
Classification Algorithms for Web Text
Filtering

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur

(Dipl.-Ing.)

eingereicht am
Fachgebiet Datenbanksysteme und Informationsmanagement

(DIMA)
Fakultät Elektrotechnik und Informatik
der Technischen Universität Berlin

von
Herrn Christoph Boden (232871)
geboren am 04.07.1983 in Berlin

Gutachter:

1. Prof. Dr. Volker Markl
2. Dr. Alexander Löser

ii

abstract

The main subject of this thesis is to examine how classification algorithms can be adapted
for the task of predicting semantic relations in Web text. Relation extraction systems cap-
ture information from natural language text on Web pages and extract semantic relations
between entities. However, extraction is quite costly and time consuming. Worse, many
Web pages may not contain a textual representation of a relation that the extractor can
capture. As a result many irrelevant pages are processed by relation extractors. Even
when focused crawling techniques or automatic keyword geneartion approaches in conjuc-
tion with Web search engines are applied, many of the retreived Web still do not contain
any textual representation of a relation. To enable systems to be able to extract relations
within an acceptable time frame, it is thus highly desierable to be able to accurately filter
irrelevant web pages.

We propose a relation predictor to filter out irrelevant pages and substantially speed up the
overall information extraction process. As a classifier we trained a support vector machine
(SVM) that evaluates pages on a sentence level, where each sentence is transformed into
a token representation of shallow text features. We evaluate our relation predictor on
18 different relation extractors. Extractors vary in their number of attributes and their
extraction domain. Our evaluation corpus contains more than six million sentences from
more than a hundred thousand pages. We report a prediction time of tens of milliseconds
per page and observe high recall across domains. Our experimental study shows that the
relation predictor effectively forwards only relevant pages to the relation extractor.

Zusammenfassung

Selbständigkeitserklärung

Teile der Ergebnise dieser Arbeit werden im Rahmen des "First International Workshop
on Managing Data Throughout its Lifecycle“ (DaLi) auf der IEEE International Confe-
rence on Data Engineering (ICDE) 2011 unter dem Titel "Classification Algorithms for
Relation Prediction"[1] veröffentlicht.

Die selbststaendige und eigenhädige Anfertigung versichere ich an Eides statt.

Berlin, den 24. Januar 2011

Christoph Boden

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 3
1.3 Methodology . 4
1.4 Thesis Outline . 4

2 Related Work 5
2.1 Relation Extraction . 5
2.2 Text Filtering . 7
2.3 Pattern Learning . 7
2.4 Optimizing Relation Extraction Systems 8
2.5 Extraction Prioritization . 10
2.6 Summary . 10

3 Relation Prediction 12
3.1 Problem Overview . 12

3.1.1 Relation prediction as a classification problem 13
3.2 Linguistic Feature Analysis . 14

3.2.1 Feature extraction . 21
3.2.2 Implementation details . 21

3.3 Summary . 22

4 Classification Algorithm: Support Vector Machine 23
4.1 Why SVMs work: Statistical Learning Theory 24

4.1.1 Structural risk minimization . 24
4.1.2 Linear hyperplane classifier . 25
4.1.3 Maximum margin classifiers generalize well 26

4.2 Prediction with a trained SVM . 27
4.3 Implementation details . 28
4.4 Summary . 28

5 Training and Evaluation 30
5.1 Data Set: A Corpus of tagged Web pages 30
5.2 Experimental Setup . 31
5.3 Evaluation metrics . 34

5.3.1 Receiver Operating Characteristic 35
5.3.2 Recall-curves . 36
5.3.3 Execution time . 37

iv

5.4 Experimental Results . 37
5.4.1 Prediction in Tens of Milliseconds 45
5.4.2 Configurations for different application scenarios 45

5.5 Discussion . 47
5.5.1 Relevance for Application Scenarios 48
5.5.2 Classification Function for Ranking Pages 51

5.6 Summary . 55

6 Conclusion 57
6.1 Summary . 57
6.2 Future Work . 58

Bibliography 60

vi

1 Introduction

1.1 Motivation

Availability of relevant information on markets, industries and technologies is essential
for decision makers in businesses as well as in government agencies. Today’s CEOs are
aware that the effective management and exploitation of information through IT is a key
factor to business success, and essential for achieving a competitive advantage. While
Management Information Systems can easily aggregate internal (accounting) data into
reports suitable for decision makers, researching and compiling reports on external topics
such as markets, technologies and the competitive landscape is still a tedious and thus
expensive process. It requires skilled analysts and consultants even though most of the
information necessary is probably publicly available in the form of text documents. Un-
structured text represents the largest and fastest growing source of information available
to businesses, governments and authorities. It would thus be highly desirable to leverage
these sources and automatically extract and aggregate the information contained in them
into a report-like representation.

The process of extracting semantic content from text is called information extraction (also
text analytics. It turns the unstructured information ’buried’ in texts into structured data,
e.g., tuples to populate a relational database. More concretely the subtask of Relation
Extraction comprises the identification of instances of a semantic relationship in natural
language text and the extraction of relevant attribute values of this relationship. Distilling
information like names, dates, or amounts from naturally occurring text is a nontrivial
task. Extracting and identifying semantic relations turned out to be a computationally
quite expensive task. Thus, retrieving promising documents that likely contain textual
information that can be extracted, becomes a crucial part of any information extraction
system. One approach to accomplish this is to query commercial Web search engines with
generated keywords [2, 3] and only process the top ranked documents returned.

1

1 Introduction

Figure 1.1: Distribution of Facts across Web Pages retrieved with a commercial Web
search engine.

It turns out however that even with such a focused retrieval strategy only a tiny fraction of
the documents actually contain factual information a relation extractor can identify. In a
test corpus of more than 170.000 retrieved with the keyword generation strategy outlined
in [3] only 2% of the pages actually contained a relation of the type in question, thus
the vast majority of the retrieved documents are actually irrelevant and should not be
processed by the extractor at all. It would thus be highly desirable to be able to quickly
filter out these irrelevant pages to speed up the extraction process and only forward
relevant pages to the relation extractor.

Figure 1.1 shows the cumulative distribution of relations across documents that have
been retrieved with generated keyword queries ordered by their search engine rank. The
keyword generation strategy did produce an Ordering where high ranked documents are
more likely to contain a fact. However it also becomes clear that facts are found on all
ranks. A heuristic that only processes the top k ranked documents as proposed by [3]
does omit a significant amount of facts and only lead to limited coverage. Being able to
effectively filter out irrelevant pages would thus also lead to a higher recall and broader
coverage of facts.

2

1 Introduction

1.2 Problem Definition

The main subject of this thesis is to design and to implement a binary classifier as a
filtering mechanism for Websites (URLs) that can accurately predict, whether a given
information extractor (e.g.,OpenCalais.org) will be able to extract a given relationship-
type with a given entity from that URL. The Websites are delivered by a web search
engine, that has been queried with keywords which have been generated particularly for
this relationship-type and entity. With a robust classifier one could filter the incoming
URLs from the search engine and only forward promising pages.

Figure 1.2: The relation extraction pipeline with the classifier

A complete relation extraction pipeline with such a classifier component is depicted in
Figure 1.2. The classifier is handed the retrieved Web Pages and only forwards promising
pages to the extractor. This allows scaling the system to evaluating not just top k, but all
retrieved URLs, probably including pages containing more infrequent relations and rare
information, which could ultimately contribute to a broader scope of facts extracted and
thus to a more complete set of information delivered to the user.

More concretely, the following main challenges need to be solved:

• Robust prediction
Thousands of possible relation extractors may process samples of the Web. These
extractors may vary in their number of attributes, their attribute types or their
domain specific vocabulary. The relation predictor should abstract from extractor
specific words and syntactic structures and should be general applicable to these
and further extractors.

• Prediction in milliseconds
The relation predictor should leave the job of identifying exact attribute values,
their exact border and their relation to the actual relation extractor. Ideally, the re-
lation predictor should avoid computationally intensive natural language processing
techniques, such as part-of-speech POS) tagging or deep dependency tree parsing.

3

1 Introduction

As a result the relation predictor should only require tens of milliseconds for the
decision to forward a relevant page to a relation extractor.

• Balancing recall with costs
Since the main goal of an information extraction system is to extract as much of the
structured information hidden in unstructured data as possible, any filter should
not discard documents that contain factual information. Ensuring a high recall is
crucial. However, very high recall comes at the price of potentially processing many
irrelevant pages. Therefore the relation predictor should be able to balance between
these extremes.

1.3 Methodology

To solve these challenges we started by examining the general structure which is used to
express relationships in the English languag. Based on these observation we developed a
way to generalize Web text into an abstract token representation. By transforming text
into such a representation, we abstract away extractor specific words and syntactic struc-
tures. We then choose, implemented and evaluated classification algorithms based on this
representation. Due to the generic abstraction, the classifiers are generally applicable to
multiple extraction services, while they avoid computationally intensive natural language
processing techniques, such as part-of-speech tagging or deep dependency tree parsing.

1.4 Thesis Outline

This thesis is organized as follows: The following chapter revisits state-of-the-art relation
extraction systems and discusses related work (Chapter 2). Chapter 3 defines the task of
relation prediction and presents the linguistic analysis and feature extraction approach.
Chapter 4 introduces linear support vector machines as an classification algorithm and
provides a brief overview of their learning theoretic foundation. Next, Chapter 5 intro-
duces the training and evaluatin dataset, presents the evaluation metrics and discusses the
results of conducted experiments. Finally, Chapter 6 summarizes the main contributions
discusses future work.

4

2 Related Work

2.1 Relation Extraction

Relation Extraction is a language dependent and complex process. As mentioned in the
introduction it can be defined as the identification of instances of a semantic relationship
in natural language text and the extraction of relevant attribute values of this relationship.
Various steps are executed, i.e., for extracting attribute values, determining their semantic
type, their relation and the type of the detected relation.

Web Text Filter As a general pre-processing step, this component removes navigational
elements, templates, and advertisements (so called boilerplate) from the documents [4].
It only keeps sentences and paragraphs of a page. Web text filtering is a prerequisite for
relation extraction. Unfortunately, Web text filtering cannot determine if the remaining
Web text contains a relation.

Detecting Attribute Values The goal of this step is the detection of text segments that
represent potential attribute values. It typically comprises part-of-speech tagging and
named entity recognition (NER). Named entity recognition is the process of identifying
spans of text that constitute proper names and other special lexical structures such as
temporal and numeric expressions and classifying them according to their type. Both
procedures are computationally expensive. (For a general Overview of NER see [5]).

Intra document co-reference resolution. These techniques spot different representa-
tions of the same attribute value within or across sentences and detect missing attribute
values. However, this analysis comes at the price of iterating multiple times over the
global syntactic structure of the entire document [6, 7].

5

2 Related Work

Sequence of items. Coordinating conjunctions connect any two items or more items
in a series. These items can be any grammatical unit (i.e., noun phrases) except main
clauses. The connected items may represent a list of attribute values or a compound
object. For instance, the words Berlin, London, and New York represent a sequence of
locations while the words Berlin, Germany represent a compound object. Recognizing a
sequence of items requires a costly part-of-speech tagging and a domain specific statistical
analysis [8].

Extracting Relations between Attribute Values The identification of attribute values
in a sentence is a prerequisite for detecting relations between them or for determining the
semantic type of a relation. Determining the semantic type of a relation is accomplished
either by applying a comprehensive pattern base of regular expression patterns or sequence
labelers that have been trained on labeled training data. Open information extraction
approaches such as [9] do not determine the semantic type for a phrase but leave this step
open to the application or the human reader.

Generic relation extraction based on structural locality. The ’distance’ (or structural
locality) of two attribute values indicates a relation in a sentence. Open Information Ex-
traction (OIE) approaches recognize short relations in English language sentence [9, 10].
A relation is detected if two noun phrases are separated by up to five tokens and if these
tokens follow a common lexico-syntactic pattern for the English language. For recog-
nizing these patterns a part-of-speech tagger is required. Open Information Extraction
approaches fail for longer sentences, such as sentences that incorporate relative or sub-
ordinate clauses or negations [10, 11]. Detecting generic relations in complex structures
requires a time intensive dependency tree path analysis.

Disambiguating the semantic type of relation. Generic relation detection is an impor-
tant prerequisite for disambiguating the semantic type of a relation. Declarative languages
assign a semantic type based on the linking verb and syntactic structures [12]. The au-
thors of [13] utilize semantic roles (such as time, location or manner) that emphasize a
specific relationship type. However, recognizing semantic roles leads to more than two
orders of magnitude longer processing times compared to a shallow part-of-speech analysis
[11].

6

2 Related Work

2.2 Text Filtering

Most closely related to the task of predicting a relation in Web text is the usage of in-
formation extraction systems to perform text-filtering, a subtask that has been studied
in the Massage Understanding Conferences (MUC) [14]. In this task, a participating sys-
tem classifies documents as either being relevant or not for a given extraction scenario.
Text filtering components identify documents that contain phrases that humans utilize
to express a specific event or relation. For instance, one task in MUC-4 [15] is to distin-
guish between terrorist events and guerilla warfare events. Text filtering components at
MUC-4 pre-label sentences with named entities or part-of speech information (or expect
pre-labeled documents). Next, (usually handcrafted) keywords, rule-based patterns or a
classifier build on word n-grams are used to filter out documents that do not belong to a
specific relationship type. The classification based approaches relied on a set of manually
labeled training documents and all of these approaches where fine-tuned towards a specific
information extraction service and relationship-type.

2.3 Pattern Learning

Riloff [16] pioneered a learning procedure in which documents are marked as relevant to
the relation extraction task. The learning procedure receives a set of part-of-speech tagged
pages (noun phrase, verbs, and prepositions) and outputs a set of textual patterns that
can be used for discovering additional relations. A plethora of different pattern learning
systems enhanced this approach (see [17] for an overview). For instance, in the PROTEUS
System [18], authors used a set of linguistic seed patterns to bootstrap a pattern base by
automatically learning good-quality patterns from a large, general, un-annotated corpus
of documents. Most recently, systems for Open Information Extraction (OIE) [9, 19]
extract short (up to five tokens) and generic relations between noun phrases in English
language Web text. These generic relations are extracted with few syntactic patterns on
part-of-speech labeled text. Later, the same authors [11] proposed preliminary ideas to
capture distant relations with the help of Semantic Role Labeling (SRL), which requires
deep dependency parsing.

The approach presented in this thesis is fundamentally different from previous text fil-
tering and pattern generation approaches. First it does not expect tagged sentences at
prediction time. For instance, it does not require tags generated through part-of-speech

7

2 Related Work

tagging, noun phrase chunking, named entity recognition, co-reference resolution or deep
parsing. As a result, relations in a page can be predicted in a few milliseconds, instead of
seconds (with part-of-speech tagging) or tens of seconds (with deep parsing) [11].

Moreover, instead of fine-tuning the feature set towards a specific relationship-type, such
as in MUC-4, our encoding schema is tailored to the general problem of extracting rela-
tions. As a result, our schema is generally applicable to a wide range of relation extrac-
tors.

The design of our relation predictor does not require expert knowledge for fine-tuning
or handcrafting filter rules. Rather, we assume a relation extraction service as a black
box. Moreover, and contrary to existing pattern generation approaches, we do not require
sending feedback to the relation extractor. Therefore our relation predictor is applicable
for a broad range of relation extraction scenarios on the Web. Unfortunately, MUC-4
studies could not verify the usefulness of text filters for improving the performance of a
relation extraction system. To our best knowledge, we are the first study that shows the
general applicability and usefulness of predicting relations for a wide range of different
relation extraction systems. Our results demonstrate a drastic reduction of processed
pages while remaining a high recall.

2.4 Optimizing Relation Extraction Systems

Optimizing a relation extraction pipeline has been pioneered by authors of [20]. They
propose cost models for extraction operations for an offline Web crawl scenario and for
an ad-hoc Web search scenario. For instance, they propose a full scan operation that
forwards each page in the corpus to a relation extractor. The index scan operator assumes
an existing index of crawled pages, such as the index of a Web search engine. The index
is queried for pages that likely contain instances of a particular relationship type. Each
query returns a list of top-k pages that are forwarded to an extractor. As a result the
relation extractor only receives pages that likely contain a textual representation of a
relation.

The filtered full scan operator and the indexed filtered scan operator utilize a relation
prediction component. Authors of [20] utilize fine tuned rules for filtering pages. Unfor-
tunately, the study discusses only two relation extractors, such as the disease outbreak
and headquarters extractor. For instance, for the disease outbreak extractor they report

8

2 Related Work

a maximum recall of only 60%. Our evaluation is significantly more comprehensive. We
compare a full scan operation with a filtered full scan operation based on a classifier for
18 different relation extractors. For all relation extractors we report a high recall and
comparably low execution costs.

Querying Text Databases for efficient Information Extraction

The authors of QXtract [2] approach the issue from an Information Retrieval perspective
and propose an automatic query-based technique to select documents that are promising
for the extraction service. Starting with a set of user generated example tuples of the
relationship type to be extracted, the system samples a set of seed documents which
are forwarded to the extraction service to identify which documents are useful for the
extraction task. QXtract then uses these documents to automatically generate standard
search engine queries to retrieve only the relevant documents for a relation extraction
task. The authors propose three approaches to generate keyword queries: as an automatic
query expansion problem with the OKAPI term weighting scheme and techniques that
exploit the output of two machine learning classifiers, namely decision tree based RIPPER,
and Support Vector Machines (SVMs). They evaluated a combination of these three
techniques approach on the two relation extractors DiseaseOutbreak (Location, Disease,
Country, Date) and Headquarter (organization, location) and achieved a recall of about
20% while processing 10% of the documents in the test corpus.

In [3] the authors report an analysis of effective keyword query generation strategies
based on a version of the popular discriminative category matching (DCM) scheme used
in document classification [21]. This approach extracts keyword-phrases based on general
syntactic patterns and ranks them by clarity and significance.

An orthogonal optimization strategy is caching extracted relations for frequently requested
pages, such as Semantic Proxy [22]. The authors of System T [23] optimize the evalua-
tion order of extraction rules. These optimizations are implemented within the relation
extractor. Contrary, in this thesis the relation extractor is assumed to be a black box.
Therefore these optimizations are orthogonal and may enhance the throughput of the
relation extraction system further in addition to any effect of a classifier for relation
prediction.

9

2 Related Work

2.5 Extraction Prioritization

The authors of [24] approach the problem of having an intractable number of Web pages
to process by prioritizing them. They order the documents by the expected contribution
to the extraction results and process the most promising documents first.

The authors introduce a metric called Consensus Graph (CG) value, that takes into
account the search demand for the information extracted form a given page. It is higher if
the entities and relationships extracted satisfy more user queries. The Consensus Graph
value is essentially a generalized coverage measure, as it considers the importance of
individual pieces of information based on how often they are requested by the users rather
than just incorporating the absolute number of extracted entities and relationships.

To rank and thus prioritize pages they estimate the utility of each page which incorpo-
rates the probability that extraction from the page will be successful and the potential
contribution of the extracted facts to the consensus graph. To estimate the expected con-
tribution of a page, the set of entities on that page is approximated by performing highly
lightweight extraction on the page. This lightweight extraction searches for known entities
in either the metadata and easily accessible easily accessible portions of the page content
(e.g., header and footer). The estimated contribution is then computed as the delta of the
current CG and the CG with the approximative set of entities on the page. Experiments
show that this CG value estimation outperforms a random sample strategy.

2.6 Summary

Relation extraction is a computationally expensive task that contains various steps such
as extracting attribute values, determining their semantic type, their relation and the
type of the detected relation. So far no algorithm has been proposed that can rapidly
and accurately predict whether a given relation can be extracted from a given document
robustly across various relationship-types. The participants of the Message Understanding
Conferences (MUC) 3 and 4 presented various approaches for the task of text filtering.
However these were fine-tuned towards a specific relationship-type and require NER and
POS tagged sentences. Keyword generation strategies [3, 2, 20] have been proposed to
optimize the extraction process and retrieve only relevant pages that likely contain a
relation. However even with those approaches, only a fraction of the retrieved documents

10

2 Related Work

actually contain a desired fact.

11

3 Relation Prediction

3.1 Problem Overview

The task of relation prediction is to accurately predict whether a given relation extractor
(e.g., OpenCalais.org) will be able to extract a given relationship-type (e.g., Compa-
nyProduct - the fact that a company sells a certain product) with a given entity (e.g.,
VMWare) as an attribute value. The Web pages are delivered by a Web search en-
gine that has been queried with keywords, which have been generated particularly for
this relationship-type. The relation predictor itself however, should be oblivious to the
relationship-type and entity to be able to robustly predict across domains.

Note that the terminology in information extraction slightly differs from that of relational
database models. To clarify the terminology, the major terms are explained in Table 3.1.

Name Description
Entity Type Major category of named entities

Examples: Company, Person, Location
Entity Instance of named entities

Examples: Apple, Barack Obama, Santa Barbara
Relation A semantic relation between two or more entities

Example: based_in(Apple, Cupertino)
Relationship Type A general type of a semantic relation between two or more entity types

Example: CompanyProduct, PersonCareer, CompanyLocation

Table 3.1: Terminology of Relation Extraction

There are two major approaches to tackling the problem of relation prediction. As with
the task of relation extraction itself one could use explicitly specified regular expression
patterns to match text segments that are likely to represent a relation. While this fil-
tering approach typically leads to high precision, it is highly susceptible to overfitting
towards individual relationship-types and thus leads to low coverage. The other approach

12

3 Relation Prediction

is to view the task as a classification problem and use corpus-based machine learning
techniques, which require an annotated corpus of training documents. We opted for the
second alternative and generated a corpus of training documents. (Details presented in
chapter 4)

3.1.1 Relation prediction as a classification problem

The problem of predicting a discrete random variable Y from another random variable
X is called classification (also: pattern recognition, supervised learning, discrimination).
In our case the label Y represents whether a document contains a certain fact or not and
each document is represented by a set of feature attributes in the form of a feature vector
X. Our annotated corpus thus consists of training examples (xi, yi) ∈ RN × {±1} which
have been generated from the joint distribution P (X, Y). The objective of a classification
algorithm is to learn a classification function f : RN → {±1} that can accurately predict
the labels Y on previously unseen data (also assumed to be generated from P (X, Y)).
By learning a classification function f one actually aims to approximate the conditional
probability P (Y |X). By applying Bayes rule, the conditional probability can be rewritten
as:

P (Y |X) = P (X|Y)P (Y)
P (X,Y) ∝ P (X|Y)P (Y)

There are two major approaches to tackling this classification problem. Generative clas-
sifiers directly estimate parameters for P (Y) and P (X|Y). Discriminative classifiers on
the other hand either try to estimate the parameters of P (Y |X) directly or to learn an
optimal and robust decision function that might not have a probabilistic interpretation
at all, but is guaranteed to generalize well on unseen data.

The other central questions to address next to the issue of how to learn the classification
function f , is how to extract features from an individual document to generate the feature
vector X. The rest of this chapter introduces the feature extraction approach used in this
thesis.

13

3 Relation Prediction

3.2 Linguistic Feature Analysis

The most straight-forward approach would be to tokenize the entire text of a document
and to encode occurrences of individual tokens as features - an approach generally known
as an n-gram model. This means that each document from a document collection D =
{d1,...,dm} is treated as a bag of words in which the order of words wi is irrelevant and
only the mere occurrence of a single token (unigram) wi ∈ dj or the frequency with
which it occurs is used as a feature value. However such an approach would be fine-tuned
towards individual relationship-types and not generalize well as each relationship-type
has its own set of discriminative words. To be able to robustly predict relations across
domains one has to abstract away from actual words and generalize sentences. To find
a proper encoding, the structure of the way relations are expressed in natural language
text has to be analyzed.

General Model of Relationships in the English Language? To examine the question
whether there exists a general model of relationships in the English language, Etzioni et
al. [25] explored a small test set of 500 sentences which had been randomly sampled from
the Information Extraction training corpus developed by Bunescu and Mooney [26]. They
used part-of-speech tagging to generalize the sentences and discovered that most binary
relationships can be characterized by a compact set of relation-independent patterns.
They identified eight major patterns that are listed in figure 3.2 to which 95% of the
randomly selected sentences could be allocated. This technique is also applied by Loeser
et. al [3] to extract discriminative keyword-phrases for individual relationship-types.

This is an interesting observation that very well could be exploited to predict the presence
of a relation in Web text. However this type of analysis depends on part-of-speech tagging
which is a somewhat expensive operation when trying to achieve high accuracy. To avoid
the cost of POS-Tagging we decided to transform each sentence into a token representation
that captures the information as good as possible and takes the presence of a list of
extracted keywords, that express a specific relation and the knowledge of the entity in
question, into account. We furthermore choose to evaluate each Web page on a sentence
level rather than treating the whole page as a bag of words to honour the fact that most
semantic relations are expressed within a single sentence.

Example of the Token Representation:

14

3 Relation Prediction

Relative Frequency in % Category Simplified Lexico Syntactic Pattern
37.8 Verb E1 Verb E2

X established Y
22.8 Noun + Preposition E1 NP1 Preposition E2

X settlement with Y
16.0 Verb + Preposition E1 Verb Preposition E2

X moved to Y
9.4 Infinitive E1 to Verb E2

X plans to acquire Y
5.2 Modifier E1 Verb E2 Noun

X is Y winner
1.8 Coordinaten E1 (and|,|-|:) E2 NP

X-Y deal
1.0 Coordinatev E1 (and|,) E2 Verb

X, Y merge
0.8 Appositive E1 NP (:|,)? E2

X hometown: Y

Table 3.2: Taxonomy of binary relationships

Entity: Oracle
Relation: Acquisition

"Oracle, building on a run of more than 65 acquisitions during the past
five years, is looking to purchase semiconductor companies and makers of
industry- specific software, Chief Executive Officer Larry Ellison said."

is transformed into

[<START>, <entity>, <comma>, <lower>, <preposition>, <article>,
<lower>, <preposition>, <determiner>, <preposition>, <number>, <lower>,
<preposition>, <article>, <preposition>, <lower>, <lower>, <comma>,
<lower>, <lower>, <keyword>, <lower>, <lower>, <conjunction>, <lower>,
<preposition>, <lower>, <lower>, <comma>, <upper>, <upper>, <upper>,
<upper>, <upper>, <lower>, <END>]

15

3 Relation Prediction

Figure 3.1: A list of the lexical, syntactic and semantic tags used for generalizing sentences

Features based on shallow text and hash lists

We relax some strict requirements of a relation extractor, such as extracting exact at-
tribute value borders, disambiguating exact semantics for attribute or relationship types
and co-referencing potential attribute values within and across sentences. As a result, we
significantly reduce the feature set to 19 tags only. For extracting these features we utilize
shallow text features and hash lists. Figure 3.2 gives an overview our set of feature tags.
In the reminder of this section we illustrate our principles for extracting lexical, syntactic
and semantic features of attribute values and relations. An overview of these features is
also given in Figure 3.1.

General attribute values as shallow text features

Authors of Web text may ’invent’ new nouns to express an attribute value. Therefore the
number of potential attribute values may become too large for a hash list. We encode

16

3 Relation Prediction

any lowercased tokens, such as verbs and nouns, as <lower>, tokens starting with an
uppercase character, such as proper nouns or acronyms, as <upper> and tokens starting
with a digit as <number>.

Special case: Closed classes as hash lists

Lower cased nouns may start with determiners, common nouns or pronouns. For these
closed classes authors of Web text rarely invent new words. Closed classes help to dis-
tinguish lower cased nouns from other lowercased tokens. We encode English language
prepositions, coordinating conjunctions, articles and pronouns as hash list. Since we
deemed them to be of particular significance, we divided the pronouns into object (it,
which, that, . . .), person (I, you, he . . .) and other pronouns.

Special case: Punctuation

Sequence of noun phrases, proper nouns or digits are a rich source of attribute values.
We encode the comma as <comma>, colon <colon> and the semicolon as <semicolon>.
This notion is based on the observation that colon frequently indicates a list of facts that
can be extracted whilst the semi-colon typically indicates a sentence fragment that cannot
be processed by a relation extractor

Example: The following examples showcase our encoding rules for typical phrases that
may express an attribute value:

• Complex noun:
the wooden tool → <article>, <lower>, <lower>

• Proper noun:
SAP AG → <upper>, <upper>

• Acronym:
IBM → <upper>

• Complex proper noun:
Sony VX 5a → <upper>, <upper>, <number>

17

3 Relation Prediction

• List of proper nouns:
Oracle Inc, SAP AG and IBM → <upper>, <upper>, <comma>, <upper>,
<upper>, <conjunction>, <upper>

• Date example:
25 September 1969 → <number>, <upper>, <number>

Verb phrases as hash list

Verb phrases and prepositional verb phrases frequently indicate a relation between two
entities in English language Web text [9]. For instance, prepositional verbs resemble
phrasal verbs in that both verb forms consist of a verb followed by a preposition. Relation
extractors utilize verb dictionaries to determine the semantic type of a relation. We
reuse these dictionaries and generalize single and multiword verb phrases in sentences as
<keyword>. Thereby, we assume that a relation classifier can access these verb phrase
dictionaries. For instance, dictionaries can be obtained from rules of declarative relation
extractors [12].

Sometimes we cannot access these dictionaries directly, for instance if the relation extrac-
tor is based on a machine learning approach or if we utilize a remote relation extraction
service. For obtaining a representative hash list of verbal phrases, we bootstrap the rela-
tion extractor with a small sample of pages. Next we apply the method of [3] and observe
prepositional verb phrases in returned pages. The method is efficient and requires only a
few hundred pages. Moreover, the method is effective: It omits ambiguous phrases that
appear with multiple relation extractors, and only returns most significant phrases that
frequently correlate with a particular relation extractor.

Special case: Compound objects as shallow text features

Typically these phrases express a relation between an entity and an attribute of the entity.
We encode phrases that represent a compound subject or object (see [9]) with shallow
text features.

18

3 Relation Prediction

Special case: Appositive and possessive relations as shallow text features

We add a tag <_s> for encoding relations that are expressed with a possessive apostro-
phe. Furthermore we use the already introduced colon tag for encoding relations that are
expressed as appositive phrase.

Example: The following phrases showcase our encoding rules for typical relationship
types. We underline the plain text and the corresponding features that express the relation:

• Relation with verb phrase:
Relation Extractor: ACQUISITION (Acquirer, Acquired)

SAP AG recently acquired performance management vendor Cartesis.
→ <upper>, <upper>, <lower>, <keyword>, <lower>, <lower>, <lower>,
<upper>

• Relation with prepositional verb phrase:
Relation Extractor: BORN_ON_DATE(Person, Date)

Catherine Zeta-Jones was born on 25 September 1969.
→ <upper>, <upper>, <dash>, <upper>, <lower>, <lower>,
<preposition>, <number>, <upper>, <number>

• Compound subject/object with noun phrase:
Relation Extractor: PERSON_POSITION(Person, Position)

Chancellor Angela Merkel announced → <upper>, <upper>, <upper>,
<lower>

• Compound subject/object with prepositional noun phrase:
Relation Extractor: PERSON_POSITION(Person, Position)

We made an interview with Jean-Luc, Lead Engineer of Godesys AG.

19

3 Relation Prediction

→ <personPronoun>, <lower>, <article>, <lower>, <preposition>,
<upper>, <dash>, <upper>, <comma>, <upper>, <upper>, <preposition>,
<upper>, <upper>

• Relation with possessive apostrophe:
Relation Extractor: PERSON_POSITION(Person, Position)

said Berlin’s politically ambitious mayor, Klaus Wowereit on a press
conference yesterday.
→ <lower>, <upper>, <_s>, <lower>, <lower>, <lower>, <comma>,
<upper>, <upper>, <preposition>, <article>, <lower>, <lower>,
<lower>

• Compound subject/object with coordinating conjunction and possessive
pronoun: Relation Extractor: TEAM_MATE (Person, Person)

Schuhmacher and his team mate Barrichello screamed
→ <upper>, <conjunction>, <pronoun>, <lower>, <lower>, <upper>,
<lower>

• Appositive relation with colon:
Relation Extractor: PLAYED_IN(Actor, Movie)

Catherine Zeta-Jones Filmography: High Fidelity
→ <upper>, <upper>, <dash>, <upper>, <upper>, <colon>, <upper>,
<upper>

Token class hierarchy

Sometimes a token can be mapped to multiple encodings. Part-of-speech taggers dis-
ambiguate different part-of speech classes within a single sentence. However, this high
precision approach comes at the price of a large feature set and longer execution times.
The focus of our scenario is different. We can relax the requirement of a precise interpre-

20

3 Relation Prediction

tation for each sentence that would require a part-of-speech tagger. Instead, we introduce
a hierarchy among different feature extractors.

We consider shallow features as less discriminative than syntactic features and syntac-
tic features as less discriminative than semantic features. If a token or a set of to-
kens matches for multiple feature class, we select the feature class that is most dis-
criminative. For instance, the token ’acquired by’ can be encoded as <lower><lower>,
<lower><preposition> or <keyword>. We select the encoding <keyword> since it be-
longs to the most discriminative feature class.

3.2.1 Feature extraction

Most semantic relations are expressed within a single sentence. To honour that fact, we
evaluate each Web page on a sentence level rather than treating the whole page as a
bag of words. First, we forward training pages to a relation extractor, which labels each
sentence as either containing a specific relation or not. Next, we transform each sentence
into a token representation of linguistic features as described above.

To capture and encode the structure inherent in this token representation n-grams of
words NG(w1, . . . , wn; sentencej) are extracted from these transformed sentences. There
are several possible n-gram representations: occurrence(binary), frequency(e.g., tf × idf)
and probabilistic (language models). For example, the occurrence of n-grams of these
tokens could be encoded as binary features x to produce l labeled data points of type
(Xi;Yi); (1 ≤ i ≤ l), where Xi is the feature vector in the n dimensional feature space,
and Yi in {−1,+1} denotes the class label.

3.2.2 Implementation details

To retrieve Web pages we query the web Service YahooBoss [27] to retrieve lists of ranked
URLs. The Web pages of these URLs are then downloaded using a simple wget().

Once Web Pages have been retrieved, they are sent through a Web Text Filter. This
component removes navigational elements, templates, and advertisements (so called boil-
erplate). It only keeps sentences and paragraphs of a page [4]. We used Boilerplate’s
ArticleSentencesExtractor to extract the actual Web text from the documents and

21

3 Relation Prediction

then applied the lingPipe[28] SentenceModel to segment the text into individual sen-
tences. Each sentence is then generalized into its token representation by the Transform(Sentence,
RelationshipType, EntityID). It is comprised of closed word-lists based word-replacement
and regular expression pattern matching.

3.3 Summary

The task of relation prediction to accurately predict whether a given relation extractor
will be able to extract a relation essentially a classification problem. In this problem
the label Y has to be predicted from a set of features X with a classification function
f : RN → {±1} that can accurately predict the labels Y on previously unseen data. In
this chapter I addressed how to extract features from an individual document to generate
the feature vector X.

Etzioni et al. [9] observed that most binary relationships in the English language are
expressed using only a rather small set of patterns. Inspired by this finding a method to
generalize individual words to a set of shallow text, syntactic and semantic tags has been
introduced. Each sentence of a document is transformed into a token representation of
linguistic features. From this token representation, feature encodings can be extracted.
The most promising approach to capture the structure is to encode the occurrence of
n-grams of tokens as binary features x to produce l labeled data points of type (Xi;Yi).

22

4 Classification Algorithm: Support
Vector Machine

The problem of detecting a relation in a Web page is essentially a binary text classification
problem. I decided to use linear Support Vector Machines (SVMs), which have already
been shown to produce superior accuracy on related tasks such as text categorization [29].
SVMs are maximum margin classifiers based on the structural risk minimization principle
[30]. SVMs can be trained efficiently as binary classifiers and generalize well on unseen
data.

Soft-Margin Linear SVMs Linear support vector machines find a hyperplane that sep-
arates the classes of training examples with maximum margin. This can be formulated
as a convex optimization problem. We used the L2-loss soft margin SVM, which solves
the following quadratic program on the training data:

min
w,ξi

1
2 ‖w‖

2 + C
∑
i

ξ2
i

s.t.yi (w · xi + b) ≥ 1− ξi∀xi

ξi ≥ 0

In this equation, C denotes the cost of misclassification and is to be determined through
cross validation. The soft-margin SVM allows for some misclassifications of training
samples through the slack variable ξi.

Most solvers, including LibSVM, solve the dual problem of this problem. To get the
dual formulation one has to introduce langrange multipliers αi ≥ 0 for the constraint and
minimize the Lagrangian. The dual for the soft-margin svm is given by:

23

4 Classification Algorithm: Support Vector Machine

max
w,b

1
2
∑
i,j

αiαjyiyj(xi · xj)−
∑
i

αi

s.t.C ≥ αi ≥ 0, ∀xi∑
i

αiyi = 0

4.1 Why SVMs work: Statistical Learning Theory

4.1.1 Structural risk minimization

As mentioned in the previous chapter, the classification problem is predicting a discrete
random variable Y from another random variable X, where we assume that the data is
generated from an underlying distribution P (X, Y). Classifiers aim to learn a classification
function f : RN → {±1} that minimizes the expected loss (or risk) according to some loss
function:

R [f] =
∫ 1

2 |f(X)− Y | dP (X,Y)

Unfortunately this quantity cannot be evaluated since the distribution P (X, Y) is gener-
ally unknown. Instead the function f is inferred from the training data und the true risk
is thus approximated by the empirical risk (or training error):

Remp [f] = 1
N

N∑
i=1
|f(xi)− yi|

which leads to the so-called empirical risk minimization induction principle which goes
to say that f is to be chosen such that it minimizes Remp.

Vapnik [30] showed that the inferred function f approximates the true risk R such that
with probability 1− η it is bounded by:

R [f] ≤ Remp [f] +

√√√√d
(
log 2N

d
+ 1

)
− log

(
η
4

)
N

24

4 Classification Algorithm: Support Vector Machine

Figure 4.1: The structural risk minimization principle (SRM) illustrated. [31]

where d is the so-called Vapnik-Chervonenkis (VC) dimension measuring the complexity
(or capacity) of a function class. This leads to the already mentioned structured risk
minimization principle which states that one has to minimize both the complexity of the
function class fα and the empirical risk. This principle is illustrated by Figure 4.1. The
function class is decomposed into a nested sequence of subsets of increasing complexity.
The SRM chooses a function fnα such that the bound on the test error is minimized. This
is achieved by choosing f such that it comes from an element of the structure that has a
low VC-dimension (denoted by h in the figure) and a low training error at the same time.

4.1.2 Linear hyperplane classifier

Figure 4.2 illustrates a linear hyperplane classifier with the classification function f(x) =
sgn((w · x) + b). The optimal hyperplane separating the data points is shown as a dotted
line. A hyperplane is said to be in canonical form if it has been scaled such that minx i ∈
X |(w · xi) + b| = 1 holds. The margin (the distance between two of the so-called support
vectors that are lying on the margin) is then given by (w

‖w‖ · (x1 − x2)) = 2
‖w‖ where x1

and x2 are support vectors of both classes. Finding the maximum margin hyperplane that
separates the data can thus be characterized by the following optimization problem:

25

4 Classification Algorithm: Support Vector Machine

Figure 4.2: A linear hyperplane classifier. The optimal separating hyperplane is shown as
a dotted line. [32]

max
w

w2

‖w‖

s.t.(w · x+ b) ≥ 1yi∀xi ∈ class1

(w · x+ b) ≤ −1yi∀xi ∈ class2

4.1.3 Maximum margin classifiers generalize well

Vapnik [?] showed that the VC-dimension d for a canonical hyperplane (w,b) in the form
of y = sgn (w · x+ b) scaled such that minx i ∈ X |(w · xi) + b| = 1 satisfies the following
equation:

d ≤ min
{
(R2 ‖w‖2) + 1, n+ 1

}

where R is the radius of the smallest ball containing the data (training and test data) and
n is the dimensionality of the data. When this result is plugged back into the equation
for the srm-bound:

26

4 Classification Algorithm: Support Vector Machine

R [f] ≤ Remp [f] +

√√√√d
(
log 2N

d
+ 1

)
− log

(
η
4

)
N

it becomes apparent, that minimizing ‖w‖ actually minimizes the generalization error.
Maximizing the margin (maxw w2

‖w‖) is equivalent to minimizing the norm of the weight
vector ‖w‖2. The objective function of the optimization problem can thus be expressed
as min1

2 ‖w‖
2 which gives the canonical SVM-Problem introduced above. It is thus guar-

anteed to minimize the generalization error. If the probability distribution of the data
P (X,Y) is unknown, discriminative maximummargin classifiers such as the support vector
machine are thus the best approach to estimate a classification algorithm that general-
izes well on unseen data. The generalization error is typically estimated by evaluating a
trained SVM on unseen test data.

4.2 Prediction with a trained SVM

At prediction time pages are first segmented into sentences. Each sentence is then trans-
formed into its a token representation of shallow text, syntactic and semantic features as
described above. Next, the occurrence of n-grams of these tokens is encoded as binary
features x to produce l labeled data points of type (Xi;Yi); (1 ≤ i ≤ l), where Xi is the
feature vector in our n dimensional feature space, and Yi in {−1,+1} denotes the class
label.

Next, the label for each sentence in the document is predicted. The support vector
machine classifies data points according to the learned classification function:

f(x) = sgn((w · x) + b)

Note, that since SVM-Solvers usually solve the dual problem to the quadratic program
presented above, the decision function is usually calculated as:

f(x) = sgn(
n∑
i=1

yiαi(x, xi) + b)

27

4 Classification Algorithm: Support Vector Machine

However this only classifies sentences. To generate a prediction for a document we simply
take the maximum of all predicted labels of all sentences s of a document d.

f(d) = maxs∈df(s)

If a single sentence in a page is predicted as positive, the entire page is forwarded to
the relation extractor. Otherwise, the page is discarded and removed from the relation
extraction pipeline. Note that this implicitly assumes that the sentences in a document
are independent.

4.3 Implementation details

To solve the Support Vector Machine optimization problem I adapted the liblinear solver
with the L2R_L2LOSS_SVC_DUAL solver type. With this solver there are two hyperparam-
eters to tune: the weight of the slack C and the stopping criterion ε. These parameters
are determined using a grid-search across a coarse parameter space.

The optimal set of parameters according to the Area under the Curve (AUC) metric is then
used to train and evaluate the actual classifier. The details of the data set, experimental
setup as well as the AUC metric will be described in Chapter 5.

4.4 Summary

To solve the binary text classification problem of relation prediction, linear Support Vec-
tor Machines (SVMs) are used. This discriminative Classifier can be formulated as a
convex optimization problem. SVMs are maximum margin classifiers that find a hyper-
plane that optimally separates the classes of training examples with maximum margin.
SVMs are based on the structural risk minimization principle [30] and are thus guaranteed
to minimize generalization error according to statistical learning theory. The Liblinear
LibLinear solver with the L2R_L2LOSS_SVC_DUAL solver type is used to train and evalu-
ate the SVMs. Hyperparameter are tuned using grid search based on the AUC metric.
At prediction time, the label for a document is generated by taking the max of all pre-

28

4 Classification Algorithm: Support Vector Machine

dicted labels of all sentences s of a document d. Sentence labels are predicted using the
classification function f learned by the SVM.

29

5 Training and Evaluation

5.1 Data Set: A Corpus of tagged Web pages

To be able to consistently train and evaluate classification algorithms, a fixed corpus of
annotated web Pages has been generated. We choose 18 different relationship-types of
the domains Company and Person from the public extraction service OpenCalais [22].
A detailed overview of the different relation extractors for these relationship types and
the schema associated with them is presented in table 5.1. The extractors significantly
vary in their attribute types, in their extraction domain as well as in their number of
attributes.

For each relationship type we generated relation specific keyword queries with the keyword
generation strategy proposed in [3]. For each type we queried a Web search engine [27]
retrieved the top-1000 results and downloaded the pages from the Web via wget. Some
pages could not be downloaded however, so overall we only retrieved about 153.000 pages.
Each page was also forwarded to a the relation extraction service OpenCalais [22] to
annotate each page with the relations it contains.

Figure 5.1 shows the distribution of relations for different relationship-types in the down-
loaded corpus. Note, that because of the generated keywords, this sample is already biased
towards pages that likely contain a relation. Nevertheless we observe a rather sparse dis-
tribution of relations in our corpus. For instance, relations of the type PersonCareer are a
relatively frequent type and appear in about 6% of the pages in our corpus. Contrary, re-
lations of the type conviction appear in less than 1% of the pages. Apparently, extraction
systems still retrieve many irrelevant pages that do not contain any text that represents
a relation, even though a keyword generation strategy has been used.

30

5 Training and Evaluation

Relationship-type Schema
Acquisition (Company_Acquirer, Company_BeingAcquired, Date, Status)
CompanyAffiliates (Company_Affiliate, Company_Parent, AffiliateRelationType)
CompanyEmployeesNumber (Company, EmployeesNumber, Unit, Location, LocationType)
CompanyExpansion (Company, ExpansionType, Location, Status, Date, DateString)
CompanyFounded (Company, Year)
CompanyLocation (Company, City, ProvinceOrState, CompanyLocationType)
CompanyProduct (Company, Product, ProductType)
CompanyReorganization (Company, Status, DateString, Date)
CompanyTechnology (Company, Technology)
CompanyTicker (Company, Ticker, StockExchange)
Conviction (Person, Charge, OtherCharges, DateString, Date)
EmploymentRelation (Person_Employer, Person_Employee, Position, Date, DateString)
FamilyRelation (Person, Person_Relative, FamilyRelationType)
PersonAttributes (Person, Age, BirthDate, BirthPlace, Gender)
PersonCareer (Person, Position, Company, Organization, Country, ProvinceOrState, City,

CareerType, Status)
PersonCommunication (Person, PersonDescription, Person2, PersonDescription2, Facility,

OrganizationOrCompany, Date, Status)
PersonEducation (Person, Certification, SchoolOrOrganization)
PersonTravel (Person, LocationOrigin, LocationDestination, DateString, Date, Status)

Table 5.1: The different types of relationships chosen for the experiments. Relation ex-
tractors significantly vary in their attribute types, in their extraction domain
and in their number of attributes.

5.2 Experimental Setup

To be able to train and test a classifier each Web page has to be transformed into its
feature representation (x1,...,xn; y). Figure 5.2 illustrates the process pipeline: a web
page is sent to the Relation Extractor to extract any relations contained in it. (This
actually happened when the corpus was assembled.) Next, the Web page is sent through
the feature extractor that first extracts the textual content of a page and then transforms
the Web text into its token representation as described in chapter 3. Next the occurrence
of n-grams NG(w1, ..., wn; sentencej) is encoded in a feature vector.

As a next step in each experiment, hyperparameters are tuned via 10-fold cross-validation.
After the optimal parameter set has been found, the actual training and evaluation begins.
The training data is randomly divided into 10 equi-size blocks of data. For each of the
Data blocks the classification algorithm is trained on the remaining 9 blocks of data. After

31

5 Training and Evaluation

Figure 5.1: Distribution of extractable facts in the corpus of retrieved Web pages

training (solving the optimization problem) has finished, the labels for the held-out block
of data are predicted.

This way the performance of the classifier is estimated by predicting labels on unseen test
data. This prediction process is illustrated in figure 5.3. At prediction time each page
is segmented page is transformed into its feature vector representation. The classifier
(relation predictor) then predicts whether the page contains a relation or not. If the
prediction is positive, the entire page is forwarded to the relation extractor. Otherwise,
the page is discarded and removed from the relation extraction pipeline.

32

5 Training and Evaluation

Figure 5.2: The retrieved Web pages forwarded to the Relation Extractor (OpenCalais)
to obtain the relations embedded in the Web-Text of a page. The Web-Text
is then processed by the Feature extractor described in Chapter 3 to generate
the feature representation.

Figure 5.3: The processing pipeline of an extraction system with a classifier as a relation
predictor at prediction time

33

5 Training and Evaluation

5.3 Evaluation metrics

Figure 5.4: A contingency table: illustrates the possible outcomes of predicting the label
for a data point.

A binary classifier is designed to predict a label y ∈ {true, false}. The labels on the
evaluation data represent a so called ground truth. To evaluate the quality of a classifier
one uses the algorithm to predict the labels on this unseen data. For each data point
there are four possible outcomes:

• True Positive The data point was predicted to be positive and actually is a member
of the positive class.

• False Positive The data point was predicted to be positive but actually is a member
of the negative class.

• True Negative The data point was predicted to be negative and actually is a
member of the negative class.

• False Negative The data point was predicted to be negative but actually is a
member of the positive class.

Figure 5.4 illustrates these outcomes in a schema that is generally known as a contin-
gency table or confusion matrix. A contingency table can be seen as a snapshot of the
performance of a classifier at one particular threshold level. It can also be summarized by
calculating the accuracy as a standard measure to capture the quality of a classifier:

Accuracy = TP + TN

|Samples|

34

5 Training and Evaluation

Figure 5.5: A Receiver Operating Characteristic: Illustrates the trade-off between False
Positives and True Positives of a classifier as the threshold is relaxed. The
area under that curve (AUC) is used as a measure of classifier performance.
[33]

5.3.1 Receiver Operating Characteristic

To illustrate the performance of a classifier at different threshold levels, the tool of choice
is called Receiver Operating Characteristic. Its main features are illustrated in figure 5.5.
It shows the inherent trade-off between the false-positive rate and the false-negative rate
of a classifier. By relaxing the threshold level for the decision function one can ’travel’
along the ROC-Curve.

As already mentioned in the introduction to this chapter, the data in the corpus is un-
equally distributed. Only a tiny fraction of the web Pages actually contains a relation and
are thus members of the positive class. The vast majority of the downloaded Web pages

35

5 Training and Evaluation

does not contain any relations and is thus a member of the negative class. The standard
measure of accuracy is not an appropriate metric to evaluate classifiers on this data.

For example: simply classifying all pages as ’negative’ would lead to an accuracy of about
98%. The Area under the Curve (AUC) of the Receiver Operating Characteristic (ROC)
is a much more robust metric for classification performance and is commonly used to
evaluate machine learning algorithms on unbalanced data [34][35]. The AUC represents
the probability that a randomly chosen positive data sample will be assigned a higher
value by the decision function of the classifier than a randomly chosen negative sample.
I thus used the AUC as a performance metric to tune the Hyperparamters C and ε.

5.3.2 Recall-curves

While ROC-Curves are a standard way to present the behaviour of classifiers, they do
not capture the actual task in question very well. The original motivation for the relation
predictor was to be able to extract instances of relationships from web pages as fast as
possible while processing as few Web pages as necessary. With the tagged corpus of Web
pages we actually have a Gold Standard. It reflects the maximum number of relations
that the evaluated relation extraction service could extract from the corpus.
A more intuitive way to present the performance of the classifier is to translate the true and
false positives into processed pages and to measure how many pages have to be processed
over all to be able to recall a certain number of relations from the Gold standard. Let
recall be the fraction of relations in forwarded pages divided by the total number relations
in the collection:

recall = |relationsforwarded_pages ∩ relationsGold_Standard|
|relationsGold_Standard|

Next to the ROC-curves already discussed I also present Recall-Curves that illustrate
how many processed pages overall one has to accept when aiming for a particular recall
level. In addition to the recall curve generated by the predictor the plots also contain two
strategies for comparison:

• Full Scan: Shows the results of a full tables scan over all pages, where the relation
extractor processes the pages in a random order.

36

5 Training and Evaluation

• Index Scan: Shows the results of an index scan over all pages, where the relation
extractor processes the pages in the order of the Search Engine rank.

5.3.3 Execution time

Finally I also measured the execution time of the classifiers and compared the execution
time to a relation extractor. As described above an extraction service has been used to
extract relations. Therefore I could only measure the total time of the extraction process,
which is sending a page to the service, execution the relation extraction at the service
and retrieving extracted information. Note, that authors of [11] observe similar execution
times without the overhead of sending pages through the network. The prediction time
includes boilerplate removal, sentence segmentation, feature extraction and the actual
prediction computation.

5.4 Experimental Results

As discussed in chapter 3, most semantic relations are expressed within a single sentence.
To honour that fact, Web pages are evaluated on a sentence level rather than treating the
whole page as a bag of words. I conducted experiments with both bigrams and trigrams
on a sentence level for each of the 18 different relationship types in the corpus. The
resulting AUC Values and execution times of the experiments are presented in Table 5.2.
Figures 5.6 through 5.8 show the ROC-Curves and Figures 5.4 through 5.11 the Recall
curves for each relationship type.

37

5 Training and Evaluation

BiGrams TriGrams
Relationship Type extraction time AUC prediction time AUC prediction time

in [ms] in [ms] in [ms]

Acquisition 2288.1 0.958 22.9 0.926 23.2
CompanyAffiliates 2195.6 0.944 21.6 0.932 22.1
CompanyEmployeesNumber 2201.1 0.935 25.5 0.949 26.0
CompanyExpansion 2036.8 0.931 19.7 0.883 20.1
CompanyFounded 1951.5 0.933 19.5 0.931 19.9
CompanyLocation 1896.8 0.958 17.3 0.952 17.6
CompanyProduct 2335.1 0.939 26.5 0.934 27.0
CompanyReorganization 2350.8 0.961 34.4 0.954 33.0
CompanyTechnology 2062.6 0.883 23.9 0.899 24.6
CompanyTicker 2200.9 0.999 22.3 0.993 22.6
Conviction 3107.9 0.731 41.8 0.787 42.6
EmploymentRelation 2827.9 0.841 35.9 0.783 35.8
FamilyRelation 2886.4 0.772 41.0 0.799 40.3
PersonAttributes 2858.1 0.820 36.1 0.803 36.3
PersonCareer 3508.4 0.845 57.1 0.842 58.2
PersonCommunication 2959.1 0.772 59.5 0.841 43.7
PersonEducation 3403.0 0.744 45.1 0.762 45.3
PersonTravel 3252.6 0.820 49.4 0.755 49.5

Table 5.2: This table sums up the results of the experiments. It shows the out-of-sample Area under
the ROC Curve (AUC) measurements for both the bigram and trigram based sentence-level
SVM Classifier. It also lists the average prediction time per processed page for the two
n-gram approaches as well as the time needed per page by the actual relation extractor.

38

5 Training and Evaluation

(a) ROC Curves for acquisition (b) ROC Curves for companyaffiliates

(c) ROC Curves for companyemployeesnumber (d) ROC Curves for companyexpansion

(e) ROC Curves for companyfounded (f) ROC Curves for companylocation

Figure 5.6: The ROC Curves for all experiments for each individual relationship-type

39

5 Training and Evaluation

(a) ROC Curves for companyproduct (b) ROC Curves for companyreorganization

(c) ROC Curves for companytechnology (d) ROC Curves for companyticker

(e) ROC Curves for conviction (f) ROC Curves for employmentrelation

Figure 5.7: The ROC Curves for all experiments for each individual relationship-type

40

5 Training and Evaluation

(a) ROC Curves for familyrelation (b) ROC Curves for personattributes

(c) ROC Curves for personcareer (d) ROC Curves for personcommunication

(e) ROC Curves for personeducation (f) ROC Curves for persontravel

Figure 5.8: The ROC Curves for all experiments for each individual relationship-type

41

5 Training and Evaluation

(a) Recall curves for acquisition (b) Recall curves for companyaffiliates

(c) Recall curves for companyemployeesnumber (d) Recall curves for companyexpansion

(e) Recall curves for companyfounded (f) Recall curves for companylocation

Figure 5.9: The Recall Curves for all experiments for each individual relationship-type

42

5 Training and Evaluation

(a) Recall curves for companyproduct (b) Recall curves for companyreorganization

(c) Recall curves for companytechnology (d) Recall curves for companyticker

(e) Recall curves for conviction (f) Recall curves for employmentrelation

Figure 5.10: The Recall Curves for all experiments for each individual relationship-type

43

5 Training and Evaluation

(a) Recall curves for familyrelation (b) Recall curves for personattributes

(c) Recall curves for personcareer (d) Recall curves for personcommunication

(e) Recall curves for personeducation (f) Recall curves for persontravel

Figure 5.11: The Recall Curves for all experiments for each individual relationship-type

44

5 Training and Evaluation

5.4.1 Prediction in Tens of Milliseconds

Table 5.2 lists the average execution times of both the classifiers and the relation extraction
service. The prediction time includes boilerplate removal, sentence segmentation, feature
extraction and the actual prediction computation. The classifiers are about two orders
of magnitude faster than the actual relation extraction service for both the bigram and
the trigram model. This is a remarkable gain in performance. For example the predictor
takes about 18 ms per Web page on the relation ’CompanyLocation’ and 58 ms per Web
page on the relation ’PersonCareer’.

The difference in prediction times for the bigram and trigram models is negligible. Varia-
tions in the prediction and extraction times between different relationship-types are most
likely due to different average length of the text input for each relationship type. If one
normalizes by the average size of the Web text inputs, the times are almost constant
across relationship-types.

The classifiers are fast and maintain their performance across the examined domains. It
is reasonable to suspect that this result holds across further domains as well.

5.4.2 Configurations for different application scenarios

Different cost budgets may appear in application scenarios. As can be seen in the recall
curves shown in Figures 5.4 through 5.11, there is an inherent trade-off between the recall
of facts in the corpus and the number of documents that have to be processed to achieve
that recall. To gain some deeper insights into the meaning of these recall levels, it is helpful
do identify common application scenarios for relation prediction by their cost budget. Let
Recall@Costs be a measure of he recall, denoted as the fraction of retrieved relations,
conditioned on the ’invested’ processing costs, measured by the fraction of processed
pages.

• Recall@5% (Ad-hoc query scenario). This scenario reflects tight budget costs,
since the classifier forwards less than 10% of pages to the relation extractor. It is
suitable for an ad-hoc analysis, such as proposed in [20] [36]. It may also be applied
to an aggregation scenario in [3] where only few top ranked pages from a Web search
are forwarded to a relation extractor.

45

5 Training and Evaluation

• Recall@50% (Digital archive scenario). In this scenario the relation classifier
forwards 50% or more of the pages to the relation extractor with the goal of achieving
a high recall. For instance, this scenario may be implemented for a Web search
engine or a digital archive scenario, such as [37] [10] [9], where the extraction load
can be distributed to many machines. This setting will also be implemented for the
Web Analysis Engine [38].

Index BiGrams TriGrams
Relationship Type Recall@5 Recall@50 Recall@5 Recall@50 Recall@5 Recall@50
Acquisition 20.8% 78.3% 71.5% 100.% 64.9% 97.5%
CompanyAffiliates 12.6% 78.6% 58.7% 98.6% 70.6% 96.3%
CompanyEmployeesNumber 16.7% 81.9% 59.2% 99.5% 72.1% 98.7%
CompanyExpansion 25.4% 74.5% 78.1% 100.% 69.0% 98.1%
CompanyFounded 26.9% 80.3% 68.0% 100.% 69.3% 97.5%
CompanyLocation 12.2% 70.2% 59.1% 100.% 61.3% 97.5%
CompanyProduct 11.3% 61.4% 53.4% 99.7% 62.6% 97.0%
CompanyReorganization 15.4% 88.8% 82.2% 98.9% 79.9% 98.9%
CompanyTechnology 15.3% 75.8% 46.1% 100.% 59.3% 95.6%
CompanyTicker 8.60% 72.8% 100.% 100.% 95.3% 100.%
Conviction 16.6% 61.9% 26.1% 80.9% 47.6% 90.4%
EmploymentRelation 8.20% 53.7% 46.2% 90.2% 41.0% 86.5%
FamilyRelation 12.0% 64.8% 28.0% 90.1% 33.5% 90.6%
PersonAttributes 17.5% 75.5% 42.7% 87.7% 41.9% 86.2%
PersonCareer 8.99% 60.0% 28.9% 94.0% 40.2% 89.9%
PersonCommunication 13.4% 67.8% 29.1% 86.5% 54.3% 88.2%
PersonEducation 18.1% 84.4% 33.7% 83.1% 33.7% 85.7%
PersonTravel 12.2% 82.2% 34.4% 96.6% 37.7% 80.0%

Table 5.3: For each of the 18 different relation extraction pipelines Recall@Costs is pre-
sented for Recall levels of 5% and 50% of forwarded pages. The results are
shown for the index ordering according to the Search Engine ranks and the bi-
and trigram classifiers.

Table 5.3 lists the recall values for these two scenarios: 5% and 50% of processed pages
respectively. It compares the results of the two SVM-Models based on bigrams and
trigrams to the results obtained when the documents are processed in the order of their
Search Engine rank (index).

• Recall@5% (Ad-hoc query scenario). The classifiers drastically increase the
recall by about factor four for almost all examined relationship types. It is interest-
ing to note that the TriGram Model outperforms the BiGram Model for a couple

46

5 Training and Evaluation

of relationship types. However the BigramModel already achieves perfect recall of
100% after processing only 5% of the pages in the corpus for the relationship type
CompanyTicker.

• Recall@50% (Digital archive scenario). The classifier achieve a recall of 90% or
higher for 14 out of 18 relationship-types with the BigramModel. For The relation-
ship types Acquisition, CompanyExpansion, CompanyFounded, CompanyLocation,
CompanyTechnology and CompanyTicker perfect recall is achieved. All recall levels
lie at least above 80%.

5.5 Discussion

The evaluation results clearly show the usefulness of the classifiers as relation predictors.
They robustly predict relevant pages for 18 different relation extractors.

Robust prediction for various attribute and relationship types

With our simple and small feature set the predictors recognize the textual representation
of values for very different attribute types, such as date, company, person, location, prod-
uct, product type, technology, conviction charge, ticker symbol, job position, or degree.
Moreover, this feature set enables the relation predictors to recognize not just binary re-
lations, but also more complex relations with five or more attribute values in Web text.

Robust prediction for rare and frequent relationship types. The classifiers robustly identify
relevant pages for both, frequent and infrequent, relationship types. As a result, they
are particularly helpful for ’rare’ relationship types. For instance, relations of the type
companytechnology, conviction, companyexpansion, or personeduction appear in less than
2% of the pages. The classifiers effectively filter out irrelevant pages for these relationship
types.

47

5 Training and Evaluation

Slightly higher recall for domain ’company’

Even though the classifiers show excellent performance across all relationship types of
the domain Company, recall results are slightly but consistently lower for the relationship
types of the domain Person. For instance: the classifier achieved a recall of 95% or
more for all ten relationship types from the domain company in the Recall@50% scenario.
Contrary, measurements for relationship types that contain attribute values of the type
person, such as PersonCommunication or Conviction are below 90% in the Recall@50%
scenario.

The most likely explanation for this is probably missing anaphora and co-reference reso-
lution. Take the following excerpt as an example:

President Barack Obama received the Serve America Act after Congress’ vote. He
signed the bill last Thursday. The president said it would greatly increase service op-
portunities for the American People.

In this text fragment there are three distinct mentions of the entity Barack Obama. If one
is trying to extract the relation signed(Executive,Legislation) form the sentence ’He signed
the bill last Thursday.’, the attempt will only be successful if the extractor is capable of
co-reference resolution. This means that the extractor has to be able to infer, that ’He’
actually refers to ’Barack Obama’. Classifiers based on our approach of generalizing
sentences are not capable of making those inferences. Furthermore the quality of Entities
chosen to generate the corpus turned out to be quite poor.

After examining misclassified pages that contain relations for these types and attribute
values, the recognition of relations between a lower cased person name, such as lady gaga,
and another person that is expressed with a lower cased pronoun turned out to be another
problem.

5.5.1 Relevance for Application Scenarios

Ad-Hoc Queries over Web Text

Across all relationship types, the recall increases most rapidly for the first couple of
processed pages (<5%). A classifier as an relation predictor can thus be of greatest use

48

5 Training and Evaluation

for the Ad-hoc query scenario. An example application for this scenario would be a system
that enables SQL-like queries on Web text data.

Consider the following informal query:

Extract and join relations between products, acquisitions and employee sizes of companies
into result tuples using the web as information source.

This query might be issued by an analyst who is observing the market for mergers and
acquisitions. The query intention is retrieving at tuples about any company, its products
and its employee information from Web pages.

Discovering such result tuples with structured queries on Web pages is a grand challenge.
For instance, current Web search engines are not capable of extracting relations from
search results. Due to the nature of the business models of commercial Web search engines,
it is unlikely that full access to internal databases will ever be granted to individual users.
Typically only the top 1000 results for a given search query can be retrieved. Therefore
a likely approach taken by a Web user who is typing to obtain results for the informal
query stated above would be the following:

1. type in some more or less arbitrarily chosen keywords related to the relations into
a Web search engine

2. read some of the top ranked result pages

3. copy text phrases that potentially represent relevant tuples into a spreadsheet

Figure 5.12: An illustration of the Ad-hoc Query Scenario

This problem could also be solved as an ad-hoc retrieval and extraction task. Loeser et
al. [39] discuss the problem of supporting analytical business intelligence queries over
web-based textual content. Commercial Web search engines are leveraged as an index
to retrieve relevant documents from news Web pages. Theses documents can then be

49

5 Training and Evaluation

forwarded to an information extraction service which returns structured tuples that have
been extracted from each page. Finally this structured data can be aggregated in the
form of business intelligence reports. Figure 5.12 illustrates this approach.

But even when one applies automatic keyword generation strategies such as the one
proposed in [3], many of the retrieved web pages do not contain a relation. To produce
results within an acceptable time frame for ad-hoc use, a relation predictor to filter out
irrelevant pages is thus a crucial component of any ad-hoc analytics application.

Analytic Search Engine GoOlap

Figure 5.13: A user may discover that some relations are missing in an analytical search
engine such as goolap.info. In this case the users request may trigger the
entire process of knowledge discovery from the Web.

Another application scenario is an analytic web search engine such as goolap.info [38].
GoOlap enables a user to search for entities. It presents a structured and aggregated
overview of facts about that entity provided by a knowledge base.

Missing facts or entities in this knowledge base can be retrieved leveraging the infrastruc-
ture just described for the ad-hoc query application. One could imagine a scenario where
missing facts in the knowledgebase are retrieved online, triggered by the users actions for
example. Figure 5.13 illustrates this process.

The relation predictor could also play a critical role in this process of knowledge discov-
ery. This application setting actually bears resemblance to the digital archive scenario

50

5 Training and Evaluation

discussed earlier, since the system actually aims for nearly perfect recall. The relation pre-
dictor could speed up the system and conserve processing resources by effectively filtering
out irrelevant pages during the knowledge discovery process.

5.5.2 Classification Function for Ranking Pages

If the relation predictor where to be used for an Ad-hoc Extraction application, the
threshold would have to be set a priori. This might turn out to be a difficult parameter
to set because it is not intuitive for a user. It would be much more desirable to control
the execution time and simpley cut-off the retrieval and extraction process after a given
time limit.

To enable this functionality the documents have to be ordered according to some ranking
function. This is a similar approach as the Extraction Prioritization proposed by the
authors of [24]. The classification function already assigns a function value y to every
document. The greater it is, the more confident the classification algorithm is, that the
page in question contains an extractable fact. It thus seems reasonable to uses the classi-
fication function to rank the documents. For that to happen however, all the documents
have to be evaluated by the classification function first.

To illustrate the performance of such an approach, the resulting recall curves have been
generated for a max runtime of 1000 seconds. The results are displayed in Figures 5.14
through 5.14.

51

5 Training and Evaluation

(a) Recall Curves for acquisition (b) Recall Curves for companyaffiliates

(c) Recall Curves for companyemployeesnumber (d) Recall Curves for companyexpansion

(e) Recall Curves for companyfounded (f) Recall Curves for companylocation

Figure 5.14: Recall vs. Execution time for the first 1000 seconds Part I

52

5 Training and Evaluation

(a) Recall Curves for companyproduct (b) Recall Curves for companyreorganization

(c) Recall Curves for companytechnology (d) Recall Curves for companyticker

(e) Recall Curves for conviction (f) Recall Curves for employmentrelation

Figure 5.15: Recall vs. Execution time for the first 1000 seconds Part II

53

5 Training and Evaluation

(a) Recall Curves for familyrelation (b) Recall Curves for personattributes

(c) Recall Curves for personcareer (d) Recall Curves for personcommunication

(e) Recall Curves for personeducation (f) Recall Curves for persontravel

Figure 5.16: Recall vs. Execution time for the first 1000 seconds Part III

54

5 Training and Evaluation

Since the classifier first has to evaluate all documents to compute the classification func-
tion value, no facts are extracted in the first couple of seconds. Note however that this
evaluation was performed over the entire corpus, so the system had to evaluate between
500 and 7500 documents before extraction could begin. In a more refined scenario one
could limit the number of pages as well.

Even though it is evident, that using the relation predictor for ranking the documents
according to their classification function value significantly outperforms the approach of
processing the documents in the order of their search engine rank. (Recall that the search
engine has already been queried with relationship-type specific, discriminative keywords.)
If this classifier ranking where to be used in the ’Ad-Hoc Queries over Web Text’ applica-
tion scenario, the user could simply set a time-out or stop the extraction process at any
time and view the results that have been retrieved so far.

5.6 Summary

To be able to consistently train and evaluate classification algorithms, we generated a
fixed corpus of annotated web Pages for 18 different relationship-types from the domains
Company and Person.

We retrieved the pages by querying a commercial Web search engine with relation specific
keyword queries generated with the strategy described in [3]. The Web pages were sent
to an extraction service to generate a gold standard. It reflects the maximum number of
relations that the evaluated relation extraction service could extract from our corpus, if
all pages would have been processed.

In a broad experimental evaluation on more than hundred thousand pages I evaluated
both bigram and trigram based support vector machines for all of the 18 different relation
extractors. The prediction performance has been measured by generation ROC Curves
and AUC estimates by classifying unseen test data through 10 fold cross-validation.

The evaluation results clearly show the usefulness of the svm classifiers as relation pre-
dictors. They robustly predict relevant pages for 18 different relation extractors. The
predictors are fast and maintain their performance across the examined domains. On
average they are about is about two orders of magnitude faster than the actual relation
extraction service itself. With our simple and small feature set the predictor recognizes

55

5 Training and Evaluation

the textual representation of values for very different attribute types.

The classifiers would be particularly useful in an Ad-hoc Query Scenario where only few
pages can be processed due to tight time constrains. The recall curves show that they
classifiers cause a substantial increase in recall for this scenario. However the algorithm
could also be useful for the knowledge discovery process of analytical web search engines
such as goolap.info.

56

6 Conclusion

6.1 Summary

Scaling information extraction to large document collections, such as the Web, is a chal-
lenging problem. Current relation extraction systems are computationally expensive, e.g.,
they might require several seconds to process a single page. Therefore it is infeasible to
sequentially scan and forward all Web pages to the extractor. Often such an exhaustive
inspection of all pages might not be necessary, since only a few relevant pages contain a
textual representation of a relation.

In this thesis, we presented a relation predictor, which classifies Web pages as either
relevant or irrelevant for a relation extraction task. Our approach is inspired by the
observation that most binary relationships in the English language are expressed using
only a rather small set of patterns. We developed a method to generalize individual words
to a set of shallow text, syntactic and semantic tags where each sentence of a document
is transformed into a token representation of linguistic features.

As a classification algorithm, we used linear Support Vector Machines (SVMs) based
on bi- and trigrams.In a broad experimental evaluation on more than hundred thousand
pages we demonstrated that our technique robustly predicts relevant pages for 18 different
relation extractors with varying attribute types. Most importantly, our relation predictor
is two orders of magnitude faster than a relation extractor. Our relation predictor helps
to deploy existing relation extraction systems at a large scale and for a wider range of
applications than previously possible.

The evaluation results clearly show the usefulness of the svm classifiers as relation pre-
dictors. They robustly predict relevant pages for 18 different relation extractors. The
predictors are fast and maintain their performance across the examined domains. On
average they are about is about two orders of magnitude faster than the actual relation

57

6 Conclusion

extraction service itself. With our simple and small feature set the predictor recognizes
the textual representation of values for very different attribute types.

The classifiers would be particularly useful in an Ad-hoc Query Scenario where only few
pages can be processed due to tight time constrains. The recall curves show that they
classifiers cause a substantial increase in recall for this scenario. However the algorithm
could also be useful for the knowledge discovery process of analytical web search engines
such as goolap.info.

6.2 Future Work

As future work we plan to deploy the relation predictor for the analytical Web search
engine goolap.info and in prototypical applications for processing Ad-Hoc Querys over
Web text. But besides deployment of the developped component, there are also two
interesting research challenges worth exploring:

Ranking documents with Classification functions While the idea to use the classifica-
tion function such as an svm to learn a ranking function has already been proposed and
examined e.g., by Joachims [40], it would be interesting explore the idea further in the
context of ranking pages for information extraction.

In chapter 5 we already surveyed how the classification function itself could be used to
rank the documents for information extraction. It would be an interesting to explore this
idea further and to try to find an optimal ranking function for the information extraction
task.

Language Models and a Naive Bayes Classifier As mentioned in Chapter 3 there are
multiple ways to extract and encode n-grams from text or our token representation. One
of these possibilities is to apply Language Models.

These models estimate the probability of words given the previous n− 1 tokens:

P (wn|w1, . . . , wn−1)

58

6 Conclusion

The authors of [41] propose to use language models to augment a Naive Bayes Classifier
to a so called ’Chain Augmented Naive Bayes’. They used this classifier to perform text
classification and report promising results.

It would be interesting to explore how a generative model such as the Chain Augmented
Naive Bayes Classifier would perform when applied to the task of relation prediction. The
probabilistic judgements P (DocumentContainsRelation|Features) could also be used to
rank the documents as has been shown for the SVM classifier in Chapter 5.

59

Bibliography

[1] Haefele T. Loeser A. Boden, C., “Classification algorithms for relation prediction”,
in DaLi Workshop at ICDE 2011 (forthcomming), 2011.

[2] Eugene Agichtein and Luis Gravano, “Querying text databases for efficient informa-
tion extraction”, in In Proceedings of the 19th IEEE International Conference on
Data Engineering (ICDE, 2003, pp. 113–124.

[3] Nagel C. Pieper S. Loeser, A., “Augmenting tables by self-supervised web search”,
in BIRTE Workshop at VLDB 2010, 2010.

[4] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl, “Boilerplate detec-
tion using shallow text features”, in Proceedings of the third ACM international
conference on Web search and data mining, New York, NY, USA, 2010, WSDM ’10,
pp. 441–450, ACM.

[5] Erik F. Tjong Kim Sang and Fien De Meulder, “Introduction to the conll-2003
shared task: language-independent named entity recognition”, in Proceedings of the
seventh conference on Natural language learning at HLT-NAACL 2003 - Volume 4,
Morristown, NJ, USA, 2003, pp. 142–147, Association for Computational Linguistics.

[6] Veselin Stoyanov, Claire Cardie, Nathan Gilbert, Ellen Riloff, David Buttler, and
David Hysom, “Coreference resolution with reconcile”, in Proceedings of the ACL
2010 Conference Short Papers, Morristown, NJ, USA, 2010, ACLShort ’10, pp. 156–
161, Association for Computational Linguistics.

[7] Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nathanael Chambers,
Mihai Surdeanu, Dan Jurafsky, and Christopher Manning, “A multi-pass sieve for
coreference resolution”, in Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, Morristown, NJ, USA, 2010, EMNLP ’10, pp. 492–
501, Association for Computational Linguistics.

60

BIBLIOGRAPHY

[8] Einat Amitay, Nadav Har’El, Ron Sivan, and Aya Soffer, “Web-a-where: geotagging
web content”, in Proceedings of the 27th annual international ACM SIGIR conference
on Research and development in information retrieval, New York, NY, USA, 2004,
SIGIR ’04, pp. 273–280, ACM.

[9] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S. Weld, “Open in-
formation extraction from the web”, Commun. ACM, vol. 51, pp. 68–74, December
2008.

[10] Fei Wu and Daniel S. Weld, “Open information extraction using wikipedia”, in Pro-
ceedings of the 48th Annual Meeting of the Association for Computational Linguistics,
Morristown, NJ, USA, 2010, ACL ’10, pp. 118–127, Association for Computational
Linguistics.

[11] Janara Christensen, Mausam, Stephen Soderland, and Oren Etzioni, “Semantic
role labeling for open information extraction”, in Proceedings of the NAACL HLT
2010 First International Workshop on Formalisms and Methodology for Learning
by Reading, Morristown, NJ, USA, 2010, FAM-LbR ’10, pp. 52–60, Association for
Computational Linguistics.

[12] Ronen Feldman, Yizhar Regev, and Maya Gorodetsky, “A modular information
extraction system”, Intell. Data Anal., vol. 12, pp. 51–71, January 2008.

[13] Vasin Punyakanok, Dan Roth, and Wen-tau Yih, “The importance of syntactic
parsing and inference in semantic role labeling”, Comput. Linguist., vol. 34, pp.
257–287, June 2008.

[14] Nancy Chinchor, Proceedings of the Seventh Message Understanding Conference,
Science Applications International Corporation (SAIC), San Francisco, CA, 1998.

[15] Nancy Chinchor, “Muc-4 evaluation metrics”, in Proceedings of the 4th conference
on Message understanding, Morristown, NJ, USA, 1992, MUC4 ’92, pp. 22–29, As-
sociation for Computational Linguistics.

[16] Ellen Riloff, “Automatically generating extraction patterns from untagged text”, in
In Proceedings of the Thirteenth National Conference on Artificial Intelligence, 1996,
pp. 1044–1049.

61

BIBLIOGRAPHY

[17] Soumen Chakrabarti, Sunita Sarawagi, and S. Sudarshan, “Enhancing search with
structure”, IEEE Data Eng. Bull., vol. 33, no. 1, pp. 3–24, 2010.

[18] Ralph Grishman, Silja Huttunen, and Roman Yangarber, “Information extraction
for enhanced access to disease outbreak reports”, J. of Biomedical Informatics, vol.
35, pp. 236–246, August 2002.

[19] Raphael Hoffmann, Congle Zhang, and Daniel S. Weld, “Learning 5000 relational
extractors”, in Proceedings of the 48th Annual Meeting of the Association for Compu-
tational Linguistics, Morristown, NJ, USA, 2010, ACL ’10, pp. 286–295, Association
for Computational Linguistics.

[20] Panagiotis G. Ipeirotis, Eugene Agichtein, Pranay Jain, and Luis Gravano, “To
search or to crawl?: towards a query optimizer for text-centric tasks”, in Proceedings
of the 2006 ACM SIGMOD international conference on Management of data, New
York, NY, USA, 2006, SIGMOD ’06, pp. 265–276, ACM.

[21] Gabriel Pui Cheong Fung, Jeffrey Xu Yu, and Hongjun Lu, “Discriminative category
matching: Efficient text classification for huge document collections”, in ICDM.
2002, pp. 187–194, IEEE Computer Society.

[22] “Opencalais”, http://www.opencalais.com/documentation/
calais-web-service-api/api-metadata/entity-index-and-definitions,
(Last visited 01/10/10).

[23] Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Freder-
ick R. Reiss, and Shivakumar Vaithyanathan, “Systemt: an algebraic approach to
declarative information extraction”, in Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, Morristown, NJ, USA, 2010, ACL ’10,
pp. 128–137, Association for Computational Linguistics.

[24] Jian Huang and Cong Yu, “Prioritization of domain-specific web information extrac-
tion”, in AAAI, Maria Fox and David Poole, Eds. 2010, AAAI Press.

[25] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S. Weld, “Open in-
formation extraction from the web”, Commun. ACM, vol. 51, pp. 68–74, December
2008.

62

http://www.opencalais.com/documentation/calais-web-service-api/api-metadata/entity-index-and-definitions
http://www.opencalais.com/documentation/calais-web-service-api/api-metadata/entity-index-and-definitions

BIBLIOGRAPHY

[26] Razvan C. Bunescu, “Learning to extract relations from the web using minimal
supervision”, in In Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics (ACL ’07, 2007.

[27] “Yahoo boss”, http://developer.yahoo.com/search/boss/, (Last visited
01/10/10).

[28] Alias-i., “Lingpipe 4.0.1.”, http://alias-i.com/lingpipe, (Last visited 01/10/10).

[29] Thorsten Joachims, “Text categorization with support vector machines: learning
with many relevant features”, in Proceedings of ECML-98, 10th European Conference
on Machine Learning, Claire Nédellec and Céline Rouveirol, Eds., Heidelberg et al.,
1998, pp. 137–142, Springer.

[30] Vladimir N. Vapnik, The nature of statistical learning theory, Springer-Verlag New
York, Inc., New York, NY, USA, 1995.

[31] Bernhard Schölkopf and Alexander J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond (Adaptive Computation and
Machine Learning), The MIT Press, 1st edition, December 2001.

[32] Michael Jordan, “Figure taken from: Classification lecture”, http://www.cs.
berkeley.edu/~jordan/courses/294-fall09/lectures/classification/, (Last
visited 01/10/10).

[33] “Figure: Receiver operating characteristic”, http://en.wikipedia.org/wiki/
File:ROC_space-2.png, (Last visited 01/10/10).

[34] Andrew P. Bradley, “The use of the area under the ROC curve in the evaluation
of machine learning algorithms”, Pattern Recognition, vol. 30, no. 7, pp. 1145–1159,
July 1997.

[35] Jin Huang and Charles X. Ling, “Using auc and accuracy in evaluating learning
algorithms”, IEEE Trans. on Knowl. and Data Eng., vol. 17, pp. 299–310, March
2005.

[36] Alpa Jain and Divesh Srivastava, “Exploring a few good tuples from text databases”,
in Proceedings of the 2009 IEEE International Conference on Data Engineering,
Washington, DC, USA, 2009, pp. 616–627, IEEE Computer Society.

63

http://developer.yahoo.com/search/boss/
http://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/classification/
http://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/classification/
http://en.wikipedia.org/wiki/File:ROC_space-2.png
http://en.wikipedia.org/wiki/File:ROC_space-2.png

BIBLIOGRAPHY

[37] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor, “Free-
base: a collaboratively created graph database for structuring human knowledge”,
in Proceedings of the 2008 ACM SIGMOD international conference on Management
of data, New York, NY, USA, 2008, SIGMOD ’08, pp. 1247–1250, ACM.

[38] “Goolap”, http://www.goolap.info/, (Last visited 01/10/10).

[39] Alexander Lser, Steffen Lutter, Patrick Dssel, and Volker Markl, “Ad-hoc queries over
document collections a case study”, in Enabling Real-Time Business Intelligence,
vol. 41 of Lecture Notes in Business Information Processing, pp. 50–65. Springer
Berlin Heidelberg, 2010.

[40] T. Joachims, “Evaluating Retrieval Performance Using Clickthrough Data”, 2002.

[41] Fuchun Peng and Dale Schuurmans, “Combining Naive Bayes and n-Gram Language
Models for Text Classification”, Lecture Notes in Computer Science, vol. 2633, pp.
335–350, January 2003.

64

http://www.goolap.info/

	Introduction
	Motivation
	Problem Definition
	Methodology
	Thesis Outline

	Related Work
	Relation Extraction
	Text Filtering
	Pattern Learning
	Optimizing Relation Extraction Systems
	Extraction Prioritization
	Summary

	Relation Prediction
	Problem Overview
	Relation prediction as a classification problem

	Linguistic Feature Analysis
	Feature extraction
	Implementation details

	Summary

	Classification Algorithm: Support Vector Machine
	Why SVMs work: Statistical Learning Theory
	Structural risk minimization
	Linear hyperplane classifier
	Maximum margin classifiers generalize well

	Prediction with a trained SVM
	Implementation details
	Summary

	Training and Evaluation
	Data Set: A Corpus of tagged Web pages
	Experimental Setup
	Evaluation metrics
	Receiver Operating Characteristic
	Recall-curves
	Execution time

	Experimental Results
	Prediction in Tens of Milliseconds
	Configurations for different application scenarios

	Discussion
	Relevance for Application Scenarios
	Classification Function for Ranking Pages

	Summary

	Conclusion
	Summary
	Future Work

	Bibliography

