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Abstract
Physicians today rely on a variety of reference works and guidelines. However,
traditional ways of information retrieval offer little more than retrieval of and access
to whole documents. As a first step towards complex answer retrieval systems that
could speed up this process by structuring results and extracting relevant sections
we evaluate SECTOR as effective means of facet extraction on medical resources.
Presented by Arnold et al. [Arn+19], SECTOR constitutes a novel approach for the
joint task of segmenting documents into coherent sections and assigning topic labels
to each section. We define two tasks for extracting normalized structural facets and
ambiguous topical facets. To tackle the lack of German medical domain training
data, we bootstrap our own using 7,553 doctors’ letters from Charité Berlin. On this
corpus we evaluated SECTOR in conjunction with varying language representation
models. For segmentation and classification of 12 structural facets we report 98.97%
F1 and for the extended task of extracting 1,687 topical facets we note 87.07% F1,
both scored by SECTOR with bloom filter embeddings.

Abstract (German)

Heutzutage verlassen sich Ärzte auf eine Vielzahl von Nachschlagewerken und
Richtlinien. Bisherige Formen des Information Retrieval bieten jedoch wenig mehr
als die Möglichkeit, ganze Dockumente zu suchen und anzuzeigen. Complex Answer
Retrieval Systems könnten diesen Prozess beschleunigen, indem sie Ergebnisse struk-
turieren und relevante Abschnitte hervorheben. Als ersten Schritt dorthin evaluieren
wir die Effektivität von SECTOR zur Facet Extraction auf medizinischen Dokumenten.
SECTOR von Arnold et al. [Arn+19] stellt einen neuen Ansatz für die zusammen-
hängenden Aufgaben dar, Dokumente in fortlaufende Abschnitte zu unterteilen und
diese Abschnitte zu klassifizieren. Wir formulieren zwei Tasks zur Extrahierung von
normalisierten strukturellen Facetten und mehrdeutigen thematischen Facetten. Aus
Mangel an medizinischen, deutschen Trainingsdaten annotieren wir 7.553 Arztbriefe
der Charité Berlin. Auf diesem Datensatz evaluierten wir SECTOR in Verbindung mit
unterschiedlichen Language Representation Models und verzeichnen für SECTOR
in Kombination mit Bloom Filter Embeddings bei der Segmentierung und Klassi-
fizierung von 12 strukturellen Facetten einen Score von 98,97% F1 und bei der
erweiterten Aufgabe des Extrahierens von 1.687 thematischen Facetten 87,07%
F1.
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1Introduction

„...there is nothing remarkable in being right in
the great majority of cases in the same district,
provided the physician knows the signs and can
draw the correct conclusions from them.

— Hippocrates of Kos
(Physician, father of medicine)

Hippocrates is said to be the first person to conjecture that diseases were not caused
by mystical entities or superstition. Instead, he believed in diagnosing diseases and
tried to prognose their course1. He claimed that physicians can be right most of
the time, if only they knew the signs and drew the correct conclusions from them
[Var84].
However, as medicine evolved over the ages and identified new diseases one af-
ter another, complexity of “knowing the signs” grew ever larger. Today, modern
physicians rely on a variety of reference works and guidelines, both digital and
nondigital. As medical knowledge and data expands current ways of retrieving
information become unpractical [YM15]. New systems need to be developed and
machine reading methods like facet extraction will be fundamental cornerstones of
these approaches.

1.1 Facet Extraction on Medical Health Records

While traditional information retrieval systems like PubMed2 have risen to be among
the most important sources for up-to-date health care evidence [YM15], they offer
little more than retrieval of and access to whole documents. The human reader then
has to manually skim all results for the relevant sections and information she needs.
Complex answer retrieval (CAR) systems like SMART-MD [Sch+18] could speed up
this process and help clinicians to reach a better decision faster, by structuring results
and highlighting relevant sections. As input for CAR systems a machine reading

1Hippocrates. en. Page Version ID: 890031202. Mar. 2019. URL: https://en.wikipedia.org/w/
index.php?title=Hippocrates&oldid=890031202 (visited on Apr. 1, 2019).

2PubMed. Home - PubMed - NCBI. en. URL: https://www.ncbi.nlm.nih.gov/pubmed/ (visited on
Mar. 31, 2019).
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algorithm is necessary, which surpasses searching and identifying singular words,
and instead analyzes the latent topic over the course of a document.
Arnold et al. [Arn+19] recently published such a method and achieved good results
for Wikipedia articles. In a novel usage we apply this approach to clinical resources.
In cooperation with Charité Universitätsmedizin Berlin’s Medical Department, Division
of Nephrology and Internal Intensive Care Medicine we aim to devise a methodology
as baseline for future adaption to other divisions or institutions.

1.2 Ethical Considerations

Technological advancements always come with a risk. Be it impacts on climate like
with cars and planes or impacts on peoples’ lives when they run into a pole while
texting on their phone.3

Luckily, people are more considerate when it comes to the medical field. Not only
based on the positive effects a new procedure entices, but also on the bad effects
that error entails. Clinical decision support systems therefore need to be thoroughly
analyzed and studied, not only regarding quality of the software but also regarding
their ethical implications [Goo16].
However, facet extraction is but a small step towards clinical decision support. Yet
this step includes ethical considerations as well. Working with medical resources
means working with sensitive and private information. Aicardi et al. [Aic+16] claim
that even anonymized data may not be anonymous forever: “data and material that
are anonymized today may no longer be anonymous in the context of tomorrow’s
technologies and data resources.”
This does not stop at raw data. Semantic neural representation of sensitive text
is also sensitive. Based on the vector space distribution conclusions can be drawn
about the data seen during training. Additionally, there has been a surge in research
communities aiming for explainable neural networks [Sam+17]. Faessler et al.
[Fae+14], who try to distribute neural models instead of medical datasets, are also
aware of this issue. They stress the need of anonymized training data, even if the
data is never to be published.
While technological advancements are without a doubt good, we should still employ
“progressive caution” [Goo16].

3National Safety Council. Pedestrian Safety. URL: https://www.nsc.org/home-safety/safety-
topics/distracted-walking (visited on Mar. 31, 2019).
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1.3 Methodology

As mentioned in Chapter 1.1 our facet extraction method is SECTOR, a deep learning
model. As with any deep learning approaches, suitable training data is necessary.
Additionally, the text needs to be represented in a way that can be understood by
neural networks. Finally, we define our task as training goals that best capture our
intention.

Training data Charité Berlin supplies us with a set of doctors’ letters, more specif-
ically discharge summaries. As these are plain text, we further need annotated
training data. We aim to find potential public datasets and examine their compatibil-
ity. If necessary, we annotate the letters using bootstrapping algorithms.

Text representation For text representation we assess promising language models.
Since Sheikhshab et al. [She+18] and Lee et al. [Lee+19] observe improvements
using specialized word embeddings, we additionally train specialized clinical models
for comparison.

Modeling the task To formalize our task we consult existing facet classification
approaches and identify what is most applicable. Afterwards we try to represent
them using SECTOR’s two variations, the headings and the topics model.

1.3.1 Hypotheses

Analyzing our approach, we formulate the two underlying hypotheses:

(i) Specialized text embeddings perform better than general purpose text
embeddings on medical domain

(ii) SECTOR as effective means of facet extraction on medical resources

1.3.2 Limitations

We further note two limitations for our project:

(i) Hardware requirements Since we work with sensitive data, security measures
need to be adhered. The doctors’ letters are not allowed to be stored outside
of Charité Berlin. Therefore, we have to use the available resources on-site.

1.3 Methodology 3



(ii) Time constraints A bachelor’s thesis prescribed timespan is three months.
Taking research and writing overhead as well as hardware restrictions into
account, model training time is critical. We will therefore constraint ourselves
to efficient and fast language models.

1.4 Outline

The rest of this is thesis is structured as follows: Chapter 2 will give an introduction
into basic terms and neural networks, before focusing on semantic text representation
models using the example of language models. Finally it presents an overview of
SECTOR’s architecture. In Chapter 3 we will describe the contents of our doctors’
letters and challenges we encountered in the field of clinical natural language
processing. Chapter 3.3 and Chaper 3.4 focus on our bootstrapping method and
definition of our tasks respectively. We discuss highlights of our implementation and
the applied training parameters in Chapter 4. We further describe and evaluate our
experiments both quantitatively and qualitatively and reexamine our hypotheses
in Chapter 5. In closing, we summarize our methodology and insights and offer
perspectives for future work in Chapter 6.
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2Basics and Related Work

In this chapter we introduce basic relevant terms and concepts. After clarifying
some additional basics we give address neural networks, explaining their history,
design and current impact on technology. In Chapter 2.3 we describe how neural
networks understand and represent text in vector spaces and use language models as
examples for semantic vectors spaces in particular. Chapter 2.4 contains an overview
of SECTOR’s architecture [Arn+19] and further defines facets [Mac+18].

2.1 Basics

Levenshtein distance The difference between two words can be described as edit
distance, which describes the amount of editing operations that are necessary, to
change one word into the other. Editing operations consist of insertion, deletion and
substitution [JM09, p. 108]. To give an example, to transform word into old, one
would delete w and substitute r for l.

Assigning each transformation a different cost can tweak the edit distance to different
tasks. Levenshtein distance describes the simplest weighting factor: on all editing
operations a cost of 1 is applied. Following our example, Levenshtein distance
between "word" and "old" is 2.

Information retrieval The field of information retrieval (IR) contains a wide variety
of topics that deal with “storage and retrieval of all manner of media” [JM09, p. 801].
The task described in this thesis, extracting facets on medical resources, is therefore
an IR task.

Vector spacemodel As necessary step for many IR tasks texts, documents or queries
are often represented as vectors of features in a hyperdimensional space. These
vectors can reflect the words in a text (see bag-of-words), but also more abstract
extracted features, e.g. an underlying meaning or topic.

Bag-of-words Bag-of-words describes an unordered set of words. Its simplest form
(also known as one-hot encoding) represents a text or sentence as “vector of features,
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each binary feature indicating whether a vocabulary word w does or doesn’t occur
in the context” [JM09, p. 675].

For example, the bag-of-words representation of the sentence "I eat fish.", based on
the vocabulary [I, am, eat, eating, ham, fish], would be: [1, 0, 1, 0, 0, 1].

TF-IDF TF-IDF (term frequency-inverse document frequency) measures the frequency
of a term in the dataset in relation to its frequency in a document, penalizing more
frequent words. It’s a “numerical statistic to indicate how important a word is to a
document with respect to a collection of documents.” [PG17, p. 349]

N-grams Patterson and Gibson [PG17, p. 353] define a n-gram as “a contiguous
sequence of n items from a given sequence of text or speech.”

For example, the set of character n-grams of the word where with n = 3 would be:
[whe, her, ere].

Stemming The practice of stemming describes “the process of collapsing together
the morphological variants of a word” [JM09, p. 806]. In IR systems stemming
is often used to allow query terms to match documents which contain the terms’
inflected forms.

Stock and Stocks present a prominent example. Both terms would collapse to Stock
after stemming. This also presents a limitation of simple stemming algorithms: the
term Stocking, albeit having a different meaning, could also be reduced to the term
Stock.

2.2 Introduction to Neural Networks

Neural networks are on the forefront of a wide variety of research fields. Among
the most famous examples is Facebook’s facial recognition software presented by
Taigman et al. [Tai+14]. They made headlines by achieving close to human-level
performance and setting new records for facial recognition. More recently, Alibert
and Venturini [AV19] used neural networks in the field of astrophysics to compute
the mass of forming planets, replacing differential equations. They also evaluated
several machine learning approaches and proved deep neural networks to work best
for the task.

In the field of natural language processing (NLP) neural networks revolutionized for
example text translation, e.g. Google’s Neural Machine Translation system by Wu et al.
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[Wu+16], and language modeling, starting with word2vec [Mik+13] and continuing
to this day [Boj+16; Pet+18; Dev+18].

Despite these recent innovations, neural networks aren’t new. Inspired by our very
brains, they have been around for at least 50 years. Fashioned after biological
neurons in the mammalian brain they consist of interconnected nodes. Like in real
brains, these connections can be strengthened or weakened to achieve a learning
process [PG17, p. 1].

However, as both considerable computational power and large amounts of data are
necessary for neural networks, they were not feasible back then. This changed in
the early 2000s and they proved to be an indispensable tool when working with
so-called big data. Ever since we witness a Renaissance of machine learning and
neural networks.

2.3 Text Representation in Semantic Vector
Spaces

As mentioned before, neural networks revolutionized language models. These
translate terms to arrays of floating point values, vectors, which can be interpreted
by other neural networks. They present a fundamental form of text representation
and we use the most prominent ones as example for text representation in semantic
vector spaces.

Bag-of-words captures words The simplest approach for language modeling poses
bag-of-words (see Chapter 2). However, bag-of-words does not carry any semantic
meaning. This means, its representations show no correlation between semantically
similar but syntactically different words, e.g. Queen and King.

Word2Vec captures semantic meaning Word2Vec [Mik+13] tries to fix this prob-
lem by learning word representations based on each words surroundings. This
follows the assumption, that words with similar meaning are also used similarly. For
an example, both Queen and King could both be used in a sentence like "... rule over
a country."
In their respective word2vec vector space representation, Queen and King are there-
fore close to each other1. Their semantic similarity is represented in their corre-
sponding vectors. Mikolov et al. [Mik+13] even showed that, using simple algebraic

1Of course, only if both words were encountered in such a way during training phase.
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operations, “for example vector(”King”)− vector(”Man”) + vector(”Woman”) re-
sults in a vector that is closest to the vector representation of the word Queen.”

FastText understandsmorphological similarities A language model using the word2vec
method knows only the words it has seen however. Given a text that does not contain
the word Queens, the plural form of Queen, word2vec would not know its meaning.
Bojanowski et al. [Boj+16] present fastText, a language model, “which takes into
account subword information.” In addition to learning each word, fastText also
learns vector representations for each character n-gram. To apply this to our exam-
ple: fastText could infer the meaning of the unknown term Queens, simply because
it shares most of its characters with the known term Queen.

ELMo recognizes contextual meaning Both word2vec and fastText struggle with
polysemy. Given a text which contains both the royal Queen and the British rock
band Queen, word2vec and fastText could not distinguish between the two and
would infer both as the same vector. Peters et al. [Pet+18] recently addressed this
problem with their Embeddings from Language Models (ELMo). ELMo additionally
interprets the context of a term. Given the sentence "Queen went on stage with their
instruments," ELMo could infer that this Queen is the band and present a different
vector than for the royal Queen.

Another prominent and recent word representation model Bidirectional Encoder
Representations from Transformers (BERT), was presented by Devlin et al. [Dev+18].
It features similar functions to ELMo, but is more complex and computationally more
expensive.

However, text representation is not limited to word representation, e.g. Paragraph
Vector [LM14] learns to represent variable-length pieces of text, such as sentences,
paragraphs and documents. Other text representations, like SECTOR, don’t aim to
represent the text itself, but its topics.

2.4 Facet Segmentation and Classification with
SECTOR

Another form of text representation presents SECTOR [Arn+19]. Instead of repre-
senting terms like language models, SECTOR’s embeddings aim to capture the topics
of sentences over the course of a document. It further segments these topics at topic
shifts to create coherent sections. These sections could, for example, be queried in

8 Chapter 2 Basics and Related Work
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LSTM bw

topic
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embedding
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Fig. 2.1: Neural network architecture SECTOR. Image from Arnold et al. [Arn+19].

a information retrieval (IR) system like SMART-MD [Sch+18] to support medical
personnel during decision-making.

The SECTOR architecture consists of four stages as shown by Figure 2.1. Arnold
et al. [Arn+19] present two variations of SECTOR, which differ in their goal and
architecture during the third stage.

(i) Sentence encoding. To represent the variable-length sentences as fixed-length
vectors, Arnold et al. [Arn+19] offer two approaches: a weighted bag-of-words
scheme as baseline, or a distributional sentence representation based on pre-
trained word2vec models. For the weighted bag-of-words, the words of each
sentence are represented by their one-hot encoded vector multiplied with
their respective tf-idf (compare Chapter 2.1) score. The sentence represen-
tation follows the strategy of Arora et al. [Aro+17], which uses at its core a
probability-weighted sum of word embeddings.

(ii) Topic embedding. The second stage produces a “dense distributional repre-
sentation of latent topics for each sentence in the document” [Arn+19]. To
achieve this, the architecture consists of two long short-term memory (LSTM)
layers [HS97] with forget-gates [Ger+00].

2.4 Facet Segmentation and Classification with SECTOR 9



LSTM networks add a memory cell to each node, that allows them to retain
information over several time-steps [PG17, p. 150]. The addition of forget
gates allowed them to learn to reset their internal state values at appropriate
times. Before, the internal state values would grow indefinitely for continual
input streams and cause the network to break down [Ger+00]. LSTMs are
therefore excellent at capturing long-range dependencies. This means, that
SECTOR’s architecture accumulates topical meaning over the course of the
document, a sentence is not seen as an atomic unit. Additionally, the LSTMs
traverse the document opposite direction: one reads in forward direction, the
other in backward direction. This is based on the assumption, that a human
reader understands text not just based on the text before, but also the text
afterwards. Graves and Schmidhuber [GS05] even show, that both directions
are equally important and dub this configuration bidirectional LSTM (BiLSTM).

(iii) Topic classification. Arnold et al. [Arn+19] add a classification layer on top
of the BiLSTM architecture. For the SECTOR topics task, which presents a
multi-class single-label problem, this output layer uses softmax activation. For
the headings task, a multi-class multi-label problem, it uses sigmoid activation
and applies a ranking loss function. Multi-class single-label tasks aim to find a
single label out of several classes as label for the input (multinomial labeling
systems). Softmax activation represents this goal, since it returns a probability
distribution over mutually exclusive output classes. Sigmoids on the other
hand output an independent probability for each class. This matches the multi-
class multi-label task, as its goal is to select several matching labels instead of
just one [PG17, pp. 67-68].

(iv) Topic segmentation The last stage uses both the BiLSTM layers as well as the
classification layer to segment the document. Arnold et al. [Arn+19] propose
an edge detection approach that focuses on the difference of the left and right
topic context over time. They call this “geometric mean of the forward and
backward distance” the bidirectional embedding deviation (bemd).

Using these topics in an IR system allows for a more faceted answer when retrieving
answers. This surpasses traditional factual answer retrieval and is known as complex
answer retrieval (CAR). MacAvaney et al. [Mac+18] describe CAR as “process of
retrieving answers to questions that have multifaceted or nuanced answers.” Or
simply put, questions that cannot be answered by a simple ‘yes’ or ‘no’.
MacAvaney et al. [Mac+18] first characterized CAR facets. They discern two kinds of
facets: structural and topical. Structural facets can apply to many similar topics, they
represent the structure of a document. Topical facets on the other hand are specific
to the question’s topic. For example, given two headlines diagnosis and gastroscopy in
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a Wikipedia article regarding disease: as presumably all diseases contain a diagnosis
section, it presents a structural facet, while gastroscopy would be limited to articles
about stomach disease or the like, it therefore presents a topical facet.

2.5 Summary

In Chapter 2 we discussed basic techniques and terms relevant to this thesis. Af-
terwards we gave a brief introduction into neural networks, showing their current
impact on research, discussing their age and basic concept and explaining why they
seem to be a recent innovation to many. We further explained the concept of text
representation in semantic vector spaces, using three language models as example to
show how different approaches can modify text representation. We finally describe
SECTOR’s architecture and two variations and differentiate between structural and
topical facets.

2.5 Summary 11





3Facet Detection on Medical
Resources

On the following pages we describe the structure and appearance of the clinical
resources in our data. We further explain why we can’t use other available datasets
and what challenges can be expected when trying to process clinical resources in
Chapter 3.2.
Following that, Chapter 3.3 describes our approach to prepare and bootstrap training
data using our raw clinical data. In Chapter 3.4 we build on the basics explained in
the last chapter and expand on how we train our specialized word embeddings and
how we use the two variations of SECTOR to solve the task of detecting structural
and topical facets on medical resources.

3.1 Clinical Doctor’s Letters from Charité Berlin

The dataset for this task consists of 7,553 discharge letters courtesy of Charité Berlin’s
Medical Department, Division of Nephrology and Internal Intensive Care Medicine. They
all feature letter structure: a head of the letter, a short salutary address, the body
and a short, formal ending. See Table 3.1 for the most common structural headings
in the body. A large proportion of these headings are auto-generated by software,
but clinicians can alter and adjust them afterwards. This leads to a large variety of
different headlines with similar meaning and a vocabulary mismatch problem.

3.1.1 Vocabulary Mismatch Problem

Furnas et al. [Fur+87] first observed “that people use a surprisingly great variety
of words to refer to the same thing.” They dubbed this the vocabulary problem1.
Shekarpour et al. [She+17] name two key causes: inflectional form and lexical form.
Inflectional forms include variations “of a word for different grammatical categories
such as tense, aspect, person, number, etc.”, while lexical form “relates words based
on lexical categories” [She+17]. Both of these apply here, e.g. Diagnose (diag-
nosis) and Diagnosen (diagnoses) are inflectional forms, Lungenfunktionsprüfung
(lung function test) and Lungenfunktionsuntersuchung (lung function examination)

1Later publications refer to the same problem as vocabulary mismatch problem.
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structural section description

"Diagnose/n" a section regarding the patient’s diagnosis/di-
agnoses

"Anamnese" an anamnesis or medical history section

"Status bei Aufnahme" a report of the patient’s condition at arrival
(status at admission)

"Labor" a report of laboratory values, often a table or
list of values

"Diagnostische Maßnahmen",
"Bildgebende Verfahren"

any number of reports of diagnostic measures
or imaging methods

"Konsil" a report of a different medical department or
specialist (e.g. an ophthalmology consult)

"Therapie und Verlauf" a text describing therapy and course of the pa-
tients stay, treatment and sickness

"Medikation",
"Medikation bei Entlassung"

and a report of the patient’s medication or med-
ication administered at point of discharge, often
a table containing name, dose, and frequency
of administration of each drug

Tab. 3.1: Most common structural section headings in order of most common appearance.
The average letter contains 16.4 sections.
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Fig. 3.1: Cumulative distribution of 119,839 headlines (Note that the function is only
defined in steps of at least 5%.) and relative frequency of top 20 headings. We
observe a Zipfian distribution: the top 18 out of 119,839 headlines cover 60% of
all sections.

are lexical forms. Furthermore we observe abbreviations and erroneous writing:
Lungenfunktionsuntersuchung is commonly shortened to Lufu, while Lufo is a
typographical error. Kacprzyk and Fedrizzi [KF12] attributes the vocabulary problem
to each environments own specialized terminology, while Furnas et al. [Fur+87]
and Barrows Jr et al. [BJ+00] claim that these differences persist on an individual
level.

We therefore observe a Zipfian distribution (compare Figure 3.1), that is defined
by Zipf ’s law: if t1 is the most common term in the collection, t2 is the next most
common, and so on, then the collection frequency cfi of the ith most common term
is proportional to 1/i:

cfi ∝
1
i

(3.1)

This is a commonly used model of the distribution of terms in a collection [Man+08,
p. 82].

3.2 Challenges in Clinical Facet Detection

During both training and evaluation phase a greater variation of data proves helpful.
While more diversified training data helps the neural network in understanding
underlying core concepts, cross dataset validation is an important step in validating
any NLP method. In this chapter we elaborate several factors that pose a challenge
when working with medical resources in general and with German medical resources
in particular. We explain how general purpose natural language processing (NLP)
datasets do not transfer well to clinical NLP tasks, why clinical training data is sparse

3.2 Challenges in Clinical Facet Detection 15



doctor’s letter Wikipedia article

Brief Kopf Einteilung und Ursachen

Brief Anrede Risikogruppen

Diagnose/n Symptome

Anamnese Untersuchungen

Status bei Aufnahme Therapie

Labor Pflege

Diagnostische Maßnahmen,
Bildgebende Verfahren

Mögliche Komplikationen

Konsil Prognose

Therapie und Verlauf Vorbeugung

Medikation,
Medikation bei Entlassung

Literatur

Brief Schluss Weblinks
Tab. 3.2: Example outline for a doctor’s letter and a Wikipedia article [Wik19b]. While

some sections seem to have a counterpart (e.g. Symptome and Status bei
Aufnahme, Diagnostische Maßnahmen and Untersuchungen) others are unique
to their source (e.g. Risikogruppen and Vorbeugung, Labor and Medikation).

and how working with resources from a highly specialized field proves difficult to
people from different fields of research.

3.2.1 Semantic Mismatch with WikiSection

A great complimentary dataset to enrich the small number of doctors’ letters
at hand would be the German diseases part of WikiSection. The dataset proposed
by Arnold et al. [Arn+19] consists of articles from two domains of the English and
German Wikipedia: diseases and cities. It is designed for the task of facet extraction
and therefore annotated and segmented into structural and topical facets.
However, doctors’ letters and Wikipedia articles serve a very different purpose:
while Wikipedia articles are informative and describing, our discharge letters are
summaries or reports. This leads both to structural and vocabulary mismatches.

Structural Mismatch The structural mismatches become apparent, when trying
to match Wikipedia’s articles’ structural headings to those of doctors’ letters as in
Table 3.2. While Wikipedia articles lack any kind of letter structure the letters never
contain an abstract or, e.g. sections about history, causes or epidemiology. Wikipedia
articles also don’t report data of individual patients like laboratory values or blood

16 Chapter 3 Facet Detection on Medical Resources



pressure measurements. Some headings seem to be matching at first, however turn
out to be vocabulary mismatches.

Vocabulary Mismatch The vocabulary mismatches are mainly of lexical forms (see
Chapter 3.1.1). To serve an example, the word Diagnose (English: diagnosis) is used
in both resources as frequent headline: While in clinical records Diagnose refers to
the actual diagnoses of this patient (what was diagnosed), Wikipedia authors use it
more along the lines of diagnostics, i.e. how to diagnose.

Together these mismatches constitute a great dissimilarity between the two resources
and rule out the benefit of a combined training dataset for the task at hand.

3.2.2 Missing Training Data

As the combination of topic or facet segmentation and classification is a novel task
presented by Arnold et al. [Arn+19] training data is sparse. They point out several
datasets solving parts of the task, yet none of them are applicable for the joined task
of topic segmentation. According to Chapman et al. [Cha+11] and Starlinger et al.
[Sta+17], training data for medical NLP is even less accessible. The best matching
dataset would be the discharge letters used by Tepper et al. [Tep+12], which was
not released to the public and features English language.

No Publicly Available Datasets The lack of access to data and annotated datasets
for clinical NLP is one of the major issues in this field. Chapman et al. [Cha+11] not
only name patient privacy but also “worry about revealing unfavorable institutional
practices” as reasons. Starlinger et al. [Sta+17] exclaim that this problem is even
worse for German clinical NLP resources due to stricter European and German
privacy regulations. While this issue is being addressed by Starlinger et al. [Sta+17],
Schlünder [Sch15], and Chapman et al. [Cha+11], it is far from solved.

The doctors’ letters used in this work fall under a non-disclosure agreement and
cannot be made publicly accessible either.

3.2.3 Ambique Medical Language

Letters contain ambiguous medical terms Starlinger et al. [Sta+17] elaborate how
the “clinical jargon used in a medical note not only depends on the respective medical
specialty and document type, but also on the concrete individual institution.” In
the case of a decentralized organization such as the Charité, the particular clinic
also factors in. Furnas et al. [Fur+87] and Barrows Jr et al. [BJ+00] note how

3.2 Challenges in Clinical Facet Detection 17



abbreviations and terms differentiate even at each respective clinician’s level.
For an example in the dataset at hand, radiology department would call their findings
and results Kommentar (English: comment), while the central laboratory would use
the term Befund (diagnostic findings). However both these departments occasionally
also use the term Beurteilung (assessment). Medical professionals will explain
Befund and Beurteilung are fundamentally different, the first referring to the
status of the patient and the latter to the medical assessment of said status. However
Befund/Beurteilung is a common headline and proves how difficult distinction is
even for medical experts.

Sections contain ambiguous content For non-medical personnel even classifying
whole sections proves difficult. One example we encountered is the headline Gas-
troskopie (gastroscopy2). A typical Gastroskopie section in a doctor’s letter con-
sists of the clinician’s description of his or hers visual observations. Given this
knowledge and the choice between classification as image methods or as diagnostic
measures, this might incline lay readers to classify it as imaging method. However,
this procedure involves inserting an endoscope through the mouth of the patient to
visualize the upper part of the gastrointestinal tract3. It is therefore, while producing
images, undoubtedly an examination and classifies as diagnostic measure.
To present a second example, one of the most common headings in our data is Labor
(laboratory). Several other headings, e.g. Antibiogramm (antibiogram), describe
examinations that take place in a laboratory. However, since this is not the main
laboratory, it does not belong to the structural class Labor, but rather to diagnostic
measures. A distinction an individual unfamiliar with hospital operations could
never make.4

Topical vs Structural Facets Even identifying Labor as structural facet proves diffi-
cult. MacAvaney et al. [Mac+18] define structural headings as “general question
facets that could be asked about many similar topics.” As similarity is a range, this
definition is vague. Wikipedia articles about diseases seem similar to doctors’ letters,
yet differ in structure. On the other hand within the doctors’ letters one might
find a subset of patients with pulmonary diseases. In such a subset lung function
examination could prove to be a structural facet. The aforementioned distinction
between different laboratories might also be biased by the clinician, the medical
division or hospital. Thus disambiguation between topical and structural facets
is not just dependent on the dataset and the task, but also subjective to personal
judgment.

2English Wikipedia features a section regarding alternative names for gastroscopy, adding to the
point.

3Wikipedia. Esophagogastroduodenoscopy. en. Page Version ID: 877006453. Jan. 2019. URL: https:
//en.wikipedia.org/w/index.php?title=Esophagogastroduodenoscopy&oldid=877006453
(visited on Mar. 12, 2019).

4This example might be specific to the hospital at hand. If so, this supports the point even more.
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3.2.4 Highly Specialized Domain Knowledge

To reach an educated decision deciding between structural and topical facets trained
medical advisers are indispensable. German medical doctors regular course of study
spans more than 6 years, often followed by another 5-6 years training to become
a medical specialist.5 During this time they acquire knowledge and vocabulary
surpassing lay comprehension. As recent developments in medical and clinical
sectors give patients access to their medical records, this knowledge gap is addressed
by McCray [McC05] and Mossanen et al. [Mos+14]. Chen et al. [Che+18] tries
to solve this problem by linking medical terms to lay definitions via NLP. However,
until these efforts succeed highly specialized knowledge is necessary to understand
and work with medical resources.

3.3 Preparing and Bootstrapping Training Data

As shown in Chapters 3.1 and 3.2 we don’t have access to ready training data. Since
manual generation of training data is costly and not feasible for large corpora, boot-
strapping is common practice to generate labelled data from plain-text collections.
Agichtein and Gravano [AG00] and Gupta and Manning [GM14] propose self-
learning pattern detection algorithms to bootstrap entity extraction datasets. Our
task of detecting headlines and segmenting doctors’ letters proves considerably
easier, as most of the headlines are presented in a standardized form.
Table 3.3) presents a shortened example. We first use simple rules to detect salutary
address and formal ending of the letter. Afterwards we chunk the letter body into
sections to receive a sectionized dataset annotated with their respective headlines.
Additionally we strip all section headings, but keep newline characters.

Our further approach resembles Tepper et al. [Tep+12]’s procedure, but instead of
random sampling we employ a frequency based algorithm.

3.3.1 Clinical Resources Require Specialized Structural
Facets

Due to the structural mismatch with Wikisection, we can not rely on structural facets
described by Arnold et al. [Arn+19]. Therefore, we need to formulate and normalize
our own.

5Wissenschaftsrat. 6825-05.pdf. Tech. rep. Drs. 6825/05. 2005; Charité-Universitätsmedizin
Berlin. Modellstudiengang Humanmedizin. de. URL: https://www.charite.de/studium_lehre/
studiengaenge/modellstudiengang_humanmedizin/ (visited on Mar. 11, 2019).
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letter head Epikrise von <name>, geb. <date>

Patient and hospital addresses omitted.

E P I K R I S E
Patn. <name>, geb. <date>, wohnhaft <location>

salutary address Sehr geehrte Kollegin,
nachfolgend möchten wir über o. g. Patientin berichten, die
sich am <date> in unserer stationären Behandlung befand.

section Diagnosen:
Dislokation des CAPD-Katheters bei Peritonealdialyse
Terminale Niereninsuffizienz
Renale Anämie

section Anamnese vom <date>:
Der Patient wurde am <date> auf die Station übernom-
men...

More sections omitted.

formal ending Mit freundlichen, kollegialen Grüßen
Univ.-<name> <name> <name>
Klinikdirektor Oberarzt Stationsarzt

Tab. 3.3: Shortened example doctor’s letter. Underlined terms have been detected by
regular expressions to segment and annotate the letter.
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As first step of mapping original headlines to normalized structural facets we reduce
the amount of classes using a custom algorithm inspired by stemming algorithms.
Xu and Croft [XC98] propose a stemming algorithm using cooccurrence of word
variants. We simplify this approach, but keep the main assumption: the correct stem
a occurs in the same text windows. Our simplified approach sets the window size
to contain all of the headlines and replaces the em metric with a frequency based
scoring metric. Furthermore, we do not stem singular words but headlines. To reflect
this decision and differentiate it from conventional stemming we call headline-stems
archetypes.

More formally, for a headline h ∈ H the set of possible archetypes is defined as
follows:

Ah = { a ∈ H | fsm(a, h) } (3.2)

where H is the set of all headlines and fsm(a, h) equals a fuzzy substring matching
algorithm such that a is a fuzzy substring of h6. We further define the following
metric to score a headline a ∈ H based on its occurrences as archetype:

score(a) = |{h ∈ H | fsm(a, h) }| (3.3)

and define the archetype archh as

archh = arg max
a∈Ah

score(a) (3.4)

See Chapter 4.1 for more information.
While this algorithm is an approximation and susceptible to error (as shown in
Table 3.4) it provides an overview of the most common topics in the headlines. It
further reduces them to an amount manageable for manual classification. We choose
the 600 most frequent archetypes, which cover 94% of all headlines. We build our
ontology with these 600 archetypes and the help of a medical professional.

3.3.2 Validation with a Medical Professional

As medical resources employ highly specialized domain knowledge and nomencla-
ture, we enlist the help of a clinician. To build and validate our ontology, we meet
her twice over a three step process:

(i) Classify the headlines with a medical professional Given the task to cate-
gorize the archetype headlines she would group headlines to categories. We
do not instruct her regarding structural or topical facets. This guarantees that

6We allow a small Levenshtein distance to accommodate for typographical error.
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archetype CT

headlines CT- Low Dose-Technik

CT des Oberbauches und des Beckens

CT des Bauchraumes und Beckens nach KM-Gabe

CT des Bauchraumes und des Beckens

CT des Bauchraumes (nativ)

CT des Bauchraumes und Beckens

CT des Bauchraums

CT des Beckens

Rectalabstrich
Tab. 3.4: Example showing a variety of original headlines reduced to the archetype headline

CT (CT scan). Note how the typographical error Rectalabstrich (rectal smear) was
also reduced to CT, albeit having nothing in common with a CT scan.

she creates categories unaffected by any notions of structural and topical. She
therefore creates mixed categories. Examples can be seen in Table 3.5.

(ii) Merge topical facets to structural ones We decide whether a facet is topical
or structural according to our knowledge of the doctors’ letters and the insight
gained by the meeting. We identify structural patterns in the remaining topical
facets. When applicable, the German procedure classification of Deutsches
Institut für Medizinische Dokumentation und Information7 can provide structural
categorization.

(iii) Present our structural classification to a medical professional Given our
structural facets, we ask for any elements of a doctor’s letter that she thinks
lack representation and validate our merging step.

This process aims to allow the professional to create classes with as less bias as
possible. At our first meeting she is not lead by possible interpretations of structural
and topical, but instead produces valuable insight into more detailed classification.

We use both levels of detail to create our ontology. An overview of the process so far
can be seen in Figure 3.2.

7DIMDI - OPS Version 2019. URL: https://www.dimdi.de/static/de/klassifikationen/ops/
kode-suche/opshtml2019/ (visited on Mar. 16, 2019).
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class archetype headlines

Labor Labor, Schilddrüsenparameter, Schilddrüsenhormone, Virologie,
Immunologie, Serologie, Autoantikörper

Diagnose Diagnose, Diagnosen, Hauptdiagnose, Nebendiagnose, Weitere
Diagnosen

Beurteilung Kommentar, Beurteilung

CT CT, CT des Kopfes

Szintigraphie Szintigraphie, Skelettszintigraphie, Myokardszintigraphie, Schild-
drüsenszintigraphie

Tab. 3.5: Excerpt of 22 mixed classes defined by the medical professional. Later CT (CT
scan) and Szintigraphie (scintigraphy) will be merged into the structural topic
Bildgebende Diagnostik (imaging methods).

Fig. 3.2: Ontology creation process.
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3.4 Extracting Medical Facets with SECTOR

Following our hypotheses we train specialized word embeddings for the clinical
domain using the well established word2vec method [Mik+13] as well as the fastText
method [Boj+16]. We further use our ontology to model our facet extraction tasks
as problems suitable for SECTOR: multi-class single-label for structural facets and
multi-class multi-label for topical facets.

3.4.1 Training German Clinical fastText Embeddings

As shown by Sheikhshab et al. [She+18] and Lee et al. [Lee+19] biomedical
NLP tasks profit from domain-specific word or language representations. While
both used more sophisticated language modeling approaches (ELMo and BERT)
we opted for the computationally less expensive fastText [Boj+16] and word2vec
[Mik+13] because of the available resources at Charité Berlin. We further assume
that contextualized word embeddings provide little improvement when working with
specialized documents like medical resources. Subword information as captured
by fastText on the other hand has been proven by Bojanowski et al. [Boj+16] to
perform better for small datasets and complex, technical and infrequent words. Both
prominent characteristics in clinical resources, especially German ones.

Grave et al. [Gra+18] distribute a pre-trained German model trained on Common
Crawl8 and Wikipedia9. However, re-training or fine-tuning fastText embeddings is
not possible as of this writing. We therefore train our own models. Since Charité’s
doctors’ letters show little variance we use a joined dataset consisting of the letters
and the German diseases Wikipedia articles presented by Arnold et al. [Arn+19].
This approach, albeit utilizing a considerably smaller dataset than the general
purpose model (see Table 3.6), should give us highly specialized clinical embeddings
combined with a general understanding of common biomedical terms.

3.4.2 Modeling Structural Facets as Multi-Class Single-Label
Problem

Using the ontology created with the help of a medical professional we define 14
structural facets (compare Figure 3.3). These structural facets are distinct and in
most cases contradict each other, e.g. a letter head can not be a formal ending
or a diagnosis section at the same time. In other words, they are mutually exclusive

8Common Crawl. URL: http://commoncrawl.org/ (visited on Mar. 9, 2019).
9Wikipedia. URL: https://www.wikipedia.org/ (visited on Mar. 9, 2019).
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dataset # tokens # words

doctor’s letters 11,432,445 253,423

Wikipedia diseases
[Arn+19]

2,220,688 31,134

Wikipedia + Common Crawl
[Gra+18]

67,032,828,416 22,773,218

Tab. 3.6: Comparison of the size of the training corpora. # words displays the number of
words that appear at least five times in the dataset.

0 2 4 6 8 10 12 14 16

Beurteilung
Befund

Konsil

other

Verlauf und
Therapie

Medikation

Brief Schluss

Brief Anrede

Brief Kopf
Labor

Diagnostische
Maßnahmen

Status

Bildgebende
Diagnostik

Diagnose

2.1 2.1%

2.4 2.4%

2.4 2.4%

3.1 3.1%
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6.1 6.1%
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12.9 12.9%

0.113.3%

13.7 13.7%

1.41.9

1.2

3.4

4.1
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6.8

Fig. 3.3: The 14 structural facets and their relative text lengths. Note how during the
first meeting the professional defined 22 facets (plus a catch-all category other).
To gain pure structural facets we merged Sonographie (6.8%), Röntgen (4.1%),
CT (1.2%), MRT (0.6%), Szintigrpahie (0.5%) and Angiographie (0.1%) to
Bildgebende Diagnostik and EKG (5.3%), Untersuchung (3.4%), Probe (1.9%),
Anatomie (1.4%) and Histologie (0.3%) to Diagnostische Maßnahmen.
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and present a single-label problem [Man+08, p. 282].
The facets Diagnostische Maßnahmen (diagnostic measures) and Bildgebende Di-
agnostik (imaging methods) can be considered an exception, as they do not con-
tradict each other. One might argue that Bildgebende Diagnostik is a subtopic of
Diagnostische Maßnahmen. However, following the definition presented by MacA-
vaney et al. [Mac+18], structural facets are “headings that serve a structural purpose
for an article—general question facets that could be asked about many similar topics.”
Since Bildgebende Diagnostik sections occur in nearly all letters and thus can be
asked about all our doctors’ letters we decide it to be a structural facet.

We therefore formally define the task of extracting structural facets following Arnold
et al. [Arn+19]: we too define a document, a doctor’s letter, D = 〈S, T 〉 consisting
of N consecutive sentences S = [s1, ..., sN ] and empty segmentation T = ∅ as input.
We also assume a distribution of structural facets ek for each sentence sk that changes
over the course of the document.

The task is to split D into a sequence of distinct structural sections T = [T1, ..., TM ],
so that each predicted section Tj = 〈Sj , yj〉 contains a sequence of coherent sentences
Sj ⊆ S and a structure label yj that describes the prevalent structural facet in these
sentences. For our example structure in Table 3.3, the sequence of structure labels is
y1...M ≈ [Brief Kopf, Brief Anrede, Diagnose, Anamnese, ..., Brief Schluss].

In light of the downstream information retrieval task, when breaking all headlines
down to 14 classes a lot of information is lost, e.g. any hierarchical structuring. To
address this problem, we additionally model the original headlines as a multi-class
multi-label problem.

3.4.3 Modeling Topical Facets as Multi-Class Multi-Label
Problem

The original headlines contain essential detail to the content of their sections. We
also gained insight into a more instinctive classification during our first meeting with
the clinician. So using just the structural facets looses a lot of information and detail.
Bildgebende Diagnostik for example combines a variety of different imaging
methods like Röntgen-Thorax (chest radiograph), CT (CT scan) or MRT (magnetic
resonance imaging, or MRI). To solve this problem, Arnold et al. [Arn+19] present
SECTOR’s second variation, the SECTOR headings task. They propose using all words
in the original heading as multi-label bag.

However, original headings like Röntgen-Thorax do not reflect this hierarchy either.
Different abbreviations or typographical errors further hinder this approach, e.g.
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Rö-Thorax would not be matched to Röntgen-Thorax. Yet we can solve this problem
using the more detailed information we gained during our first meeting with the
medical professional and the finished ontology. By concatenating these three levels
of detail Rö-Thorax becomes Bildgebende Diagnostik | Röntgen | Rö-Thorax
and Röntgen-Thorax becomes Bildgebende Diagnostik | Röntgen | Röntgen-
Thorax.

Using these modified headings we can now apply the headings approach of Arnold
et al. [Arn+19]. We assign all words z in the heading h, such that zi ⊂ hj , as
multi-label bag over the original heading vocabulary Z. We adjust our structural
facet extraction task: Using the same doctor’s letter D = 〈S, T 〉 composed of N

consecutive sentences S = [s1, ..., sN ] and empty segmentation T = ∅ as input, we
assume a distribution of topical facets for each sentence sk that, again, changes over
the course of the document.

While the task to split D into a sequence of distinct structural sections T =
[T1, ..., TM ] stays the same, each topic Tj = 〈Sj , Zj〉 now consists of a sequence
of coherent sentences Sj ⊆ S and a ranked sequence Zj , which contains all elements
of Z. The ground truth labels for an example section Bildgebende Diagnostik
| Röntgen | Röntgen-Thorax would then be {bildgebende, diagnostik, röntgen,
röntgen-thorax}.

These modified headings do neither lose topical information nor suffer from a lack
of normalization due to typographical errors or an individual’s idiosyncratic terms
when using individual words as multi-label tags. Therefore, we can capture the
ambiguous topic facets present in each heading with this approach.

An overview of the process so far can be seen in Figure 3.4.

3.5 Summary

In this chapter we described the structure of our dataset of doctors’ letters and
showed that, although parts of the letters are computer generated, a vocabulary
mismatch problem occurs. We further elaborated in Chapter 3.2 common issues
when working with medical resources in general and in our case specifically: how
the only other publicly available dataset for this task, albeit medical, does not match
our dataset, why it is the only other accessible dataset, how medical terms are
ambiguous and that you need medical expertise to understand clinical resources. As
this induces a need for training data, we explained our approach to generate training
data using Charité’s doctors’ letters and our validation process with the help of a
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Fig. 3.4: SECTOR training process.

medical professional. In Chapter 3.4 we explained our methods for training word
embeddings and used the annotated dataset and the insight gained by meeting the
clinician to model our task into a multi-class single-label problem to segment and
classify the structure of a doctor’s letter as well as a multi-class multi-label approach
to extract topical nuances.
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4
Implementation

The preceding chapter formally defined our methodology. Basing on that, we now
implement our approach and present relevant parts of our code. In Chapter 4.1 we
elaborate our segmentation process and further explain our archetype algorithm
using code examples. To utilize the bootstrapped training corpus we need to adjust
the existing SECTOR training code to our needs. This is described in Chapter 4.2.
Finally, we explain the training parameters for each model in Chapter 4.2.

4.1 Archetype Algorithm

Following the approach defined in Chapter 3.3, we implemented our custom headline
level stemming algorithm, the archetype algorithm.

Headline reader As preprocessing step, we create a reader class as subclass of
TeXoo’s RawTextDatasetReader. Utilizing its basic structure, we override just the
readDocumentFromFile() method. After reading the plain document, it detects
start of header and footer and segments the region in between using regular expres-
sions. It further annotates the segments using given labels or the detected headline.
Additionally it allows to modify the detected headline.
Since sectionizing is based on regular expressions, we dub this reader the RegexReader.
See Table 4.1 for the regular expressions used for annotating the doctors’ letters.

Using the annotated letters we generate the list of all possible archetypes Ah per head-
ing h using the findArchetype() method (Listing 4.1). A simple occurrence count
in all lists produces our score(h). We assume the highest scoring possible archetype
to be the correct archetype archh. For a small example, refer to Table 4.2.
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Label detection

/(^(.*):\s *$\s *)((?:[\s \S ]*?(?=^.*:\s *$))|[\s \S ]*)/m

Header detection

/(Sehr geehrte[\s \S ]+?)(?=^.*:\s *$)/mi

/.*(?:Zeichen[\s \S ]+?)^(?:Patn?\..+geb.+$)\s +
([\s \S ]+?)(?=^.*:\s *$)/mi

Footer detection

/(Mit (?:freundlichen|kollegialen)[\s \S ]*)/i

/(^(?:Univ\.-)[\s \S ]*)/mi

Header Modification

/(?:\h *(?:vom|v\.|zum|am|bis|von)*\h *
(?:(?:[x\d ]{1,2}\.){1,2}(?:\d {2}){0,2}|heute)-?){1,2}/i

/,?(?:\h *\d {1,2}:\d {2}(?:\h *uhr(?:\h *(?:bis|-))?)?){1,2}/i

Tab. 4.1: Regular expressions used for segmenting the raw letters. Header detection aimed
for a common salutary address or an auto-generated line right before the header.
As footer the algorithm detected common endings of a letter. Header modification
removed time and date specification.

public s t a t i c S t r ing f indArchetype ( S t r i ng s t r1 , S t r i ng s t r 2 ) {
i f ( s t r 1 . equals ( s t r 2 )) return s t r 1 ;
i f ( s t r 1 . isEmpty () || s t r 2 . isEmpty ( ) ) return nul l ;

f i n a l S t r ing shor ter , longer ;
i f ( s t r 1 . length () < s t r 2 . length ( ) ) {

sho r t e r = s t r 1 ;
longer = s t r 2 ;

} else {
sho r t e r = s t r 2 ;
longer = s t r 1 ;

}

i f ( conta insWi thDi f f e rence ( longer , shor te r ,
( in t ) Math . min( sho r t e r . length () * 20.0 / 100.0 , 1)))

return sho r t e r ;
else

return nul l ;
}

Listing 4.1: The findArchetype() method. For longer words we allowed for a small
Levenshtein distance to accommodate typographical errors. Note that
containsWithDifference() equates to fsm(a, h) in Chapter 3.3.
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headline h possible archetypes Ah score(h)

Röntgen {Röntgen} 3

Röntgen Thorax {Röntgen, Röntgen Thorax} 2

Röntgen-Thorax bed side {Röntgen, Röntgen Thorax, Röntgen-
Thorax bed side}

1

Tab. 4.2: Example for the archetype algorithm. Since Röntgen features the highest score
and is a possible archetype for all three, each one simplifies to Röntgen despite
typographical errors and additional words.

4.2 SectorTrain

Since we utilize the TeXoo1 framework a working TrainSectorAnnotator class was
given. However, at the beginning of this project TeXoo’s TrainSectorAnnotator was
lacking command line options to adjust language models, bloom filters or switch
between each variation. We therefore modified command line options and adjusted
the class accordingly. These adjustments have been integrated into TeXoo in release
1.1.2.

4.2.1 K-Fold Evaluation

We further integrate k-fold evaluation as new feature. To ensure that no lingering
side effects between each training iteration persist, we terminate the Java Virtual
Machine after each training.
We therefore split the training data into k fragments with our target test set size and
one fragment containing the remainder. We then use a shell script to train SECTOR
using all fragments but one which we use as test set.

4.3 Training Parameters

Training parameters, or hyper-parameters, adjust several aspects of the training
as well as of the architecture of a neural model. They often make the difference
between mediocre and state-of-the-art results [Hut+14]. Due to our limitations (see
Chapter 1.3.2), we focus on optimizing just one of our models, fastText.

1Sebastian Arnold. TeXoo – A Zoo of Text Extractors. Contribute to sebastianarnold/TeXoo development
by creating an account on GitHub. original-date: 2018-07-19T08:42:32Z. Feb. 2019. URL: https:
//github.com/sebastianarnold/TeXoo (visited on Mar. 30, 2019).
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hyperparameter topics headings word2vec
LSTM layer size 256 256 n/a
embedding layer size 128 128 256
learning rate 0.01 0.001 0.025
min learning rate n/a n/a 0.001
dropout 0.5 0.0 n/a
batchsize 16 16 16
epochs 6 6 1
iterations n/a n/a 5
minimum word frequency n/a 3 3
window size n/a n/a 10
negative sample n/a n/a 10

Tab. 4.3: SECTOR and word2vec hyperparameter settings. A value of ‘n/a’ indicates that
the hyperparameter is not applicable.

SECTOR parameters For our SECTOR trainings, we choose TeXoo’s default settings
as of release 1.0.2. See Table 4.3 for details. We additionally use the dos Santos
ranking loss function presented by Arnold et al. [Arn+19] and identity activation.

Bag-of-words parameters We follow Arnold et al. [Arn+19] and apply a layer size
of 4096 and 5 independent hash functions.

Word2vec parameters We again follow the TeXoo defaults. See Table 4.3 for
details.

FastText parameters As newest and most promising language model, we focus
on optimizing fastText. We start with the default parameters presented by the
official fastText implementation2. Grave et al. [Gra+18] describe their settings when
learning word vectors for 157 languages. Additionally, we apply TeXoo’s default
word2vec settings. Finally, we combine both settings following Chiu et al. [Chi+16]
recommendations. Table 4.4 shows each approach’s settings.

Grave et al. [Gra+18] present a new CBOW model that uses position dependent
weights in order to better capture positional information. However, this model has
not been made public as of this writing. We therefore train both skipgram and CBOW
models.

2fastText. URL: https://fasttext.cc/index.html (visited on Apr. 1, 2019).
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hyperparameter default Grave
et al.

[Gra+18]

word2vec mix

model skip/CBOW pCBOW n/a skip/CBOW
embedding layer size 100 300 256 300
loss function ns ns* ns* ns/hs
min length of n-gram 3 5 3* 3
max length of n-gram 6 5 6* 6
learning rate 0.05 0.05* 0.025 0.05
learning update rate 100 100* 100* 100
subsampling 0.0001 0.0001* 0.0001* 0.0001
number of epochs 5 10 1 10
minimum word frequency 5 5* 3 3
window size 5 5* 10 10
negative sample 5 10 10 10

Tab. 4.4: FastText hyperparameter settings. A * indicates that the value was not described.
We assume default values. They also feature a new CBOW algorithm using
position dependent weights. To differentiate from traditional CBOW, we dub this
‘pCBOW’.

4.4 Summary

This chapter gave an overview of relevant parts of the code. Chapter 4.1 further
elaborated the archetype algorithm first described in Chapter 3.3 as well as the
segmentation process. As the TeXoo framework featured most of the necessary code,
only minor adjustments had to be made to train SECTOR. We elaborated these
adjustments as well as our solution for k-fold evaluation in Chapter 4.2. Finally, we
summarized and justified our hyperparameter settings for each neural model we
trained in Chapter 4.2.
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5Evaluation

On the following pages we first revisit our hypothesis first noted in Chapter 1.3.1.
We present further evidence to support our line of argument. In Chapter 5.2 and
Chapter 5.3 we describe and evaluate our experiments both quantitatively and
qualitatively before discussing our results in Chapter 5.4 in light of our hypotheses.

5.1 Hypotheses

In Chapter 1.3.1 we conjecture useful methods to extract facets from medical
resources. Following we will further elaborate on these methods and justify our
reasoning:

5.1.1 Specialized Text Embeddings Perform Better than
General Purposed Text Embeddings on Medical
Domain

Howard and Ruder [HR18] show that fine-tuning your language model improves
their quality. This applies also in the biomedical domain, as shown by Sheikhshab
et al. [She+18] and Lee et al. [Lee+19]. Thus we also expect specialized word
embeddings to perform better than their general purpose counterpart. Especially
clinical resources, which are not just beyond lay comprehension [McC05; Mos+14],
but also highly variable depending on the hospital, medical division and even
clinician [Fur+87; BJ+00; Sta+17], should benefit from custom word embeddings
that capture their unique semantic nuances.

5.1.2 SECTOR as Effective Means of Structural Facet
Extraction

Extracting structural facets on sentence level for whole documents requires a neural
network architecture capable of comprehending long-term dependencies. Also, when
grasping the structure of a document, humans instinctively incorporate both the text
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before and after the specific location. Graves and Schmidhuber [GS05] even show
that both directions are equally important.

Bidirectional LSTMs as used in SECTOR excel at both. LSTMs [HS97] with forget
gates [Ger+00] solved the issue of RNNs’ internal signals either “blowing up or
vanishing”, thus making them prime candidates for long-term dependency extraction.
Additionally, since SECTOR employs bidirectional LSTMs, both the text before and
after the current position is accounted for. Arnold et al. [Arn+19] further improve
segmentation by utilizing the bidirectional embedding deviation, which helps in
detecting topic shifts.

5.1.3 SECTOR as Effective Means of Topical Facet
Extraction

Since extracting topical and structural facets are fundamentally similar tasks, we
assume SECTOR is an effective means for topical facet extraction for the same
reasons. Moreover, since topical facets are ambiguous and do not present a clear
answer, modeling them as multi-label task seems reasonable and solves the problems
Tepper et al. [Tep+12] faced with their combined categories.

5.2 Quantitative Evaluation

To evaluate our hypotheses we conduct four experiments on both tasks described in
Chapter 3.4.

The structural facet extraction task aims to extract a small number of mutually
exclusive classes (11-14 structural facets). The topical facet extraction task performs
multi-label classification with a larger, ambiguous target vocabulary (1.6k topical
facets). We experiment with four word representation approaches. A baseline bag-of-
words scheme and two word embedding architectures, word2vec and fastText. Both
are trained on a specialized domain specific dataset as described in Chapter 3.4.1.
Additionally, we evaluate a general purpose fastText model.
We k-fold evaluate the best performing models with k = 5.

Evaluation datasets As described in Chapter 3.2, public clinical domain data is
sparse. Our only available dataset are therefore the Charité doctors’ letters (Chap-
ter 3.1). Following our methodology of Chapter 3.3, we normalize the headings
using our ontology, reducing all headlines to 14 structural facets including an other-
class. We further enrich the original headlines to add hierarchical structure and use

36 Chapter 5 Evaluation



these modified headlines as topical facets. As our ontology features two levels of
granularity, we dub the datasets containing both levels level two letters (L2L). We
further present the L2.1L dataset (level 2.1 letters), which incorporates changes
made due to qualitative evaluation, as described in Chapter 5.3.3.

Quality measures. Following Arnold et al. [Arn+19] we measure using Pk on
sentence level and micro-averaged MAP and F1 at segment-level. We further display
micro-averaged precision and recall at first and third position for a more detailed
insight. The probabilistic Pk error score measures segmentation by calculating the
probability of a false boundary in a window of size k. A lower Pk score equals
better segmentation. Just like Arnold et al. [Arn+19] we set k to half of the average
segment length. For classification, we match predicted sections with ground truth
sections using maximum boundary overlap. We further note the Mean Average
Precision (MAP ), “which evaluates the average fraction of true labels ranked above
a particular label” [Arn+19]. Following Manning et al. [Man+08, pp. 142-144] the
F1 score is the harmonic mean of precision and recall:

F1 = 2PR

P + R
(5.1)

with precision being defined as the fraction of retrieved sections that are relevant:

Precision = #(relevant items retrieved)
#(retrieved items) = P (relevant|retrieved) (5.2)

and recall being defined as the fraction of relevant sections that are retrieved:

Recall = #(relevant items retrieved)
#(relevant items) = P (retrieved|relevant) (5.3)

5.2.1 Experiments

We present the four best performing models on the L2L dataset (Table 5.1) and
further evaluate the three best performing approaches on L2.1L (Table 5.2).

Bag-of-words with bloom filters outperforms word embeddings. Except for the L2L-
topical task, the bag-of-words representation performed best for both tasks with all
measures. It improves F1 measure for the L2.1L-topical by 0.64% and the structural
task by an average of 0.42% compared to the second best performing model. It
further improves MAP by averaged 0.29% on both structural tasks and 0.21% on
the L2.1L-topical.
This matches the observation made by Arnold et al. [Arn+19]. They too noted
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best performing model P@1 P@3 R@1 R@3 F1 Pk MAP
L2L dataset: 14 structural facets as single-label task
SEC>T+bow* 95.21 32.68 95.21 98.04 95.08 2.40 96.74
SEC>T+W2V@WD+DL 94.72 32.60 94.72 97.79 94.83 2.56 96.55
SEC>T+fT@CC 94.08 32.51 94.08 97.53 94.35 3.10 96.26
SEC>T+fT@WD+DL 94.58 32.59 94.58 97.77 94.65 2.82 96.50
L2L dataset: 1,670 topical facets as multi-label task
SEC>H+bow 85.49 45.20 61.90 84.58 77.90 10.15 88.74
SEC>H+W2V@WD+DL* 95.16 52.20 65.22 91.19 82.25 8.91 94.45
SEC>T+fT@CC 93.42 50.52 64.66 89.71 81.48 9.16 93.10
SEC>H+fT@WD+DL 94.89 51.63 65.12 90.53 82.20 6.36 93.89

Tab. 5.1: Best performing models per task and text representation. Following Arnold et al.
[Arn+19], numbers are given as Pk on sentence level, micro-averaged F1 and
MAP at segment-level. We further note micro-averaged precision and recall. A
model marked with * has been k-fold evaluated.

best performing model P@1 P@3 R@1 R@3 F1 Pk MAP
L2.1L dataset: 12 structural facets as single-label task
SEC>T+bow 98.72 33.25 98.72 99.74 98.97 0.96 99.41
SEC>T+W2V@WD+DL 98.68 33.25 98.68 99.75 95.6 3.21 97.59
SEC>T+fT@WD+DL 97.79 33.15 97.79 99.44 98.39 1.69 99.02
L2.1L dataset: 1,687 topical facets as multi-label task
SEC>H+bow 99.13 52.90 69.33 93.92 87.07 5.8 97.36
SEC>H+W2V@WD+DL 97.68 52.23 68.68 93.32 86.43 7.64 97.15
SEC>H+fT@WD+DL 97.5 51.51 68.67 92.58 86.45 7.15 96.70

Tab. 5.2: Models trained after updating our ontology as result of qualitative evaluation.
Again, following Arnold et al. [Arn+19], numbers are given as Pk on sentence
level, micro-averaged F1 and MAP at segment-level. We further note micro-
averaged precision and recall.
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that bloom filters performed on par with word embeddings. We also observed
significantly longer training duration with a factor of 2.9.

General purpose model performed worst. The fastText model trained on Common
Crawl and Wikipedia was distributed by Grave et al. [Gra+18]. It features a newer
weighted fastText approach, which is not yet publicized. Grave et al. [Gra+18] ob-
served its most significant impact on the German dataset and improved performance
by 10%. Other languages were not impacted that much.
While it consistently performed worst, it’s only an average of 1.1% F1 and 0.92%
MAP behind the best performing model.

Specialized domain word embeddings are equal. Both word2vec (W2V) and fast-
Text (fT) trained on the joined dataset of German Wikipedia diseases articles
[Arn+19] and our doctors’ letters (WD+DL) performed equally well for classi-
fication. While word2vec scored slightly better F1 difference averages at 0.07% for
L2L-structural and -topical, as well as L2.1L-topical. For the L2.1L-structural however,
W2V performed 2.79% F1 worse for segment-level and doubled the probability of
a wrong segment boundary Pk but improved sentence-level F1 by 0.9%. This is in
contrast to the topical best, where W2V improved segment-level MAP by average
0.51%.

5.2.2 Conclusion

Following these observations, we draw three conclusions:

1. As the general purpose embedding scored consistently worst, a specialized
word embedding seems to perform better on clinical resources.

2. Since both word2vec’s and fastText’s performance is nearly identical, with
fastText performing slightly worse, fastText’s subword information does not
seem to benefit word representation in doctors’ letters.

3. Since bag-of-words performed best and fastText did not benefit from its sub-
word information, we assume that the words themselves are more important
than their semantic meaning.
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Class #Examples TP FP Acc Prec Rec F1
Diagnose 2082 2032 84 97.6 96.03 97.6 96.81
Bildgebende

Diagnostik
753 717 230 95.22 75.71 95.22 84.35

Status 981 575 61 58.61 90.41 58.61 71.12
Diagnostische

Maßnahmen
1732 1424 194 82.22 88.01 82.22 85.01

Labor 23131 23041 1439 99.61 94.12 99.61 96.79
Brief Kopf 3393 3393 0 100 100 100 100
Brief Anrede 491 476 3 96.95 99.37 96.95 98.14
Brief Schluss 1588 1588 4 100 99.75 100 99.87
Medikation 6431 6425 3 99.91 99.95 99.91 99.93
Verlauf und

Therapie
888 699 17 78.72 97.63 78.72 87.16

other 799 328 23 41.05 93.45 41.05 57.04
Konsil 82 70 31 85.37 69.31 85.37 76.5
Beurteilung 458 62 8 13.54 88.57 13.54 23.48
Befund 276 137 21 49.64 86.71 49.64 63.13
[macro-avg] 43085 40967 2118 95.08 91.36 78.46 81.38

Tab. 5.3: Evaluation for the best performing model (bag-of-words) on L2L-structural per
class. Bold numbers indicate the two worst results per column. As other represents
a catch-all class, we ignore its results.

5.3 Qualitative Evaluation

Quantitative evaluation is a good way of comparing models. However, to diagnose
errors of our methodology and bootstrapping method, as well as to reveal weaknesses
of our approach a more in-depth analysis is necessary. To this end we single out and
categorize potential flaws before analyzing them.

Considering the results in Table 5.3 and Table 5.4, four issues are apparent: two
classes, Beurteilung and Befund, show poor recall, while Konsil and Bildgebende
Diagnostik show worse, albeit still good, precision compared to the rest. We therefore
focus on Beurteilung and Befund. As recall is the fraction of relevant sections that
are retrieved out of all possible relevant sections [Man+08, pp. 142-144], we
concentrate our analysis on false negatives. We observe 63% false negatives for
Befund and 86% false negatives for Beurteilung. We choose 50 random samples
from both focus sets and 20 samples from the third worst performing class, Status.
We further pick 50 random samples from Bildgebende Diagnostik’s false positives to
address its precision deficit.
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5.3.1 Common Error Types

We formulate the following error classes based on our observations:

Hierarchical error Sections that are identified as atomic units, but actually consti-
tute a subcategory of the preceding section.
Example: A section Beurteilung (assessment) that does not represent an assessment
on document level, but on section level.

Bootstrapping error Sections that are wrongfully labeled due to errors during
bootstrapping process.
Examples: Missing line breaks lead the bootstrapping algorithm to fail to recognize
the starting or ending point of a new section.
Befundbericht Virologie (virology report) being identified as Befund (report)
instead of Virologie (virology), which belongs to the class Labor (laboratory).

Ambiguity error Sections whose contents seem to belong to a specific class, but
belong to another.
Example: Gastroskopie (gastroscopy) sections contain a description of the clini-
cian’s visual observation, which make it seem like an imaging method, but are an
examination and therefore Diagnostische Maßnahmen (diagnostic measures).

5.3.2 Error Analysis

Hierarchical error While our ontology contains supercategories to hierarchically
order and cluster different headlines, it fails to express hierarchical structures within
sections of the doctors’ letters.
For example, we observe the original headline Kommentar (commentary) to be a
subcategory for Bildgebende Diagnostik. We initially identified it as Beurteilung
(assessment), since its content is equivalent to an assessment. It may prove to be a
structural facet among imaging method sections, but should be considered a topical
subsection on letter level.
Hierarchical errors make up 70.5% of our samples. Nearly all Bildgebende Diagnostik
false positives are of this kind (97.2%), but none of the Status samples.

Bootstrapping error As Bootstrapping uses rules and assumptions to generate
approximated labeled data, it inevitably produces errors. It occasionally fails to
recognize starting or ending point of a section or fails to realize the focus of a
headline when several trigger words are present.
As example for the first case we observe missing line breaks before or after a
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headline. An example for the latter presents Befundbericht Virologie (virology
report). Virology actually belongs to the Labor class (laboratory), but was labeled as
Befund (report).
We observe 21.9% bootstrapping errors in our samples. 70% of all Status errors
belong to this group as well as 28.8% of Beurteilung. We observe only 14.2% for
Befund and none for Bildgebende Diagnostik.

Ambiguity error Chapter 3.2 describes ambiguity as one of the main challenges
when processing clinical or medical text. Due to this certain sections are nearly
indistinguishable from one another, but describe fundamentally different things.
An example offers Gastroskopie. While it actually presents an examination and
is therefore categorized as diagnostic measure, its section content consists of the
clinicians visual observations during the procedure and is therefore hardly distin-
guishable from an imaging method.
Only 7.6% of all examined errors are due to ambiguity. Most of which are false
negatives of Status (70%).

5.3.3 Conclusion

Following our error analysis, the main source of error is not the SECTOR model. As
the ambiguity error class constitute for only a small fraction of all sampled errors,
we recognize two leading flaws:

1. Structural hierarchy. Together with the medical professional we created a
purely topical ontology based on the vocabulary in the headlines, but failed to
account for structural hierarchy that may be present within sections.

2. Flawed bootstrapping. Bootstrapping algorithms present an approximation,
and thus will always be flawed. They are no replacement for manual annotated
training data.

As solution for the first flaw, we present dataset L2.1L. We removed the structural
facets Beurteilung and Befund. We thus reduced the 14 structural facets to 12
and modified the topical facets of relevant sections to reflect the subordination to
preceding sections.
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5.4 Findings and Discussion

Quantitative evaluation presents us with insight regarding the effect different lan-
guage models exert on the model. Qualitative evaluation grants us more detailed
understanding of our methodology and potential flaws. On basis of both evaluations
we reexamine our hypotheses formulated in Chapter 1.3.1:

Specialized Text Embeddings Perform Better than General Purposed Text Embed-
dings on Medical Domain Following the results on the L2L dataset, we can confirm
this hypothesis. The general purpose word embeddings trained on the whole German
Wikipedia and Common Crawl, albeit having a 5,000 times larger training corpus
(Chapter 3.6) and an improved fastText model, performed consistently worse than
both specialized word2vec and fastText embeddings. We can therefore confirm the
conclusion presented by Sheikhshab et al. [She+18] and Lee et al. [Lee+19] for
fastText as well.

SECTOR as Effective Means of Structural Facet Extraction With an F1 score of
98.97% and Pk of 0.96% SECTOR performed exceptionally well for both segmenta-
tion and classification. Additionally, since our qualitative evaluation revealed several
issues with the bootstrapped data, the remaining error might be due to incorrectly
labeled data, not SECTOR. We therefore assume a near perfect result for this dataset
and can confirm this hypothesis. However, as Starlinger et al. [Sta+17] noted,
“highly accurate results” within singular institutions have been reported repeatedly
and cross-institutional validation is necessary to allow further judgment.

SECTOR as Effective Means of Topical Facet Extraction For topical facet extraction,
we observe lower values with 87.07% F1 and 5.8% Pk. However, with 1,687 topical
instead of 12 structural facets, the task is considerably harder. Thus, while we
confirm this thesis, we again note the need for validation on a broader corpus.

We further noticed during evaluation:

Bag-of-words encoding with bloom filter performs better than word embeddings
Arnold et al. [Arn+19] observed bloom filter encoding to perform worse by 0.7% F1

for German datasets. We noted an increase of 0.6% F1 for both structural and topical
tasks. We assume that the semantic meaning of each word is less important than the
word itself. This might be due to the doctors’ letters being semi-auto-generated or to
clinicians being used to write the same words repetitively. Alternatively, the German
Wikipedia diseases corpus was not fit for this task and either a bigger, biomedical
Wikipedia corpus is necessary, or no additional dataset at all.
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5.5 Summary

In this chapter we evaluated our hypotheses, bootstrapping and methodology. In
Chapter 5.1 we formalized and justified our three hypotheses: that specialized word
embeddings perform better than general purpose ones and that SECTOR constitutes
effective means of facet retrieval, both structural and topical. During Chapter 5.2
we measured SECTOR’s performance when given different word embeddings quan-
titatively. We noticed that bag-of-words performed consistently better, word2vec
and fastText performed equally well and the general purpose fastText performed
worst. Based on these observations we concluded, that the words themselves are
more important than their semantic meaning for facet extraction. In Chapter 5.3,
we pinpointed potential weaknesses and examined examples for each. We identified
two main sources of error: our bootstrapping algorithm and that we failed to take
structural hierarchy among headlines into account. We present a solution for the
second error in form of a new dataset: L2.1L.
Finally we reevaluated our hypotheses in light of our observations and were able
to confirm them all in Chapter 5.4 with some reservations due to the small and
invariant training corpus.
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6Summary and Future Work

During this final chapter we recap the goal, findings and results of this thesis as well
as the methodology we employed to reach it. We further discuss future potential
steps to improve on this work.

6.1 Summary

Our goal for this thesis was evaluating SECTOR as effective means of facet extraction
on medical resources. This is to be used as upstream task for a complex question
answer system in clinical context. Additionally we hypothesized that a specialized
clinical language model performs better than general purpose ones.
Following we summarize the challenges we encountered, our most important steps
and findings as well as our conclusion.

Challenges working with medical resources We identified several challenges when
working with medical resources. Looking for training data, we first evaluated the
WikiSection corpus presented by Arnold et al. [Arn+19]. We observed structural
and vocabulary mismatches due to the differing nature of Wikipedia articles and our
clinical resources. Furthermore, we observed a lack of publicly available datasets for
clinical resources in general and German ones in particular due privacy regulations.
Additionally the ambiguity of medical language and highly specialized domain
knowledge necessary hindered our work and makes professional medical assistance
indispensable.

Bootstrapping training data To tackle these challenges we employed the help of a
medical doctor and bootstrapped our own training corpus based on 7,553 discharge
letters courtesy of Charité Berlin’s Medical Department, Division of Nephrology and
Internal Intensive Care Medicine. In the process we identified relevant structural
classes and developed an ontology to capture hierarchical structures in the original
headlines.

Modeling the tasks We split the facet extraction task into subtasks of extracting
either structural or topical facets. As structural facets are mutually exclusive, we
model the classification problem as multi-class single-label. To reflect hierarchical
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structure and ambiguity in topical headings we extended the original headings using
the different levels of our ontology and defined the task as multi-class multi-label.
These problems aligned with SECTOR’s two variations, the multi-class single-label
topics and the multi-class multi-label headings task.

Training the models We leveraged the TeXoo project [Arn19] as implementation of
SECTOR. Using varying language models we conducted several experiments. After a
first evaluation, we identified flaws in our ontology and retrained most promising
approaches on the updated training corpus. We then k-fold validated our best
results.

Quantitative and qualitative evaluation To evaluate our results, we applied several
quantitative evaluation metrics and presented the results for precision@1, preci-
sion@3, recall@1, recall@3, F1, Pk and MAP . For our best performing models we
observed near perfect results of 98.97% F1 and 99.41% MAP for the structural
facet extraction task and 87.07% F1 and 97.35% MAP for the topical one.
We further identified the worst performing structural classes for our best performing
model. Inspecting random samples of falsely classified sentences we identified two
main flaws in our approach: the lack of structural hierarchy in our ontology and
errors in our bootstrapping algorithm due to not uniform input data.

Conclusion In conclusion we were able to confirm all of our hypotheses.
Although the bag-of-words baseline performed best, our specialized language models
achieved better results than the general purpose one. Even though the general
purpose model featured more training data and a potentially better algorithm.
Although lacking comparable results or cross-institutional validation, our SECTOR
model performed exceptionally well and is without a doubt an effective means of
extracting facets on medical resources.

6.2 Future Work

During this project we noticed several approaches that could further improve this
task:

Neural approach for creating the ontology Future applications would profit from
removing the need for a medical professional. However, identifying structural and
topical hierarchies within the source data proves difficult for untrained individuals.
Automation of this step could improve both speed and costs for the performing team.
A well performing method might potentially remove the need of seeing sensitive
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data altogether. Possible approaches could include identifying and clustering the
contents of each section or headline based on paragraph or term based language
models such as paragraph vectors [LM14] or word2vec [Mik+13].

Combining topics and headings task As we have seen during qualitative evalua-
tion, topical and structural facets are interwoven and disambiguation dependent
on the context. Topical facets sometimes represent structural facets of structural
facets. Thus defining the task as multi-task learning problem might leverage synergy
effects.

Using contextual language models Due to hardware and time constraints for this
project we had to restrict ourselves to fast and efficient word representations. How-
ever, Peters et al. [Pet+18] showed that contextual language models like ELMo can
improve a variety of NLP tasks.

Specialized sentence and token segmentation Further experimentation could in-
clude adjusting the sentence and token segmentation step. Faessler et al. [Fae+14]
distribute a variety of NLP models trained on “a well-balanced mixture of medical
document types such as discharge summaries, pathology reports but also medical
textbook excerpts, all written in German language.” Given the highly ambique
medical language, a specialized tokenization or sentence segmentation might prove
useful.

Cross-institutional datasets SECTOR achieved near perfect results for structural
facet extraction. However, Starlinger et al. [Sta+17] noted that several approaches
achieved good scores on datasets within singular institutions. Tepper et al. [Tep+12]
reported results within 80-90% F1, too, for a nearly identical task on English
discharge letters. Therefore testing on datasets from other medical divisions or
institutions is necessary to truly evaluate SECTOR’s effectiveness.
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