.08.2024. https://learn.bela.io/using-
bela/languages/pure-data/#libpd.

Bonardi, Alain. "abclib." Accessed 04.08.2024.
https://github.com/alainbonardi/abclib.

Candy, Linda. "Interaction in Art and Technology." Accessed 06.08.2024.
https://crossings.tcd.ie/issues/2.1/Candy/.

Cycling'74. "Introducing RNBO." Accessed 14.08.2024.
https://cycling74.com/products/rnbo.

Cycling'74. "Max." Accessed 14.08.2024. https://cycling74.com/shop/max.

Cycling'74. "What is Max." Accessed 14.08.2024.
https://cycling74.com/products/max.

Dayton-Audio. "EXCITERS & TACTILE TRANSDUCERS 101." Accessed
10.07.2024. https://www.daytonaudio.com/topic/excitersbuyerguide.

derivative. "Features." Accessed 09.08.2024. https://derivative.ca/feature.

Freed, Adrian, and Andrew Schmeder. 2009. "Features and Future of Open Sound
Control version 1.1 for NIME." NIME.

Garrelfs, Iris. 2015. "From inputs to outputs: an investigation of process in sound art
practice." University of the Arts London.

https://www.arduino.cc/en/hardware
https://doi.org/https://doi.org/10.1002/cae.22439
https://www.beagleboard.org/about
https://learn.bela.io/using-bela/languages/pure-data/#abstractions
https://learn.bela.io/using-bela/languages/pure-data/#abstractions
https://bela.io/products/bela-and-bela-mini/
https://bela.io/products/bela-and-bela-mini/
https://learn.bela.io/tutorials/pure-data/communication/controlling-bela-from-a-gui/
https://learn.bela.io/tutorials/pure-data/communication/controlling-bela-from-a-gui/
https://learn.bela.io/products/multichannel/ctag-multichannel-board/#ctag-multichannel-audio-board
https://learn.bela.io/products/multichannel/ctag-multichannel-board/#ctag-multichannel-audio-board
https://learn.bela.io/using-bela/languages/pure-data/#libpd
https://learn.bela.io/using-bela/languages/pure-data/#libpd
https://github.com/alainbonardi/abclib
https://crossings.tcd.ie/issues/2.1/Candy/
https://cycling74.com/products/rnbo
https://cycling74.com/shop/max
https://cycling74.com/products/max
https://www.daytonaudio.com/topic/excitersbuyerguide
https://derivative.ca/feature

IX

Goudarzi, Visda, and Artemi-Maria Gioti. 2016. "Engagement and interaction in
participatory sound art." Proceedings of Sound and Music Computing.

Holmes, Thom. 2022. Sound Art: Concepts and Practices. Routledge.

IEM. "[fudiformat]." Accessed 17.08.2024. https://pd.iem.sh/objects/fudiformat/.

IEM. "[fudiparse]." Accessed 17.08.2024. https://pd.iem.sh/objects/fudiparse/.

IEM. "[line~]." Accessed 17.08.2024. https://pd.iem.sh/objects/line~/.

IEM. "[netreceive]." Accessed 17.08.2024. https://pd.iem.sh/objects/netreceive/.

IEM. "[vline~]." Accessed 17.08.2024. https://pd.iem.sh/objects/vline~/.

Institute-of-Electronic-Music-and-Acoustics. "Home." Accessed 12.08.2024.
https://puredata.info/.

Kadam, Pushkar, Gu Fang, and Ju Jia Zou. 2024. "Object Tracking Using Computer
Vision: A Review." Computers 13 (6): 136.

Kraus-[GbR], Brüll &. "About TouchDesigner." Accessed 09.08.2024.
https://thenodeinstitute.org/about-touchdesigner/.

McDonnell, M. J. 1981. "Box-filtering techniques." Computer Graphics and Image
Processing 17 (1): 65-70. https://doi.org/https://doi.org/10.1016/S0146-
664X(81)80009-3.

MIPI-Alliance, -Inc. "DRAFT MIPI Alliance Specification for
Camera Serial Interface 2 (CSI-2)." Accessed 24.07.2024.

https://caxapa.ru/thumbs/799244/MIPI_Alliance_Specification_for_Camera_
S.pdf.

Möser, Michael. 2018. Psychoakustische Messtechnik. Springer.

OpenCV. "Contours : Getting Started." Accessed 15.08.2024.
https://docs.opencv.org/4.x/d4/d73/tutorial_py_contours_begin.html.

OpenCV. "Image Moments." Accessed 15.08.2024.
https://docs.opencv.org/3.4/d0/d49/tutorial_moments.html.

OpenCV. "Image Thresholding." Accessed 15.08.2024.
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html.

OpenCV. "Introduction." Accessed 15.08.2024.
https://docs.opencv.org/4.x/d1/dfb/intro.html.

OpenCV. "Smoothing Images." Accessed 15.08.2024.
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html.

Pisano, Giuseppe, and Permagnus Lindborg. 2023. Introducing the Open
Ambisonics Toolkit.

Plenk, Valentin. 2024. Angewandte Netzwerktechnik kompakt: Dateiformate,
Übertragungsprotokolle und ihre Nutzung in Java-Applikationen. Springer-
Verlag.

https://pd.iem.sh/objects/fudiformat/
https://pd.iem.sh/objects/fudiparse/
https://pd.iem.sh/objects/line~/
https://pd.iem.sh/objects/netreceive/
https://pd.iem.sh/objects/vline~/
https://puredata.info/
https://thenodeinstitute.org/about-touchdesigner/
https://doi.org/https://doi.org/10.1016/S0146-664X(81)80009-3
https://doi.org/https://doi.org/10.1016/S0146-664X(81)80009-3
https://caxapa.ru/thumbs/799244/MIPI_Alliance_Specification_for_Camera_S.pdf
https://caxapa.ru/thumbs/799244/MIPI_Alliance_Specification_for_Camera_S.pdf
https://docs.opencv.org/4.x/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/3.4/d0/d49/tutorial_moments.html
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.x/d1/dfb/intro.html
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html

X

Pulkki, Ville. 2001. Spatial sound generation and perception by amplitude panning
techniques. Helsinki University of Technology.

Pulkki, Ville, and Matti Karjalainen. 2001. "Localization of amplitude-panned virtual
sources I: stereophonic panning." Journal of the Audio Engineering Society
49 (9): 739-752.

Raspberry-Pi. "About the Camera Modules." Accessed 28.07.2024.
https://www.raspberrypi.com/documentation/accessories/camera.html#hq-
camera.

Raspberry-Pi. "Raspberry Pi hardware." Accessed 20.07.2024.
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html.

Sarkar, Dipanjan, Raghav Bali, and Tushar Sharma. 2018. "Deep Learning for
Computer Vision." In Practical Machine Learning with Python: A Problem-
Solver's Guide to Building Real-World Intelligent Systems, edited by
Dipanjan Sarkar, Raghav Bali and Tushar Sharma, 499-520. Berkeley, CA:
Apress.

Schmeder, Andrew, Adrian Freed, and David Wessel. 2010. "Best practices for
open sound control." Linux Audio Conference.

Schmidt, Ulrich. 2013. Professionelle Videotechnik: Grundlagen, Filmtechnik,
Fernsehtechnik, Geräte-und Studiotechnik in SD, HD, DI, 3D. Springer-
Verlag.

Sergio-Canu. "Object tracking from scratch – OpenCV and python." Accessed
20.07.2024. https://pysource.com/2021/10/05/object-tracking-from-scratch-
opencv-and-python/.

Sertronics-GmbH. "senasoren-module." Accessed 13.08.2024.
https://www.berrybase.de/sensoren-module/.

Shoer, Ibrahim, Berkay Kopru, and Engin Erzin. 2022. "Role of Audio in Audio-
Visual Video Summarization." arXiv preprint arXiv:2212.01040.

solipd. "AudioLab." Accessed 22.08.2024. https://github.com/solipd/AudioLab.

Süße, Herbert, and Erik Rodner. 2014. Bildverarbeitung und Objekterkennung.
Springer.

The Institute of Electrical and Electronics Engineers, Inc. . 2008. IEEE Standard for
Floating-Point

Arithmetic.

Tinapple, David. "Max/MSP - Blob-tracking." Accessed 08.08.2024.
https://www.youtube.com/watch?v=cytx9NqSQNA.

Tinapple, David. "Tracking - Blob Tracking." Accessed 08.08.2024.
https://tinapple.notion.site/Tracking-Blob-Tracking-
9b5b314087074429808b53bf4598e4de.

Weinzierl, Stefan. 2008. Handbuch der Audiotechnik. Springer Science & Business
Media.

https://www.raspberrypi.com/documentation/accessories/camera.html#hq-camera
https://www.raspberrypi.com/documentation/accessories/camera.html#hq-camera
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://pysource.com/2021/10/05/object-tracking-from-scratch-opencv-and-python/
https://pysource.com/2021/10/05/object-tracking-from-scratch-opencv-and-python/
https://www.berrybase.de/sensoren-module/
https://github.com/solipd/AudioLab
https://www.youtube.com/watch?v=cytx9NqSQNA
https://tinapple.notion.site/Tracking-Blob-Tracking-9b5b314087074429808b53bf4598e4de
https://tinapple.notion.site/Tracking-Blob-Tracking-9b5b314087074429808b53bf4598e4de

XI

Wendzel, Steffen. 2018. IT-Sicherheit Für TCP/IP-und IoT-Netzwerke. Springer.

Werner, Martin. 2021. Digitale Bildverarbeitung. Springer.

Wright, Matthew, and Adrian Freed. 1997. "Open SoundControl: A new protocol for
communicating with sound synthesizers." ICMC.

Xu, Xiangyang, Shengzhou Xu, Lianghai Jin, and Enmin Song. 2011. "Characteristic
analysis of Otsu threshold and its applications." Pattern Recognition Letters
32 (7): 956-961. https://doi.org/https://doi.org/10.1016/j.patrec.2011.01.021.

https://doi.org/https://doi.org/10.1016/j.patrec.2011.01.021

XII

VI. Appendix

Appendix 1 swarm of sound installation draft and mood board ... XIII
Appendix 2 Visualization of the image processing steps using a test image .. XIV
Appendix 3: Calibration web interface basic calibration example .. XVI
Appendix 4: Data sheet Dayton Audio exciter ... XVIII
Appendix 5: Safety certificate Styrodur 3035 .. XIX
Appendix 6: Flow chart visualizing the entire processing chain ... XX
Appendix 7: Second test setup, rigging camera unit, and speaker array .. XXI

XIII

Appendix 1 swarm of sound installation draft and mood board

XIV

Appendix 2 Visualization of the image processing steps using a test image

Source image no possessing applied Converted source Image to greyscale

Created mask to define the tracking area Masked overlaid onto Greyscale image

XV

Inverting the Greyscale Applied average filter

Thresholding for background separation Contour detection and center point calculation

XVI

Appendix 3: Calibration web interface basic calibration example

Adjusting tracking area by setting the radius value for the circle

XVII

Adjusting the threshold and average filtering value to highlight the objects of interest

XVIII

Appendix 4: Data sheet Dayton Audio exciter

1/3
rd

 octave smoothing - measurement taken with transducer adhered off-center
 on a 12" x 12" x ½" foam core board in an infinite baffle setup.

Note: This information is for comparison purposes only, the actual frequency response will depend on many factors of which the diaphragm being the greatest contributor.

FEATURES

Robust, heavy-duty design with a 32 mm voice coil attached to a steel spider

Pre-applied 3M™ VHB™ adhesive for quick, secure installation

Rare-earth neodymium motor and a proprietary two-layer voice coil

4 ohms impedance for use with small, Class D amplifiers

40 watt RMS power handling for high output

APPLICATIONS
Invisibile home theater and multi-room audio

Electronic gaming machines

Advertising signage

Point-of-purchase displays

Multimedia exhibits

Commercial distributed audio

Kiosks

Automotive audio

Bathroom tubs and showers

4 ohms

3.3 ohms

0.21 mH @ 1 kHz

395 Hz

N/A

N/A

1.38

5.4 g

0.08 mm/N

N/A

N/A

4.2 Tm

N/A

N/A

32 mm

N/A

40 watts

N/A

PARAMETERS
Impedance

Re

Le

Fs

Qms

Qes

Qts

Mms

Cms

Sd

Vd

BL

Vas

Xmax

VC Diameter

SPL

RMS Power Handling

Usable Frequency Range (Hz)

IMPEDANCE/PHASE

Measurement taken with transducer uncoupled facing upward.

DAEX32EP-4 Thruster 32mm Exciter 40W 4 Ohm

DAEX32EP-4

FREQUENCY RESPONSE

XIX

Appendix 5: Safety certificate Styrodur 3035

Vorsitzender des Aufsichtsrats: Paul Neeteson, Vorstand: Michael Wörtler (Vorsitzender), Jürgen Hohmeier
Sitz der Gesellschaft: Bürgermeister-Grünzweig-Straße 1 D-67059 Ludwigshafen, Amtsgericht Ludwigshafen am Rhein, HRB Nr. 3570
HypoVereinsbank Ludwigshafen, BLZ 545 201 94, Konto 1171, Deutsche Bank Ludwigshafen, BLZ 545 700 94, Konto 0125 062

Begleitschreiben zum Sicherheitsdatenblatt von Styrodur ® C

Sehr geehrte Damen und Herren,

stellvertretend für alle von Isover vertriebenen Styrodur-Produkte erhalten Sie anliegend das
Sicherheitsdatenblatt für Styrodur 3035 CS in 100 mm.

Die in diesem Sicherheitsdatenblatt stehenden Angaben zu Styrodur 3035 CS gelten
uneingeschränkt auch für die anderen Styrodur-Sorten 2500 C, 2800 C, 3035 CN, 4000 CS und 5000
CS.

Mit freundlichen Grüßen
SAINT-GOBAIN ISOVER G+H AG

An unsere Kunden

Falls Empfänger verzogen, bitte nachsenden. Anschriftenberichtigungskarte mit neuer
Anschrift. Falls unzustellbar, zurück an Isover Dialog – Postfach 1240 – 68521 Ladenburg

SAINT-GOBAIN ISOVER G+H AG
Bürgermeister-Grünzweig-Straße 1

67059 Ludwigshafen
Tel. (06 21) 501-0

Ludwigshafen, 12. März 2009

XX

Appendix 6: Flow chart visualizing the entire processing chain

main.py

Raspberry Pi 4

Bela

Pure Data - Main Patch

object_tracking.py

RPI v1 HQ camera

Image
Processing

Object
Detection

Object
Tracking

Handling
Control Data

Control Data
Transmission

http_video.py

Initializing
Server

Calibration
Handling

Initializing
object_tracking.py

Handling
Video Stream

login.html
index.html

config.py

Initializing
Variables

Saving
Variables/

Calibration to
config.json

sketch.js

Sound 1 Sound 2 Sound 3 Sound 4 Sound 5 Sound 6 Sound 7 Sound 8

id_active id_active id_active id_active id_active id_active id_active id_active

panner_360

DAC CTAG Module

Amplifier

Speaker
1 (0°)

Speaker
2 (45°)

Speaker
3 (90°)

Speaker
4 (135°)

Speaker
5 (180°)

Speaker
6 (225°)

Speaker
7 (270°)

Speaker
8 (315°)

pd bella_gui_recive
Sub Patch

Receiving/Saving Gain
Adjustment

pd udp_data - Sub Patch - Receiving Control Data from RPI

azimut angle x-coordinate y-coordinate distance center id-active

Running Web
Interface

for Gain Adjustment

Device connected over WLAN to access
calibration & gain adjustment

Hosting
WLAN

Hotspot

USB -
Ethernet
Interface

XXI

Appendix 7: Second test setup, rigging camera unit, and speaker array

XXII

XXIII

VII. Source code

Source code 1: Object tracking main.py handling mode select, calibration, or installation mode XXIV
Source code 2: Object tracking object_tracking.py handling image processing, detection, tracking, control

data handling, and transmission .. XXV
Source code 3: Object tracking http_video.py handling web server and video stream XXXIII
Source code 4: Object tracking config.py background data handling and storing between the Python scripts

 .. XXXIV
Source code 5: Object tracking config,json saved data to initialize on program start XXXV
Source code 6: Object tracking index.html calibration web interface and receiving video stream XXXVI
Source code 7: Object tracking login.html login page .. XXXVIII
Source code 8: sketch.js web interface script for output gain adjustment hosted on the Bela XXXIX

XXIV

Source code 1: Object tracking main.py handling mode select, calibration, or installation mode

main.py

1 import object_tracking
2 import http_video
3 import config
4
5 frame1 = None
6
7 def main():
8 while True: # set mode
9 try:

10 mode_input = input('>>> Enter: set mode: 0 = installation file, 1 = stream on, [1]: ')
11 if mode_input != "":
12 mode = int(mode_input)
13
14 if mode_input == '':
15 mode = 0
16
17 break
18 except ValueError:
19 print('invalid input!')
20
21 if mode == 0:
22 config.mode = mode
23 config.save_config()
24 for frame1 in object_tracking.object_tracking1(config.config):
25 test = 0
26 elif mode == 1:
27 config.mode = mode
28 config.save_config()
29
30 try:
31 http_video.start_video_feed()
32 except Exception as e:
33 print(f"An error occurred while starting the video feed: {e}")
34 else:
35 print("Invalid mode selected. Please enter 0 or 1.")
36
37 if __name__ == "__main__":
38 main()
39
40 # swarm of sound Version 1.0
41 # Copyright (c) [2024] [Sebastian Obel]
42
43 # Permission is hereby granted, free of charge,
44 # to any person obtaining a copy of this software and associated documentation files (the "Software"),
45 # to deal in the Software without restriction, including without limitation the rights to use,
46 # copy, modify, merge, publish, distribute, sublicense,
47 # and/or sell copies of the Software
48
49 # This Software was inspired by:
50 # Sergio-Canu
51 # https://pysource.com/2021/10/05/object-tracking-from-scratch-opencv-and-python/
52 # and Sharon McCaman and David Tinapple
53 # Sharon McCaman and David Tinapple
54 # http://www.sharonmccaman.com
55 # http://www.sharonmccaman.com
56 # https://www.youtube.com/watch?v=cytx9NqSQNA

28/08/2024, 10:51 main.py

localhost:65427/c8fda01d-1149-4071-bf6a-f211748c6dd8/ 1/1

XXV

Source code 2: Object tracking object_tracking.py handling image processing, detection, tracking, control data handling, and
transmission

object_tracking.py

1 import cv2
2 import numpy as np
3 import math
4 import operator
5 import socket
6 import sys
7 import select
8 import time
9 from flask import Flask, Response, render_template, request, jsonify, redirect, url_for, session

10 from functools import wraps
11 import config as cf
12
13 config = cf.config
14
15 def check_for_input():
16 # Check if there is input ready to be read
17 if select.select([sys.stdin], [], [], 0)[0]:
18 return sys.stdin.read(1)
19 return None
20
21 def apply_variable_blur(image_path, blur_factor):
22
23 # Read the image
24 image = cv2.imread(image_path)
25 height, width = image.shape[:3]
26
27 # Determine the maximum kernel size (must be an odd number)
28 max_kernel_size = min(height, width)
29 if max_kernel_size % 2 == 0:
30 max_kernel_size -= 1
31
32 # Calculate the kernel size based on the blur factor
33 kernel_size = int(blur_factor * max_kernel_size)
34 if kernel_size % 2 == 0:
35 kernel_size += 1
36
37 # Apply blur only if kernel_size is greater than 1
38 if kernel_size > 1:
39 blurred_image = cv2.blur(image, (kernel_size, kernel_size))
40 else:
41 blurred_image = image.copy()
42
43 return blurred_image
44
45
46 def object_tracking1(config): # Tracking Algorythem Funktion
47 while True:
48 mode = cf.mode
49 print ("mode", mode)
50
51 # Assigning values from the config to new variables
52 azimut_1 = config['azimut_1']
53 #area = config['area']
54 pxc = config['pxc']
55 id = config['id']
56 #id_check_list = config['id_check_list']
57 #id_check_list_copy = config['id_check_list_copy']
58 azimut_dict = config['azimut_dict']
59 rnbo = config['rnbo']
60 resolution = config['resolution']
61 binary_thresh1 = config['binary_thresh1']
62 binary_thresh2 = config['binary_thresh2']
63 contour_size = config['contour_size']
64 tracking_distance = config['tracking_distance']
65 pick_img = config['pick_img']
66 show_img_local = config['show_img_local']
67 tcp_stream = config['tcp_stream']
68 video_source = config['video_source']
69 radius_circle = config['radius_circle']
70 ip_adress = config['ip_adress']
71 Picamera2= config['Picamera2']
72 pi_mode = config['pi_mode']
73
74
75 #Enter Settings or kalibration for user input
76
77 while True: # user menue enter settings or calibration menue
78 try:

28/08/2024, 10:50 object_tracking.py

localhost:65427/99c0381a-71b7-485f-8477-8d3f49a4f716/ 1/8

XXVI

79 enter_settings = input('>>> Enter: (s) for Settings, (c) for calibration, any other string continues with set
Values: ')

80 break
81 except ValueError:
82 print('Invalid input!')
83
84 if enter_settings == 's':
85
86 while True: # set resolution
87 try:
88 res_input = input('>>> Enter: set resolution (e.g., 720, 480): ')
89 if res_input != "":
90 resolution = [int(x.strip()) for x in res_input.split(',')]
91 break
92 except ValueError:
93 print('invalid input!')
94
95 while True: # set radius for tracking circel
96 try:
97 radius = input('>>> Enter: set tracking_circle_radi us, [350] (0-350): ')
98 if radius != "":
99 radius_circle = int(radius)
100 break
101 except ValueError:
102 print('invalid input!')
103
104 while True: # set video source
105 try:
106 source = input('>>> Enter: set video_source: 0 = video file, 1 = camera, [1]: ')
107 if source != "":
108 video_source = int(source)
109 break
110 except ValueError:
111 print('invalid input!')
112
113 while True: # set pi mode
114 try:
115 mode = input('>>> Enter: pi mode: 0 = off, 1 = on, [1]: ')
116 if mode != "":
117 pi_mode = int(mode)
118 break
119 except ValueError:
120 print('invalid input!')
121
122 while True: # enter calibration menue or strat
123 try:
124 enter_settings = input('>>> Enter: (c) for calibration or (e) to start program: ')
125 break
126 except ValueError:
127 print('invalid input!')
128
129 if enter_settings == 'c': # Enter calibration
130
131 while True: # set video or binary
132 try:
133 pick = input('>>> Enter: set Visual to frame = 0, binary = 1: ')
134 if pick != "":
135 pick_img = int(pick)
136 break
137 except ValueError:
138 print('invalid input!')
139
140 while True: # set binary threshhold
141 try:
142 thresh = input('>>> Enter: set binary threshold, [80,210] (80-255): ')
143 if thresh != "":
144 binary_thresh1 = int(thresh)
145 break
146 except ValueError:
147 print('invalid input!')
148
149 while True: # set contour size
150 try:
151 contour = input('>>> Enter a value to set contour size, [200] (10-400): ')
152 if contour != "":
153 contour_size = int(contour)
154 break
155 except ValueError:
156 print('invalid input!')
157
158 while True: # set tracking distance

28/08/2024, 10:50 object_tracking.py

localhost:65427/99c0381a-71b7-485f-8477-8d3f49a4f716/ 2/8

XXVII

159 try:
160 distance = input('>>> Enter a value to set tracking distance, [50] (0-300): ')
161 if distance != "":
162 tracking_distance = int(distance)
163 break
164 except ValueError:
165 print('invalid input!')
166
167
168
169 # Update config dictionary
170 # config['azimut_1'] = azimut_1
171 # config['area'] = area
172 # config['pxc'] = pxc
173 # config['id'] = id
174 # config['id_check_list'] = id_check_list
175 # config['id_check_list_copy'] = id_check_list_copy
176 # config['azimut_dict'] = azimut_dict
177 # config['rnbo'] = rnbo
178 config['resolution'] = resolution
179 config['binary_thresh1'] = binary_thresh1
180 config['binary_thresh2'] = binary_thresh2
181 config['contour_size'] = contour_size
182 config['tracking_distance'] = tracking_distance
183 config['pick_img'] = pick_img
184 config['show_img_local'] = show_img_local
185 config['tcp_stream'] = tcp_stream
186 config['video_source'] = video_source
187 config['radius_circle'] = radius_circle
188 config['ip_adress'] = ip_adress
189 config['Picamera2'] = Picamera2
190 config['pi_mode'] = pi_mode
191
192 cf.config = config
193
194 # Try to Import Picam libary onli if pi_mode active
195 try:
196 if pi_mode == 1:
197 from picamera2 import Picamera2
198 except ImportError:
199 print('invalid input!')
200
201
202
203 #waiting after Settings to ensure Server Has rebooted and lost Prot
204 print ('..........loading.......:')
205 time.sleep(2)
206
207 #set variables for UDP-Socket for Controldata to Bella
208 UDP_IP1 = ip_adress #Bella IP
209 UDP_PORT1 = 3001
210 UDP_IP = "127.0.0.1" #localhost IP
211 UDP_PORT = 3001
212
213
214
215 # Getting Centerpoint of the Image
216 width_float = (resolution[0])
217 height_float = (resolution[1])
218 center_x = int(width_float/2)
219 center_y = int(height_float/2)
220 center_xy = (center_x, center_y)
221
222
223
224 # Define Funktions:
225 # get Key and Value from recursif Funktion
226 def recursive_items(dictionary):
227 for key, value in dictionary.items():
228 if type(value) is dict:
229 yield from recursive_items(value)
230 else:
231 yield (key, value)
232
233 if video_source == 1:
234 #Read Video PI
235 picam2 = Picamera2()
236 picam2.configure(picam2.create_preview_confi guration(main={"format": "YUV420", "size": (resolution[0],

resolution[1])}, controls={"FrameRate": 30}))
237 picam2.start()
238 #print(1)

28/08/2024, 10:50 object_tracking.py

localhost:65427/99c0381a-71b7-485f-8477-8d3f49a4f716/ 3/8

XXVIII

239
240 if video_source == 0:
241 #Read Video opencv
242 cap = cv2.VideoCapture('video.mp4')
243
244 # Initialize count and Tracking Variabels:
245 count = 0
246 img_counter = 0
247 center_points_prev_f rame = []
248
249 tracking_objects = {}
250 track_id = 1
251
252 # start messuring to quantify possesing time
253 start_time = time.time()
254
255 # Defining insert Funtion for defiend empty spots
256 print(">>> Start Programm")
257 print('>>> Enter: (q) to pause and go back to menue')
258 while True: # capture loop
259
260 count += 1
261 center_points_cur_fr ame = []
262
263 # setting Vvalues from browser
264 binary_thresh1 = 255 * cf.var_1
265 #binary_thresh2 = 255 * var_2
266 #contour_size = 500 * var_3
267 #tracking_distance = 200 * var_4
268 radius_circle = int(resolution[1] * 0.5 * cf.var_3)
269 #calculate and Print Koordinaten Uhrsprung
270 pick_img = cf.var_6
271 x1 = center_x - radius_circle
272 y1 = center_y + radius_circle
273 encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(cf.var_4)]
274
275 # chose sourcematerial for video
276 if video_source == 1:
277 frame = picam2.capture_array()
278 start_frame_time = time.time() # take start time of framecycle
279 height, width = frame.shape[0] * 2 // 3, frame.shape[1]
280 frame = frame[:height, :width]
281 #print(1)
282
283 if video_source == 0:
284 ret, frame = cap.read()
285 start_frame_time = time.time() # strat timer for framecycle
286 frame = cv2.resize(frame, (resolution[0], resolution[1]))
287 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
288 height, width = frame.shape[0] * 2 // 3, frame.shape[1]
289
290 # Determine the maximum kernel size (must be an odd number)
291 max_kernel_size = min(height, width)
292 if max_kernel_size % 2 == 0:
293 max_kernel_size -= 1
294
295 # calculate the kernel size based on the blur factor
296 kernel_size = int(cf.var_2 * max_kernel_size)
297 if kernel_size % 2 == 0:
298 kernel_size += 1
299
300 # create a mask to define tracking area and overlay onto frame
301 mask_read = np.zeros_like(frame)
302 mask_read = 255 - mask_read
303 mask_read = cv2.circle(mask_read, center_xy, radius_circle, (0,0,0), -1)
304 frame_mask = cv2.bitwise_or(frame, mask_read)
305 #contrast adjustment maybe brings out shadows to much
306 #clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
307 #frame_mask = clahe.apply(frame_mask)
308
309 # prosses frame invert blurr and convert to binary
310 img_inv = cv2.bitwise_not(frame_mask)
311 # apply blur (liniar filter - type box)
312 if kernel_size > 1:
313 img_blurred = cv2.blur(img_inv, (kernel_size, kernel_size))
314 else:
315 img_blurred = img_inv.copy()
316 # perform thresholding
317 ret, img_binary = cv2.threshold(img_blurred, binary_thresh1, binary_thresh2, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
318

28/08/2024, 10:50 object_tracking.py

localhost:65427/99c0381a-71b7-485f-8477-8d3f49a4f716/ 4/8

XXIX

319 #define later printed Image binary or Frame
320 print_img = img_binary
321 if pick_img == 1:
322 #print_img = img_binary
323 print_img = cv2.cvtColor(img_binary,cv2.COLOR_GRAY2RGB)
324 if pick_img == 0:
325 #print_img = frame
326 print_img = cv2.cvtColor(frame,cv2.COLOR_GRAY2RGB)
327
328
329 # find contours and find total area
330 cnts = cv2.findContours(img_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
331 cnts = cnts[0] if len(cnts) == 2 else cnts[1]
332 for c in cnts: # find center of contoure
333 pxc = np.count_nonzero(c)
334 if pxc > contour_size:
335 # compute the center of the contour
336 M = cv2.moments(c)
337 if (M["m00"] != 0):
338 cX = int(M["m10"] / M["m00"])
339 cY = int(M["m01"] / M["m00"])
340 center_points_cur_fr ame.append((cX, cY))
341 else:
342 cX,cY=0,0
343 #cv2.drawContours(print_img, [c], -1, (0, 255, 0), 2)
344
345 # Only at the beginning we compare previous and current frame
346 if count <= 2: # compare distence cur to prev frame
347 for pt in center_points_cur_fr ame:
348 for pt2 in center_points_prev_f rame:
349 distance = math.hypot(pt2[0] - pt[0], pt2[1] - pt[1])
350
351 if distance < tracking_distance:
352 tracking_objects[track_id] = pt
353 track_id += 1
354 else:
355
356 tracking_objects_cop y = tracking_objects.copy()
357 center_points_cur_fr ame_copy = center_points_cur_fr ame.copy()
358
359 for object_id, pt2 in tracking_objects_cop y.items(): # update ID, remove old & add new
360 object_exists = False
361 for pt in center_points_cur_fr ame_copy:
362 distance = math.hypot(pt2[0] - pt[0], pt2[1] - pt[1])
363
364 # Update IDs position
365 if distance < tracking_distance:
366 tracking_objects[object_id] = pt
367 object_exists = True
368 if pt in center_points_cur_fr ame:
369 center_points_cur_fr ame.remove(pt)
370 continue
371
372 # Remove IDs lost
373 if not object_exists:
374 tracking_objects.pop(object_id)
375
376 # Add new IDs found
377 for pt in center_points_cur_fr ame:
378 tracking_objects[track_id] = pt
379 track_id += 1
380
381 #Adding (nesting) tracking_objekts to rnbo slots:
382 id_check_list_copy = []
383 id_check_list = []
384
385 for id, z in tracking_objects.items(): # Finite ID 1-8
386 dct = {id: z}
387 dct2 = {0: 0}
388 #print (dct)
389
390 for k, v in rnbo.items():
391 vid = [*v]
392 vid = vid[0]
393
394 # Creating id_check_list to check later if objeckt_id is in rnbo dictionary
395 for key, value in recursive_items(rnbo):
396 if key not in id_check_list:
397 id_check_list.append(key)
398

28/08/2024, 10:50 object_tracking.py

localhost:65427/99c0381a-71b7-485f-8477-8d3f49a4f716/ 5/8

XXX

399
400 # check if objeckt_id is not in rnbo
401 if id not in id_check_list:
402 if vid == -1:
403 #if v == {0: (0, 0)}: ########
404 rnbo[k] = dct.copy()
405 #print ('false')
406
407 # check if objeckt_id is in rnbo
408 elif id in id_check_list and vid == id:
409 rnbo[k] = dct.copy()
410 #print ('true')
411
412
413 # Delete rnbo Value Items if old Objeckt_id is not present anymore:
414 # Creating id_check_list_copy to check later if objeckt_id is not in rnbo dictionary
415 for key, value in recursive_items(tracking_objects):
416 if key not in id_check_list_copy:
417 id_check_list_copy.append(key)
418
419
420 azimut_dict = rnbo.copy()
421 x_dict = rnbo.copy()
422 y_dict = rnbo.copy()
423 radius_dict = rnbo.copy()
424 id_active_dict = rnbo.copy()
425
426 #Check for old Items, Clculate Azimut Angel and Print ID on frame:
427 for k, v in rnbo.items():
428 vid = [*v]
429 vid = vid[0]
430 pt = (rnbo.get(k, {}).get(vid))
431 dct = {-1: pt}##########
432
433 #Delet old and insert Spaceholder Value
434 if vid not in id_check_list_copy:
435 rnbo[k] = dct.copy()
436 azimut_dict[k] = pt
437 x_dict[k] = pt
438 y_dict[k] = pt
439 radius_dict[k] = pt
440 #print ('PT:'+str(pt))
441
442 if pt != (0, 0) and pt != None:
443
444 #calculate relative xy koordinats to the center of Frame
445 angel_xy = tuple(map(operator.sub, pt, center_xy))
446 #calculate distance angle_xy to center_xy
447 angel_radius = np.sqrt((angel_xy[0]**2)+(angel_xy[1]**2))
448 # calculate the azimut angel of each position
449 if angel_xy[0] < 0:
450 if angel_xy[1] < 0:
451
452 angel_devision= (angel_xy[1]/ angel_xy[0])
453 #print(angel_devision)
454 azimut = (math.degrees(math.atan(angel_devision)))
455 azimut_1 = (90-azimut)
456
457 elif angel_xy[1] > 0:
458 angel_devision= (angel_xy[1]/ angel_xy[0])
459 #print(angel_devision)
460 azimut = (math.degrees(math.atan(angel_devision)))
461 azimut_1 = (-1*(azimut-90))
462
463
464 if angel_xy[0] > 0:
465 if angel_xy[1] > 0:
466 angel_devision= (angel_xy[1]/ angel_xy[0])
467 #print(angel_devision)
468 azimut = (math.degrees(math.atan(angel_devision)))
469 azimut_1 = (180+90-azimut)
470
471 elif angel_xy[1] < 0:
472
473 angel_devision= (angel_xy[1]/ angel_xy[0])
474 #print(angel_devision)
475 azimut = (math.degrees(math.atan(angel_devision)))
476 azimut_1 = (270+(-1*azimut))
477
478 #save Values for Pure Data X and Y are displayed in %factor as relative coordinat to circal diameter

28/08/2024, 10:50 object_tracking.py

localhost:65427/99c0381a-71b7-485f-8477-8d3f49a4f716/ 6/8

XXXI

559
560 sock = socket.socket(socket.AF_INET, # Internet
561 socket.SOCK_DGRAM) # UDP
562 sock.sendto(MESSAGE.encode(), (UDP_IP1, UDP_PORT1))
563
564 #cv2.imshow('Contours', print_img)
565 #Encode the frame to JPEG
566 if mode == 1:
567 ret, buffer = cv2.imencode('.jpg', print_img, encode_param)
568 frame1 = buffer.tobytes()
569 yield (b'--frame1\r\n'
570 b'Content-Type: image/jpeg\r\n\r\n' + frame1 + b'\r\n')
571 #Printing original Objekt ID to Frame (only for comparison, no real purpose)
572 #for object_id, pt in tracking_objects.items():
573
574 #cv2.circle(frame, pt, 5, (0, 0, 255), -1)
575 #cv2.putText(frame, str(object_id), (pt[0], pt[1] +30), 0, 1, (0, 0, 255), 2)
576
577
578 # Make a copy of the points
579 center_points_prev_f rame = center_points_cur_fr ame.copy()
580
581 key = cv2.waitKey(1)
582 if key == 13:
583 break
584
585 # timer for Input check to quit
586 time.sleep(0.01)
587
588 # Check for user input
589 input_char = check_for_input()
590 if input_char == "q":
591 frame1 = mask_read
592 break
593
594 end_frame_time = time.time() # take end time of framecycle
595 frame_processing_tim e = end_frame_time - start_frame_time # calculate absolut time
596 #print(f"Frame {count}: {frame_processing_tim e:.4f} seconds")
597
598 print ("brake")
599 print ("---")
600 cf.save_config()
601 end_time = time.time()
602 total_time = end_time - start_time
603 fps = count / total_time
604
605
606 print(f"Total frames: {count}")
607 print(f"Total time: {total_time:.2f} seconds")
608 print(f"Average FPS: {fps:.2f}")
609 print(rnbo)
610
611
612 if video_source == 1:
613 picam2.stop()
614 picam2.close()
615 cap.release()
616 print ('> client closing:')
617 print ('<<<<<<RESTART>>>>>>>:')
618
619
620 # swarm of sound Version 1.0
621 # Copyright (c) [2024] [Sebastian Obel]
622
623 # Permission is hereby granted, free of charge,
624 # to any person obtaining a copy of this software and associated documentation files (the "Software"),
625 # to deal in the Software without restriction, including without limitation the rights to use,
626 # copy, modify, merge, publish, distribute, sublicense,
627 # and/or sell copies of the Software
628
629 # This Software was inspired by:
630 # Sergio-Canu
631 # https://pysource.com/2021/10/05/object-tracking-from-scratch-opencv-and-python/
632 # and Sharon McCaman and David Tinapple
633 # Sharon McCaman and David Tinapple
634 # http://www.sharonmccaman.com
635 # http://www.sharonmccaman.com
636 # https://www.youtube.com/watch?v=cytx9NqSQNA
637 # https://tinapple.notion.site/Tracking-Blob-Tracking-9b5b314087074429808b 53bf4598e4de
638

28/08/2024, 10:50 object_tracking.py

localhost:65427/99c0381a-71b7-485f-8477-8d3f49a4f716/ 8/8

XXXII

479 azimut_dict[k] = int(azimut_1)
480 x_dict[k] = "%.3f" % ((pt[0] - x1) / (2 * radius_circle))
481 y_dict[k] = "%.3f" % ((y1 - pt[1]) / (2 * radius_circle))
482 radius_dict[k] = "%.3f" % (angel_radius / radius_circle)
483 id_active_dict[k] = vid
484
485 #Print Visuals to Frame
486 cv2.circle(print_img, pt, 5, (0, 0, 255), -1)
487 cv2.putText(print_img, str(k), (pt[0], pt[1] +30), 0, 1, (0, 0, 255), 2)
488 #cv2.line(print_img,pt, center_xy,(255,0,0),2)
489 #cv2.putText(print_img, str(x_dict[k]), (pt[0], pt[1] +60), 0, 1, (0, 0, 255), 2)
490
491 #print center of the Image and Traccking circel to Frame
492 cv2.circle(print_img, center_xy, radius_circle, (0, 165, 255), 2)
493 cv2.circle(print_img, center_xy, 3, (0, 165, 255), 2)
494 #cv2.line(frame,pt_xy, center_xy,(0,0,255),2)
495 cv2.line(print_img,(0, ((resolution[1])//2)),(resolution[0], ((resolution[1])//2)) ,(0,0,0),2)
496 cv2.line(print_img,(((resolution[0])//2), 0),(((resolution[0])//2), resolution[1]) ,(0,0,0),2)
497
498 #Print Koordinaten Uhrsprung
499 cv2.circle(print_img, (x1, y1), 10, (0, 165, 255), 2)
500 #Prit XY Axies
501 cv2.arrowedLine(print_img,(x1,y1),((x1+(2*radius_circle)),y1),(255,0,0),1, tipLength = 0.03)
502 cv2.arrowedLine(print_img,(x1,y1),(x1,y1-(2*radius_circle)),(255,0,0),1, tipLength = 0.03)
503 cv2.putText(print_img, str('y-axis'), (x1 + 5, y1-(2*radius_circle)+35), 0, 1, (255, 0, 0), 1)
504 cv2.putText(print_img, str('x-axis'), (x1-100+(2*radius_circle),y1-15),0, 1, (255, 0, 0), 1)
505 ##
506 # Deraw Speaker Positions
507 dot_radius = 10
508 dot_color = (0, 0, 255)
509 num_points = 8
510 angle_step = 360 / num_points
511
512 for i in range(num_points):
513 angle_deg = angle_step * i
514 angle_rad = np.deg2rad(angle_deg)
515
516 x = int(center_xy[0] + radius_circle * np.sin(angle_rad))
517 y = int(center_xy[1] - radius_circle * np.cos(angle_rad))
518
519 # Draw the dot
520 cv2.circle(print_img, (x, y), dot_radius, dot_color, -1)
521 cv2.line(print_img,(x, y), center_xy,(255,0,0),2)
522 ###
523
524
525
526 print ('IDAC:' + str(id_active_dict))
527 print ('RNBO:' + str(rnbo))
528
529 #print ('TROB:' + str(tracking_objects))
530
531 #print ('IDCK:' + str(id_check_list))
532 #print ('COPY:' + str(id_check_list_copy))
533
534 #transform dicts to lists, fas prep for UDP
535 azimut_list = list(azimut_dict.values())
536 x_list = list(x_dict.values())
537 y_list = list(y_dict.values())
538 radius_list = list(radius_dict.values())
539 id_active_list = list(id_active_dict.values())
540 #radius_list = [cf.var_4, cf.var_5]
541
542 #consolidate azimut, x, y_list's into one list
543 PD_list = azimut_list + x_list + y_list + radius_list + id_active_list
544
545 #replace Placeholder Values with 0
546 #for index, fruit in enumerate(PD_list): # inactive as ald values are passe thure
547 #if fruit == {0: (0, 0)}:
548 #PD_list[index] = 0
549
550 # Sending Message to Bella/Pure Datat over UDP Socket
551 MESSAGE = " ".join(str(x) for x in PD_list)
552
553 sock = socket.socket(socket.AF_INET, # Internet
554 socket.SOCK_DGRAM) # UDP
555 sock.sendto(MESSAGE.encode(), (UDP_IP, UDP_PORT))
556
557 # Sending Message to Bella/Pure Datat over UDP Socket
558 MESSAGE = " ".join(str(x) for x in PD_list)

28/08/2024, 10:50 object_tracking.py

localhost:65427/99c0381a-71b7-485f-8477-8d3f49a4f716/ 7/8

XXXIII

Source code 3: Object tracking http_video.py handling web server and video stream

http_video.py

1 from flask import Flask, Response, render_template, request, jsonify, redirect, url_for, session
2 from functools import wraps
3 import config
4 import object_tracking
5
6 app = Flask(__name__)
7 app.secret_key = config.SECRET_KEY
8
9 def check_auth(username, password):

10 return username == config.USERNAME and password == config.PASSWORD
11
12 def authenticate():
13 return Response(
14 'Could not verify your access level for that URL.\n'
15 'You have to login with proper credentials', 401,
16 {'WWW-Authenticate': 'Basic realm="Login Required"'})
17
18 def requires_auth(f):
19 @wraps(f)
20 def decorated(*args, **kwargs):
21 if 'logged_in' not in session:
22 return redirect(url_for('login'))
23 return f(*args, **kwargs)
24 return decorated
25
26 @app.route('/login', methods=['GET', 'POST'])
27 def login():
28 if request.method == 'POST':
29 username = request.form['username']
30 password = request.form['password']
31 if check_auth(username, password):
32 session['logged_in'] = True
33 return redirect(url_for('index'))
34 else:
35 return authenticate()
36 return render_template('login.html')
37
38 @app.route('/logout')
39 def logout():
40 session.pop('logged_in', None)
41 return redirect(url_for('login'))
42
43
44
45 @app.route('/set_var', methods=['POST'])
46 @requires_auth
47 def set_var():
48 var_index = int(request.form['var_index'])
49 value = float(request.form['value'])
50 if var_index == 1:
51 config.var_1 = value
52 elif var_index == 2:
53 config.var_2 = value
54 elif var_index == 3:
55 config.var_3 = value
56 elif var_index == 4:
57 config.var_4 = value
58 elif var_index == 5:
59 config.var_5 = value
60 elif var_index == 6:
61 config.var_6 = value
62 config.save_config() # Save configuration to file
63 return jsonify(status='success', value=value)
64
65 @app.route('/toggle_var6', methods=['POST'])
66 @requires_auth
67 def toggle_var6():
68 config.var_6 = 1 if config.var_6 == 0 else 0
69 config.save_config() # Save configuration to file
70 return jsonify(status='success', value=config.var_6)
71
72 @app.route('/video_feed')
73 @requires_auth
74 def video_feed():
75 return Response(object_tracking.object_tracking1(config.config), mimetype='multipart/x-mixed-replace; boundary=frame')
76
77
78 @app.route('/')
79 @requires_auth
80 def index():
81 return render_template('index.html')
82
83 def start_video_feed():
84 try:
85 app.run(host='0.0.0.0', port=5001, debug=True, use_reloader=False)
86 except Exception as e:
87 print(f"Failed to start video feed: {e}")
88

28/08/2024, 10:52 http_video.py

localhost:65427/1c6ddfbc-ef5d-44c6-b6d4-9830c8feab44/ 1/1

XXXIV

Source code 4: Object tracking config.py background data handling and storing between the Python scripts

config.py

1 import os
2 import json
3
4 CONFIG_FILE = "config.json"
5
6 var_1 = 0.3
7 var_2 = 0.9
8 var_3 = 0.5
9 var_4 = 0.5

10 var_5 = 0.5
11 var_6 = 1
12
13 mode = 0
14
15
16
17 USERNAME = 'swarm_of_sound'
18 PASSWORD = 'dgfuy37d773gei83qgwh euf7re36t4efgdanseiu '
19 SECRET_KEY = os.urandom(24)
20
21 # Configuration dictionary
22 config = {
23 'azimut_1': 0,
24 'area': 0,
25 'pxc': 0,
26 'id': 0,
27 'azimut_dict': {},
28 'rnbo': {1: {0: (0, 0)}, 2: {0: (0, 0)}, 3: {0: (0, 0)}, 4: {0: (0, 0)}, 5: {0: (0, 0)}, 6: {0: (0, 0)}, 7: {0: (0, 0)}, 8:

{0: (0, 0)}},
29 'resolution': (1520, 1520),
30 'binary_thresh1': 80,
31 'binary_thresh2': 255,
32 'contour_size': 150,
33 'tracking_distance': 40,
34 'pick_img': 0,
35 'show_img_local': 0,
36 'tcp_stream': 0,
37 'video_source': 0,
38 'radius_circle': 730,
39 'ip_adress': "192.168.7.2",
40 'Picamera2': None,
41 'pi_mode': 0
42 }
43
44 def save_config():
45 with open(CONFIG_FILE, 'w') as f:
46 json.dump({
47 'var_1': var_1,
48 'var_2': var_2,
49 'var_3': var_3,
50 'var_4': var_4,
51 'var_5': var_5,
52 'var_6': var_6,
53 'config': config,
54 'mode': mode
55 }, f)
56
57 def load_config():
58 global var_1, var_2, var_3, var_4, var_5, var_6, config, mode
59 if os.path.exists(CONFIG_FILE):
60 with open(CONFIG_FILE, 'r') as f:
61 data = json.load(f)
62 var_1 = data['var_1']
63 var_2 = data['var_2']
64 var_3 = data['var_3']
65 var_4 = data['var_4']
66 var_5 = data['var_5']
67 var_6 = data['var_6']
68 config = data['config']
69
70
71 # Load configuration on module import
72 load_config()

28/08/2024, 10:53 config.py

localhost:65427/6468fba2-3b24-41eb-bf9f-0ab91edaa5a1/ 1/1

XXXV

Source code 5: Object tracking config,json saved data to initialize on program start

config.json

1 {"var_1": 0.19, "var_2": 0.048, "var_3": 0.86, "var_4": 44.0, "var_5": 0.91, "var_6": 1.0, "config": {"azimut_1": 0, "area": 0,
"pxc": 0, "id": 0, "azimut_dict": {}, "rnbo": {"1": {"18": [1157, 664]}, "2": {"19": [163, 912]}, "3": {"16": [984, 1096]}, "4":
{"-1": [1074, 207]}, "5": {"-1": [959, 168]}, "6": {"-1": [169, 601]}, "7": {"-1": [840, 142]}, "8": {"-1": [809, 238]}},
"resolution": [1520, 1520], "binary_thresh1": 30, "binary_thresh2": 255, "contour_size": 100, "tracking_distance": 40, "pick_img":
0, "show_img_local": 0, "tcp_stream": 0, "video_source": 0, "radius_circle": 720, "ip_adress": "192.168.7.2", "Picamera2": null,
"pi_mode": 0}, "mode": 0}

28/08/2024, 10:52 config.json

localhost:65427/bf44dbc7-e66f-4e56-b582-df419e6611e7/ 1/1

XXXVI

Source code 6: Object tracking index.html calibration web interface and receiving video stream

templates/index.html

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Video Stream</title>
5 <style>
6 body {
7 display: flex;
8 flex-direction: column;
9 align-items: center;

10 justify-content: center;
11 height: 100vh;
12 margin: 0;
13 background-color: #f0f0f0;
14 }
15 .video-container {
16 flex: 1;
17 display: flex;
18 justify-content: center;
19 align-items: center;
20 width: 100%;
21 max-height: 100%;
22 margin: 10px;
23 background-color: #f0f0f0;
24 position: relative;
25 }
26 .video-container img {
27 max-width: 70%;
28 max-height: 70%;
29 width: auto;
30 height: auto;
31 object-fit: contain;
32 }
33 .slider-container {
34 display: flex;
35 flex-direction: column;
36 align-items: center;
37 width: 100%;
38 }
39 .slider-group {
40 display: flex;
41 justify-content: space-around;
42 width: 80%;
43 margin: 20px 0;
44 }
45 input[type=range] {
46 width: 250px;
47 }
48 </style>
49 <script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
50 </head>
51 <body>
52 <div class="video-container">
53
54 </div>
55 <div class="slider-container">
56 <div class="slider-group">
57 <div>
58 <label for="var1Slider">binary_threshhold</label>
59 <input type="range" id="var1Slider" min="0" max="1" step="0.01" value="0" oninput="updateVar(1, this.value)">
60 <p>Value: 0.5</p>
61 </div>
62 <div>
63 <label for="var2Slider">blurr_factor</label>
64 <input type="range" id="var2Slider" min="0" max="0.3" step="0.001" value="0" oninput="updateVar(2, this.value)">
65 <p>Value: 0.5</p>
66 </div>
67 <div>
68 <label for="var3Slider">tracking_radius</label>
69 <input type="range" id="var3Slider" min="0" max="1" step="0.01" value="90" oninput="updateVar(3, this.value)">
70 <p>Value: 0.5</p>
71 </div>
72 </div>
73 <div class="slider-group">
74 <div>
75 <label for="var4Slider">360_degree</label>
76 <input type="range" id="var4Slider" min="1" max="100" step="1" value="1" oninput="updateVar(4, this.value)">
77 <p>Value: 0.5</p>
78 </div>

28/08/2024, 10:54 index.html

localhost:65427/fbaa2eb4-7701-4b4b-8564-9457fbe01841/ 1/2

XXXVII

79 <div>
80 <label for="var5Slider">var_5</label>
81 <input type="range" id="var5Slider" min="0" max="1" step="0.01" value="0.5" oninput="updateVar(5, this.value)">
82 <p>Value: 0.5</p>
83 </div>
84 <div>
85 <label for="var6Slider">pick_image</label>
86 <input type="range" id="var5Slider" min="0" max="1" step="1" value="1" oninput="updateVar(6, this.value)">
87 <p>Value: 0.5</p>
88 </div>
89 </div>
90 </div>
91 <script type="text/javascript">
92 function updateVar(varIndex, value) {
93 document.getElementById('var' + varIndex + 'Value').innerText = value;
94 $.post('/set_var', {var_index: varIndex, value: value});
95 }
96 </script>
97 </body>
98 </html>
99
100

28/08/2024, 10:54 index.html

localhost:65427/fbaa2eb4-7701-4b4b-8564-9457fbe01841/ 2/2

XXXVIII

Source code 7: Object tracking login.html login page

templates/login.html

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Login</title>
5 </head>
6 <body>
7 <h1>Login</h1>
8 <form method="post">
9 <label for="username">Username:</label>

10 <input type="text" id="username" name="username" required>
11

12 <label for="password">Password:</label>
13 <input type="password" id="password" name="password" required>
14

15 <button type="submit">Login</button>
16 </form>
17 </body>
18 </html>
19

28/08/2024, 10:54 login.html

localhost:65427/5185a676-8079-44cf-a0f6-67b7fb0ef1ac/ 1/1

XXXIX

Source code 8: sketch.js web interface script for output gain adjustment hosted on the Bela

sketch.js

1 let buffer = new Array(17).fill(0);
2 let result;
3 let counter = 0;
4 let save_state = 0;
5 let button;
6
7 function preload() {
8 console.log("Preloading file...");
9 values_load = loadStrings("/projects/SOS/values.txt", fileLoaded, fileLoadError);

10 }
11
12 function fileLoaded(data) {
13 console.log("File loaded successfully");
14 result = data;
15 console.log(values_load);
16 }
17
18 function fileLoadError(err) {
19 console.error("Error loading file:", err);
20 }
21
22 function setup() {
23 createCanvas(windowWidth, windowHeight);
24 setupElements();
25 }
26
27 function setupElements() {
28 background(200, 200, 200);
29
30 let values_string = values_load[0];
31 let values = splitTokens(values_string);
32
33 let v1 = parseFloat(values[0]);
34 let v2 = parseFloat(values[1]);
35 let v3 = parseFloat(values[2]);
36 let v4 = parseFloat(values[3]);
37 let v5 = parseFloat(values[4]);
38 let v6 = parseFloat(values[5]);
39 let v7 = parseFloat(values[6]);
40 let v8 = parseFloat(values[7]);
41 let v9 = parseFloat(values[8]);
42 let v10 = parseFloat(values[9]);
43 let v11 = parseFloat(values[10]);
44 let v12 = parseFloat(values[11]);
45 let v13 = parseFloat(values[12]);
46 let v14 = parseFloat(values[13]);
47 let v15 = parseFloat(values[14]);
48 let v16 = parseFloat(values[15]);
49
50 let n = windowWidth * 0.1;
51 let totalWidth = n * 8;
52 let x1 = (windowWidth - totalWidth) / 2;
53 let y1 = windowHeight * 0.2;
54
55 // Remove existing sliders and labels if they exist
56 for (let i = 1; i <= 16; i++) {
57 if (window[`slider${i}`]) window[`slider${i}`].remove();
58 if (window[`labelName${i}`]) window[`labelName${i}`].remove();
59 if (window[`labelValue${i}`]) window[`labelValue${i}`].remove();
60 }
61
62 // Create sliders for snd1-snd8
63 for (let i = 1; i <= 8; i++) {
64 let slider = createSlider(0, 1, eval(`v${i}`), 0.01);
65 slider.style("transform", "rotate(-90deg)");
66 let sliderX = x1 + (i - 1) * n;
67 slider.position(sliderX, y1);
68 slider.size(windowHeight * 0.25);
69 eval(`slider${i} = slider`);
70
71 let labelName = createP(`snd${i}`);
72 labelName.position(sliderX + slider.width / 2 - 10, y1 - windowHeight * 0.17);
73 labelName.style('text-align', 'center');
74 eval(`labelName${i} = labelName`);
75
76 let labelValue = createP("");
77 labelValue.position(sliderX + slider.width / 2 - 10,y1 + windowHeight * 0.12);
78 labelValue.style('text-align', 'center');
79 eval(`labelValue${i} = labelValue`);

28/08/2024, 10:55 sketch.js

localhost:65427/cf1f97e6-3779-4e0d-9e14-be77f4d59f78/ 1/2

XL

80 }
81
82 // Create sliders for vol1-vol8
83 for (let i = 9; i <= 16; i++) {
84 let slider = createSlider(0, 1, eval(`v${i}`), 0.01);
85 slider.style("transform", "rotate(-90deg)");
86 let sliderX = x1 + (i - 9) * n;
87 slider.position(sliderX, y1 + windowHeight * 0.45);
88 slider.size(windowHeight * 0.25);
89 eval(`slider${i} = slider`);
90
91 let labelName = createP(`vol${i - 8}`);
92 labelName.position(sliderX + slider.width / 2 - 10, y1 + windowHeight * 0.29);
93 labelName.style('text-align', 'center');
94 eval(`labelName${i} = labelName`);
95
96 let labelValue = createP("");
97 labelValue.position(sliderX + slider.width / 2 - 10, y1 + windowHeight * 0.57);
98 labelValue.style('text-align', 'center');
99 eval(`labelValue${i} = labelValue`);
100 }
101
102 if (button) button.remove();
103 button = createButton("save");
104 button.mouseClicked(press_save);
105 button.size(windowWidth * 0.08, windowHeight * 0.04);
106 button.position(windowWidth * 0.9, windowHeight * 0.9);
107 }
108
109 function press_save() {
110 console.log('Button pressed');
111 save_state = 1;
112 setTimeout(() => {
113 save_state = 0;
114 console.log('save_state set back to 0');
115 }, 1000);
116 }
117
118 function draw() {
119 buffer[0] = slider1.value();
120 buffer[1] = slider2.value();
121 buffer[2] = slider3.value();
122 buffer[3] = slider4.value();
123 buffer[4] = slider5.value();
124 buffer[5] = slider6.value();
125 buffer[6] = slider7.value();
126 buffer[7] = slider8.value();
127 buffer[8] = slider9.value();
128 buffer[9] = slider10.value();
129 buffer[10] = slider11.value();
130 buffer[11] = slider12.value();
131 buffer[12] = slider13.value();
132 buffer[13] = slider14.value();
133 buffer[14] = slider15.value();
134 buffer[15] = slider16.value();
135 buffer[16] = save_state;
136 Bela.data.sendBuffer(0, 'float', buffer);
137
138 labelValue1.html(slider1.value().toFixed(2));
139 labelValue2.html(slider2.value().toFixed(2));
140 labelValue3.html(slider3.value().toFixed(2));
141 labelValue4.html(slider4.value().toFixed(2));
142 labelValue5.html(slider5.value().toFixed(2));
143 labelValue6.html(slider6.value().toFixed(2));
144 labelValue7.html(slider7.value().toFixed(2));
145 labelValue8.html(slider8.value().toFixed(2));
146 labelValue9.html(slider9.value().toFixed(2));
147 labelValue10.html(slider10.value().toFixed(2));
148 labelValue11.html(slider11.value().toFixed(2));
149 labelValue12.html(slider12.value().toFixed(2));
150 labelValue13.html(slider13.value().toFixed(2));
151 labelValue14.html(slider14.value().toFixed(2));
152 labelValue15.html(slider15.value().toFixed(2));
153 labelValue16.html(slider16.value().toFixed(2));
154
155 }
156
157 function windowResized() {
158 resizeCanvas(windowWidth, windowHeight);
159 setupElements(); // Adjust the elements to the new window size
160 }
161

28/08/2024, 10:55 sketch.js

localhost:65427/cf1f97e6-3779-4e0d-9e14-be77f4d59f78/ 2/2

XLI

Declaration of Authenticity

I declare that I completed the Bachelor thesis independently and used only these materials that are listed. All

materials used, from published as well as unpublished sources, whether directly quoted or paraphrased, are

duly reported. Furthermore, I declare that the Bachelor thesis, or any abridgment of it, was not used for any

other degree seeking purpose.

Berlin 28.08.2024

Signature

