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“Die Natur muß gefühlt werden, wer nur sieht und abstrahirt, 
kann ein Menschenalter, im Lebensgedränge der glühenden 
Tropenwelt, Pflanzen und Thiere zergliedern, er wird die Natur 
zu beschreiben glauben, ihr selbst aber ewig fremd sein.”

— Alexander von Humboldt, an Johann Wolfgang von Goethe, Paris 3. Januar 1810.

5



1. Introduction

6



Sebastian Arnold

Example: Information Search
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“What are symptoms of Cystic fibrosis (CF)?”

Cystic fibrosis (CF) is a genetic disorder that affects 
mostly the lungs, but also the pancreas, liver, kidneys, 
and intestine.

● Query intent classification 
[Rose+Levinson 2004]

● Natural Language Processing
[Jurafsky 2008]

● Information Extraction (IE)
[Sarawagi 2008]

● Semantic representation
[Moro 2014]

https://en.wikipedia.org/wiki/Genetic_disorder
https://en.wikipedia.org/wiki/Lung
https://en.wikipedia.org/wiki/Pancreas
https://en.wikipedia.org/wiki/Liver
https://en.wikipedia.org/wiki/Kidney
https://en.wikipedia.org/wiki/Intestine
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Knowledge Processing and Retrieval
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“What are symptoms of Cystic fibrosis (CF)?”

● Question Answering (QA)

q = “Cystic fibrosis”~0.8 AND “symptoms”~0.8

● Information Retrieval (IR)
[Manning 2008]

● Exploration and refinement
[Marchionini 2006]

● Feedback Loop
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GoOLAP: Answering Analytical Queries with Tables [2012]
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A. Löser, S. Arnold, T. Fiehn (2012): The GoOLAP Fact Retrieval Framework. Business Intelligence. Springer
S. Arnold, A. Löser, T. Kilias (2015):. Resolving Common Analytical Tasks in Text Databases. ACM DOLAP 2015
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Vision: Machine Reading [Etzioni 2006]
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Etzioni, Banko and Cafarella (2006): Machine Reading. AAAI 2006

MR is “the automatic, unsupervised understanding of text 
[achieved by] the formation of a coherent set of beliefs 

based on a textual corpus and a background theory.”

Our goal: Support the human 
information-seeking process with 
Machine Reading.
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Challenges for Domain-specific Language Understanding
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● Domain-specific language → adaptiveness and transferability
● Variations and noise → robustness, focus on recall
● Heterogenous document structure → coherence, local context sensitivity
● High task variance → generalization, multi-task, zero-shot
● Insufficient training data → efficiency, self-supervision, 

background knowledge
● Error propagation → end-to-end design, differentiable

models, dense representations

Traditional IE pipelines depend on task-specific training data or handcrafted rules.
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Hypothesis: Neural Machine Reading

1. Deep Neural Networks enable self-supervised training 
of language models based on distributional information.

2. Machine Reading increases error tolerance and reduces 
adaptation cost for reading domain-specific text.

3. End-to-end models combine general training objectives 
with background knowledge to fulfill task-specific 
information needs.

12
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Research Questions
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RQ2: Detect 
topics and 
structure in long 
documents.

RQ3: Embed 
discourse structure 
into document 
representations.

RQ4: Retrieve 
answer passages 
using vector 
representations.

RQ1: Identify 
domain-specific 
named entities.
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Focus of the Thesis

Tasks covered in this thesis:

● Named Entity Recognition (NER)
● Named Entity Linking (NEL)
● Topic Modeling
● Answer Passage Retrieval

14

Tasks NOT covered:

● Intent detection
● Relation Extraction (RE)
● Factoid Question Answering (QA)
● Machine Reading Comprehension (MRC)
● Interactive feedback loop

our focus
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Main Contributions and Publications

TASTY – Named Entity Recognition and Linking
S. Arnold, F. A. Gers, T. Kilias and A. Löser (2016). 
Robust Named Entity Recognition in Idiosyncratic Domains. arXiv:1608.06757 [cs.CL]

S. Arnold, R. Dziuba and A. Löser (2016). 
TASTY: Interactive Entity Linking As-You-Type. COLING 2016 (Demos)

SECTOR – Topic Segmentation and Classification
R. Schneider, S. Arnold, T. Oberhauser, T. Klatt, T. Steffek and A. Löser (2018).
Smart-MD: Neural Paragraph Retrieval of Medical Topics. WWW 2018 (Companion): 203–206

S. Arnold, R. Schneider, P. Cudré-Mauroux, F. A. Gers and A. Löser (2019). 
SECTOR: A Neural Model for Coherent Topic Segmentation and Classification. TACL Vol. 7: 169–184 (presented at ACL)

CDV – Contextual Discourse Vectors for Answer Retrieval
S. Arnold, B. van Aken, P. Grundmann, F. A. Gers and A. Löser (2020). 
Learning Contextualized Document Representations for Healthcare Answer Retrieval. WWW 2020: 1332–1343

J.-M. Papaioannou, S. Arnold, F. A. Gers, A. Löser, M. Mayrdorfer, and K. Budde (2021). 
Aspect-Based Passage Retrieval with Contextualized Discourse Vectors. Submitted to: ECIR 2021 System Demonstrations

TeXoo – A Zoo of Text Extractors. Apache V2 License: https://github.com/sebastianarnold/TeXoo 15

https://github.com/sebastianarnold/TeXoo
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Distributional Hypothesis [Harris 1954]
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Harris (1954): Distributional Structure. WORD Vol. 10, No. 2–3
Sahlgren (2008): The Distributional Hypothesis. Italian Journal of Linguistics 20, 33–54.
Bengio et al. (2003): A Neural Probabilistic Language Model. Journal of Machine Learning Research 3.
Mikolov et al. (2013): Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781

[Sahlgren 2008]

● The Skip-gram model solves this problem 
more efficiently [Mikolov 2013]

● Neural Probabilistic Language Model: 
Learn to predict words based on 
their context [Bengio 2003]

w
t



3. TASTY – A Robust Model for 
Efficient Entity Linking
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S. Arnold, F. A. Gers, T. Kilias and A. Löser (2016). 
Robust Named Entity Recognition in Idiosyncratic Domains. arXiv:1608.06757 [cs.CL]

S. Arnold, R. Dziuba and A. Löser (2016). 
TASTY: Interactive Entity Linking As-You-Type. COLING 2016 (Demos)
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Challenge: Recognize and Link Named Entities
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RQ1: What are general solutions 
to identify named entities in 

domain-specific text?

➔ broad coverage 

➔ domain and language-
independent architecture

➔ focus on recall 

➔ high robustness

➔ efficient training

Extracting entities requires local, 
contextual and global features.
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Encoding Local Sub-word Information with Letter-trigrams

Character-based word representations [Huang 2013] are a key component for robustness.
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Capturing Sentence Context with Sequence Learning
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BIOES

Bidirectional LSTM [Hochr. 1997, Graves 2012] effectively captures long-range dependencies.
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Key Results: TASTY
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● TASTY is a robust end-to-end model
for Entity Linking (NER+NEL)

● Pushes down the costs for a domain-
specific model to labeling 4K sentences

● State-of-the-art performance for 
English and German NER: 91.1% F1 on 
CoNLL 2003 beats all models before 2016

Next steps on our journey towards Neural Machine Reading:

● We envision a general document understanding beyond isolated entities

● Model training should require as little supervision as possible

F1



4. SECTOR – Coherent Topic 
Segmentation and Classification
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S. Arnold, R. Schneider, P. Cudré-Mauroux, F. A. Gers and A. Löser (2019). 
SECTOR: A Neural Model for Coherent Topic Segmentation and Classification. TACL Vol. 7: 169–184 (presented at ACL)



Sebastian Arnold

Challenge: Understand Topics and Structure of a Document
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Treatment

Diagnosis

Symptoms

Causes

“Cystic fibrosis”DISEASE

➔ topical information

➔ structural information 

➔ coherent predictions

➔ sentence granularity 

RQ2: How can Machine Reading 
models detect topics and structure 

in long documents?

Distributional Hypothesis 
needs to be extended with 

long-range structural information.
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Latent Topics can be Learned from Wikipedia Headings
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clustering / 
normalization
via BabelNet 
[Navigli 2012]

(85–95% 
coverage)

preprocessing
and pruning

(from 8.5k 
‘noisy’ labels, 
bag-of-words)
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Capturing Entire Documents with 
Sentence Embeddings + BLSTM
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Objective: predict topics on sentence level

● Bloom filter sentence compression [Serra 2017]

● Single-label classification into 25–30 topics

● Multi-label classification up to 603 words

● Segmentation based on deviation of the
hidden layer topic embedding
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SECTOR Prediction on Par with Wiki Authors for “Dermatitis”

Source: https://en.wikipedia.org/w/index.php?title=Atopic_dermatitis&diff=786969806&oldid=772576326

27

https://en.wikipedia.org/w/index.php?title=Atopic_dermatitis&diff=786969806&oldid=772576326
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Key Results: SECTOR
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● Extends distributional models (top) with 
topic and structure information (bottom)

● Classifies 25–30 local topics with up to 
71.6% F1

● Detects topic shifts to segment long 
documents into coherent passages

Next steps on our journey towards Neural Machine Reading:

● We need to cover complementary information from named entities

● Hard passage segmentation should be replaced by continuous representations



5. CDV – Contextual Document 
Representations for Answer Retrieval

29

S. Arnold, B. van Aken, P. Grundmann, F. A. Gers and A. Löser (2020). 
Learning Contextualized Document Representations for Healthcare Answer Retrieval. WWW 2020: 1332–1343
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Challenge: Capture Document Discourse Structure
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“Therapy”

“Cystic 
fibrosis”

RQ3: How can we embed 
discourse structure into 

document representations?

Entities and aspects provide 
discourse information comple- 

mentary to language models.
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Covering Diseases and Health Problems in Vector Space

31

● Descriptions from UMLS, 
GARD, DiseasesDB, Wikidata 
and Wikipedia

● Covers 27,000+ diseases

● Provides fallback encoding 
for unseen entity names

We create entity embeddings for diseases by training a Fasttext [Bojan. 2017] 
and BLSTM [Palangi 2016]  model to map entity descriptions to entity IDs:
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Distributed Representation of Clinical Aspects
We extend SECTOR with distributed 
representations of clinical aspects, e.g. 
symptoms, treatment, causes, diagnosis, 
prognosis, prevention, risk factors, …

32

● Covers 14,000+ aspects 
learned from headings of 
medical Wikipedia articles
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Training CDV with Multi-task Objective
● Goal: Learn discourse embedding to align

entities ϵ1..T and aspects α1..T with 
all sentences s1..T in a long document:

33
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Contextualized Document Representation
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● Distributional models cannot capture structural 
context from long documents [Arnold 2019]

● Therefore, we transform σ1..T into contextual 
discourse vectors δ1..T by using BLSTM [Hochr. 1997] 

● Sentence embeddings σt are preprocessed using 
BioBERT [Lee 2019] or Fasttext [Bojan. 2017]
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Loss Function
Our loss function needs to handle the large 
variance of documents.

35

x

x

x

● We optimize model parameters θ by minimizing 
Huber loss [Huber 1992]
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Challenge: Retrieve Answer Passages from Long Documents
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RQ4: How effective are document 
representations for retrieving 

answer passages?
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Answer Retrieval on Precomputed CDVs
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➔ No query/answer pairs are required to train the model 
➔ CDV vectors CD need to be precomputed only once
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Results for Healthcare Answer Retrieval
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We evaluate the retrieval of answer passages from over 2K healthcare articles 
from Wikipedia, NIH (including rare diseases) and Patient.info
* interaction-based models

R@1

TF-IDF BM25 DSSM
[Huang13]

DRMM*
[Guo16]

MatchPy*
[Pang16]

Duet*
[Mitra17]

MVLSTM*
[Wan16]

CONV-
KNRM*
[Dai18]

HAR*
[Zhu19]

CDV
+GloVe

CDV
+FastText

CDV
+BioBERT
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Key Results: Contextual Discourse Vectors
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Our journey towards Neural Machine Reading:

● CDV fulfills all properties we have defined for 
automatic language understanding.

● This model satisfies our hypothesis of Neural Machine Reading.

● CDV extends pre-trained Language Models with 
long-range discourse information

● Trained with self-supervision on Wikipedia data

● Pre-computed vectors enable efficient retrieval with high recall

● Outperforms BM25 (Elastic Search), DSSM, Duet (Microsoft), 
MatchPyramid, Conv-KNRM, HAR and others with up to 65.2% R@1

● Potential errors caused by hierarchical, related and overlapping information



6. Systems
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TASTY: Tag-as-you-type Entity Linking
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S. Arnold, F. A. Gers, T. Kilias and A. Löser (2016).  Robust Named Entity Recognition in Idiosyncratic Domains. arXiv:1608.06757 [cs.CL]
S. Arnold, R. Dziuba and A. Löser (2016).  TASTY: Interactive Entity Linking As-You-Type. COLING 2016 Demos

Online: 
tasty.demo.
datexis.com

https://tasty.demo.datexis.com
https://tasty.demo.datexis.com
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TraiNER: Bootstrapping Named Entity Recognition

42Unpublished, proof of concept for German industry partner
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Smart-MD: Clinical Decision Support System
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R. Schneider, S. Arnold, T. Oberhauser, T. Klatt, T. Steffek and A. Löser (2018). Smart-MD: Neural Paragraph Retrieval of 
Medical Topics. WWW 2018 (Companion): 203–206
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CDV Healthcare Retrieval

44

Online: 
https://cord19.

cdv.demo.
datexis.com

J.-M. Papaioannou, S. Arnold, F. A. Gers, A. Löser, M. Mayrdorfer, and K. Budde (2020). Aspect-Based Passage Retrieval with Contextualized 
Discourse Vectors. Submitted to: ECIR 2021 System Demonstrations

https://cord19.
https://cord19.
https://cord19.


7. Conclusion and Future Work
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Contributions

TASTY, SECTOR and CDV are Neural Machine Reading architectures for 
domain-specific language understanding:

● Variety of languages and domains
● Robust against noise and spelling variations
● Document and discourse structure
● Entity Linking, Topic Modeling, Answer Retrieval tasks
● Efficient to train
● In-depth error analysis

Implementation available under Apache V2 license 
https://github.com/sebastianarnold/TeXoo

46

https://github.com/sebastianarnold/TeXoo
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Limitations

Writing systems

● All experiments in Latin script
● Sentence and token normalization necessary

47

Self-supervision

● Preprocessing tailored to training data
● Holistic approach: Weak-supervision

Optimization objectives

● We focused on task accuracy (Prec/Rec/F1)
● Reality: result diversification, freshness, trust, popularity, etc.
● Dynamically changing objectives
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Future Work

Hierarchical Knowledge Representations

● Capture hypernym/hyponym relations
● Model semantic hierarchies in vector space

48

Uncertainty Modeling

● Data distribution changes from training to inference time
● Report level of confidence

Continual Learning

● Continuously learn from new data
● Prevent catastrophic forgetting
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