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Abstract

Using pre-trained Language Models (LMs), such as ELMo [54], BERT [19], or GPT models

[55, 56, 7], show good empirical results on a wide range of Natural Language Processing

(NLP) downstream tasks. However, these large models consist of millions or even billions

of parameters, making training and inference slow and computationally expensive, es-

pecially in resource-constrained environments. In this thesis, we discuss and compare

four approaches to compress BERT based on literature research and choose Theseus Com-
pression (TC) as most promising for further experimental evaluation. We introduce and

show the bene�ts of changing TC’s initialization procedure and present a comprehen-

sive analysis of its hyperparameters. A concluding qualitative error analysis reveals that

TC e�ciently compresses the original model’s knowledge into a smaller model. For a

comprehensive evaluation of TC’s performance, we use three datasets of two domains,

hate speech and medical domain, for two binary-classi�cation downstream tasks, German

hate speech detection and in-hospital mortality prediction. Our best experiments show

that domain-speci�c models compressed with Theseus Compression are 1.67× smaller,

train downstream tasks more than 2× faster, retain up to 99% prediction performance, and

increase inference speed, on average, 1.94× on CPU, and 1.73× on GPU.
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1 Introduction

Natural Language Processing (NLP) is a widely studied research area and powers a broad

set of applications, such as translation systems, voice assistants, or chatbots. In recent

years, the rise of transfer learning, which means using pre-trained Language Models

(LMs), increased the development cycle speed of NLP systems. Besides this, the usage

of large-scale pre-trained LMs, such as ELMo [54], BERT [19], or GPT models [55, 56,

7], also signi�cantly improved the performance in almost all sub-areas of NLP. On the

other hand, this poses the problem that these models consist of millions or even billions of

parameters, making them computationally expensive and memory ine�cient. Further, the

model sizes make it di�cult to apply them on real-world applications, where conditions,

e.g., maximum inference time, need to be met.

For this reason, in the past few years, model compression gained attention. It aims to

reduce the number of parameters without or with as little performance loss as possible

[8]. To underline the importance of this research �eld, a brief overview of NLP’s history

follows.

Rule-based natural language processing Research in NLP began in the 1950s when Alan

Turing proposed the famous Turing Test [72] as a criterion of intelligence [17]. In the very

early years, NLP research was dominated by the creation of dictionaries and research on

the syntax of language [36]. At that time, NLP systems were based on hand-written rules,

like SHRDLU [76], published in 1971. However, rule-based applications’ disadvantages

are that rules rely on expert knowledge, which is expensive, and need to be continuously

adjusted.

Statistical natural language processing Later on, the availability of machine-readable text

grew rapidly, reinforced by the rise of the Internet [36]. Starting in the early 1980s [36],

instead of using �xed rules, statistical NLP "comprises all quantitative approaches to

automated language processing, including probabilistic modeling, information theory, and

linear algebra. While probability theory is the foundation for formal statistical reasoning

[...] encompassing all quantitative approaches to data" [47]. This means that statistical

models are trained based on the automated analysis of large text corpora.

A well-studied research area is, e.g., Statistical Machine Translation (SMT), which pow-

ered systems such as Google Translate
1

that was launched in 2006
2
.

1
Link: https://translate.google.com

2
Source: https://ai.googleblog.com/2006/04/statistical-machine-translation-live.html - Ac-

cessed July 09, 2020

1

https://translate.google.com
https://ai.googleblog.com/2006/04/statistical-machine-translation-live.html


1 Introduction

Deep learning-based natural language processing Bengio et al. [6] proposed the �rst

Neural Language Model that computes word embeddings. A LM tries to compute the

probability of a word FC given the previous words, i.e., % (FC |F1, ...,FC−1), and, in this

context, word embeddings are vector representations of the input in a lower-dimensional

space [48]. Although Bengio et al. [6] laid the foundation for modern models in 2000,

Neural Networks (NNs) have only been applied to real-world applications from 2010 [17].

As an example, Google �rst experimented in 2014 with Recurrent Neural Networks (RNNs)

[69] for their translation system Google Translate and �nally switched from the previous

SMT to Neural Machine Translation in 2016
3
.

Pre-trained language models In 2015, Dai and Le [13] proposed to reuse pre-trained LMs

for downstream tasks and presented this technique’s strong performance. Since then,

the research community developed several advanced model architectures that further

improved the model’s performance. The most important architectures for this thesis are

described in more detail in Section 2.1.

In recent years, the release of the model Embeddings from Language Models (ELMo)
[54] started a trend toward even vaster general-purpose LMs (see Figure 1.1), followed

by GPT [55] and �nally, the State-of-the-art (SOTA) NLP model Bidirectional Encoder
Representations from Transformers (BERT), which is described in more detail in Section

2.1.4. These models boosted the performance on all sub-tasks of the General Language

Understanding Evaluation (GLUE)-benchmark [74], a benchmark speci�cally designed for

models that share linguistic knowledge across downstream tasks.

Nevertheless, the steadily increasing model sizes lead to the downside that these models

are di�cult to apply on real-world applications. This directly leads to this thesis’ motivation

for investigating model compression, described in detail in the following section.

1.1 Motivation

Using LMs is SOTA and show good empirical results on a wide range of downstream

tasks [54, 55, 19]. Besides the increase in performance, this has the advantage that the

computational expensive unsupervised pre-training process does not have to be repeated

[19]. Moreover, compared to pre-training, only a downstream task-speci�c labeled dataset

and relatively weak hardware and time constraints are necessary for �ne-tuning.

For example, Devlin et al. [19] stated that pre-training of the basic con�guration of

BERT with 110M parameters was performed on "4 Cloud TPUs in Pod con�guration (16

TPU chips total) [and] took 4 days to complete"
4
. However, the training of the GLUE

downstream tasks took "at most 1 hour on a single Cloud TPU, or a few hours on a GPU"

[19].

3
Source: https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html - Accessed July

09, 2020

4
Tensor Processing Units (TPUs) are Google’s highly specialized chips for deep learning. Source:

https://cloud.google.com/blog/products/ai-machine-learning/what-makes-tpus-fine-tuned-for-

deep-learning - Accessed July 10, 2020

2

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
https://cloud.google.com/blog/products/ai-machine-learning/what-makes-tpus-fine-tuned-for-deep-learning
https://cloud.google.com/blog/products/ai-machine-learning/what-makes-tpus-fine-tuned-for-deep-learning


1.1 Motivation

The trend toward vaster models The trend shown in Figure 1.1 goes clearly toward bigger

model architectures. In the last month, much vaster models have been released, e.g.,

Figure 1.1: Development of released Natural Language Processing model sizes over time.

[60]

Conditional Transformer Language (CTRL) with 1.63B parameters, T5 with 11B parameters

[57], and GPT-3 with 175B parameters [7]. The increasing number of parameters, of course,

also a�ects the training time of these models. Table 1.1 presents the training time of some

selected models based on the evaluation of Strubell et al. [65]. Note that the models’

training uses di�erent hardware. The chip’s theoretical performance is shown in the

column TeraFLOPS5
.

Model Params Hardware TeraFLOPS Hours (Total) ˜ Hours (1 Chip)

ELMo 94M P100x3 5.3
6

336 1008

BERTbase 110M TPUv2x16 180
7

96 1536

GPT-2 1.5B TPUv3x32 420
8

168 5376

Table 1.1: Pre-training time of Language Models. Even with more advanced hardware, the

pre-training time of vaster Language Models explodes. [65]

5
TeraFLOPS means trillion �oating-point operations per second

6
Source: http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-datasheet.pdf - Ac-

cessed July 12, 2020

7
Source: https://cloud.google.com/tpu/ - Accessed July 12, 2020

8
Source: https://cloud.google.com/tpu/ - Accessed July 12, 2020

3
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Reasons for compression Besides the increasing pre-training times for these LMs, this

trend raises additional concerns. First, huge LMs need long inference times [34], especially

for deployments on weaker or non-specialized hardware such as CPUs. Second, longer

inference times consequentially lead to higher training times for downstream tasks. Third,

deploying such models to low resource environments, e.g., web applications or even

edge-devices is impossible due to the computational and memory constraints [60].

Combining those disadvantages of vast models with the �nding that trained models

consist of redundant parameters [18, 15, 22] results in increasing e�ort ofmodel compression,

which tries to reduce the number of parameters without or with as little performance loss

as possible [8]. The starting point for BERT compression represents the release of the

with knowledge distillation (see Section 2.2.3) compressed model DistilBERT that is small

enough to run on edge-devices [60].

From another perspective, during research, it is often necessary to perform a high

number of experiments. Using smaller models that potentially need shorter training times

helps to iterate more quickly. Therefore, a compressed BERT is valuable for supporting

research. On the other hand, applying BERT without �ne-tuning its language model

does not always lead to satisfying performance. As an example, Lee et al. [41] stated

that "pre-training BERT on biomedical corpora is crucial in applying it to the biomedical

domain". This raises the question, if model compression can help to train domain-speci�c

compressed BERT that supports fast experiment iterations, which is the central research

objective of this thesis.

1.2 Aim of Research and Methodology Outline

This thesis’s main objective is to evaluate whether the usage of a domain-speci�c com-

pressed BERT helps to speed up experiment iterations. For this, we discuss and compare

existing compression approaches and choose one that will be used for further experimental

evaluation. Therefore, we use two binary classi�cation downstream tasks in two domains,

the medical and hate speech domain. We choose these for two reasons: �rst, both domains

are not considered in the GLUE-benchmark and consist of very di�erent texts, and second,

the DATEXIS
9

research group in which this work was carried out works, among others, in

these areas.

Methodology outline We start by de�ning the downstream tasks hate speech detection
and in-hospital mortality prediction and the choice of corresponding datasets (see Sections

3.2 and 3.3). The evaluation metrics are two folded and refer to the model’s prediction

performance and the performance of the compression process itself (see Section 3.4).

The benchmark framework we use to evaluate this thesis’s main objective experimen-

tally is as follows. To maximize the comparability, we start our evaluation with the

implementation and training of baseline models (see Section 3.5.1). We then experiment

with Theseus Compression (TC)’s initialization procedure (see Section 3.5.2) and use the

most promising for further hyperparameter analysis (see Section 3.5.3). Moreover, based

9
Research group "Data Science and Text-based Information Systems (DATEXIS)" at Beuth University of

Applied Sciences Berlin. Link: https://prof.beuth-hochschule.de/loeser/

4
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1.3 Thesis Structure

on their prediction performance, the best models are used for an in-depth evaluation of

TC.

1.3 Thesis Structure

This thesis is structured into six chapters as follows. Chapter 2 lays the theoretical founda-

tions. It describes the model BERT and presents di�erent approaches for its compression.

Subsequently, it compares the compression approaches and chooses the most promising

for further experimental evaluation. Chapter 3 introduces our methodology, which gives

an overview of the downstream tasks, datasets, metrics, benchmark framework, and infras-

tructural environment. Chapter 4 presents our implementations in detail, while Chapter 5

shows our experiments, evaluates and discusses them. In the end, Chapter 6 concludes

and gives an outlook of possible future work.

5





2 Theoretical Foundations

This chapter lays the theoretical foundations for this thesis. We start with the description

of several developments that �nally led to the model BERT. All of these milestones built

up on each other and increased the performance of models at that time.

In the second part, we introduce several compression approaches for BERT and discuss

them based on related work. For this, we outline their advantages and disadvantages, as

well as show their results.

In the end, we de�ne categories to compare the compression approaches. We use the

presented papers as proxies and, �nally, choose Theseus Compression as most promising

for further experimental evaluation.

2.1 Major Milestones toward Model BERT

In this section, we present the developments that led to BERT and introduce the mathe-

matical notations for this thesis. Starting with the encoder-decoder architecture, several

improvements increased its performance and enabled the SOTA Transformer architecture.

BERT’s authors [19] resemble this architecture, introduce two pre-training procedures,

and describe an easy-to-use framework.

2.1.1 Encoder-Decoder Model and Attention Mechanism

In 2014, Cho et al. [11] proposed a novel model architecture for SMT, the RNN Encoder-
Decoder, that outperforms former models. It �rst encodes an input sequence into a context

vector and uses this intermediate representation to generate an output sequence. This idea

still powers the most recent SOTA models [19, 54, 56], even though they were developed

further.

Encoder The encoder of the by Cho et al. [11] proposed model architecture, illustrated in

Figure 2.1, receives the input sequence x = (G1, ..., G=) step-by-step and compresses the

information of the �rst word into a �xed-length hidden state vector h1 of arbitrary size.

Subsequently, each following step takes the last hidden state hi−1 and the respective input

token G8 into account to compute the hidden state:

hi = 5 (hi−1, G8) (2.1)

where 5 is a non-linear activation function. By applying Equation 2.1 = times, the encoder

computes a �xed-length context vector c = hn that captures the entire input sequence.

7



2 Theoretical Foundations

Figure 2.1: Encoder-Decoder model. The decoder uses for each step the �xed-length hidden

state 2 , the previous decoder hidden state ℎ8−1, and the previous output ~8−1 to

compute the output ~8 . [11]

Decoder The decoder generates a new output sequence. For each decoding step 8 ∈ [1,<],
where< is the output sequence length, the decoder computes a decoder hidden state hi
and output yi. Therefore, it takes the previous decoder hidden state hi−1, the previous

output yi−1, and the context vector c into account:

hi = 5 (hi−1, yi−1, c) (2.2)

Finally, it feeds the hidden state yi into another activation function 6, e.g., the softmax

function:

yi = 6(hi) (2.3)

This produces a probability distribution over the set of possible output tokens, i.e., in the

context of SMT, the vocabulary of the target language. [11]

Attention mechanism The Attention Mechanism improves the encoder-decoder architec-

ture and tackles the shortcomings of the single point of communication in the form of a

�xed-length context vector. This approach instead provides a separate context vector for

each decoder step and gives the decoder the ability to learn to pay attention to the input

sequence’s important parts. [5]

Bahdanau, Cho, and Bengio [5] proposed to use Bidirectional RNNs (Bi-RNNs), which

consist of two RNNs, a forward and backward RNN. The forward RNN computes the

forward hidden states (−→ℎ1, ...,
−→
ℎ=) based on

−→G = (G1, ..., G=). The backward RNN computes

the backward hidden states (←−ℎ1, ...,
←−
ℎ=) based on

←−G = (G=, ..., G1), correspondingly. An

annotation for input token G8 that depends on all surrounding words in the input sequence

is then obtained by concatenating the forward and backward hidden states:

ℎ8 = [
−→
ℎ8 ;
←−
ℎ8 ] (2.4)

The usage of several context vectors changes the de�nition of the decoder hidden states

to

hi = 5 (hi−1, yi−1, ci) (2.5)

8



2.1 Major Milestones toward Model BERT

where the context vector ci is computed as a weighted sum of the encoder hidden states

ℎ8 and a simultaneously learned feedforward neural network. As the authors stated:

"Intuitively, this implements a mechanism of attention in the decoder. The decoder decides

parts of the source sentence to pay attention to" [5].

Since the model’s decoder can learn to pay attention to speci�c parts of the entire

encoded sequence, it is also known as global attention [46]. However, this global attention

can not be used for the encoder step since it obliges extra input. Therefore, the question

arises if the approach of attention can also be applied to the encoder stage of such models,

the answer was introduced by Lin et al. [43] and is called: Self-attention Mechanism.

2.1.2 Self-attention Mechanism

Encoder-decoder models increased the performance of NLP models and in�uenced the

development of most recent SOTA models. The attention mechanism tackled the short-

coming of a single point of communication between the encoder and decoder step in form

of a �xed-length context vector. However, the approach of global attention is restricted to

the decoder step. Another type of attention, the self-attention, addresses this issue.

Lin et al. [43] proposed a self-attentive model for sentence embeddings that overcomes

this shortcoming by letting the sequence pay attention to its context and weights the

relevance of the respective parts of the input.

The objective "is to encode a variable-length sentence into a �xed size embedding" [43].

Let x = (G1, ..., G=) be a sequence of word tokens. First, Lin et al. [43] computed the hidden

states consistent with Equation 2.4 with a Bi-RNN with D hidden units. Hence, the matrix

� = (ℎ1, ℎ2, ..., ℎ=) containing = hidden states: � ∈ R=×2D

0 = B> 5 C<0G (ws2C0=ℎ(,B1�
>)) (2.6)

,B1 ∈ R30×2D is a learned matrix and ws2 a learned vector of size 30 , where 30 is a hyper-

parameter and can be arbitrarily chosen. Finally, the attention context vector c is the sum

of scaled hidden states and gets calculated as

2 = a)� (2.7)

Multi-hop Attention Further, Lin et al. [43] introduced a multi-hop attention to capture

di�erent parts of the input sentence. To calculate A representations, the authors extended

ws2 into a matrix,B2 ∈ RA×30 . The corresponding attention scores vector gets matrix �:

� = B> 5 C<0G (,B2C0=ℎ(,B1�
>)) (2.8)

and the attention context vector gets a matrix � correspondingly

� = �� (2.9)

Penalization term The authors [43] found that this attention context matrix� often focus

on similar or the same aspects multiple times. Thus, they introduced a penalty term %

9
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that punishes this redundancy and forces the attention context vectors to focus on single

aspects. % is de�ned as

% = | | (��> − � ) | |2� (2.10)

where | |•| |2
�

is the squared Frobenius norm of a matrix.

2.1.3 Transformer Model

The attention mechanism allows the decoder to focus on the important parts of the input

sequence and, therefore, overcomes the shortcomings of a �xed-length context vector.

Further, self-attention addresses the lack of bene�ts of attention in the encoder step. The

usage of self-attention in the encoder and attention in the decoder successfully increase the

performance of models based on RNNs. However, the sequential nature of these models

reduces the parallelization possibilities and memory e�ciency, especially during training

[73]. The Transformer architecture was developed to overcome these shortcomings by

abandon the usage of RNNs.

Figure 2.2 shows the architecture overview of the Transformer model proposed by

Vaswani et al. [73]. Both the encoder and decoder are composed of stacks of identical

layers, which are very similar and powered by Multi-Head Attention that is described in

Section 2.1.3.1.

Encoder The left-hand side of Figure 2.2 depicts the encoder stacks that consist of two

sub-layers: A form of self-attention (see Section 2.1.3.1) based on multi-head attention

(Multi-Head Attention, orange) and a position-wise fully connected feed-forward network

(Feed Forward, blue). Each of the two sub-layers is surrounded by a residual connection [29]

and followed by layer normalization (Add & Norm, yellow) [4]. The former helps to build

deeper models by letting the model learn to skip layers that would harm its performance;

the latter turns out to improve training time and generalization performance. Based on

[73, 42], the position-wise feed-forward network can be seen as responsible for learning

cross-attention-head interactions. The layer’s output is input for the next one in the stack;

the top-most output is input for the decoder, correspondingly. Therefore, outputs of all

layers need to be of identical dimension, de�ned by the hyperparameter 3<>34; that can be

arbitrarily chosen. [73]

Decoder The right-hand side of Figure 2.2 shows the decoder stacks. First, it applies

self-attention (Masked Multi-Head Attention, orange) on the already generated output

sequence (~1, ..., ~8−1). Therefore, it masks the future context (~8, ..., ~<), where< is the

output length. Second, based on the encoder’s output, the decoder incorporates the concept

of global attention (Multi-Head Attention, orange). Finally, it uses a position-wise fully

connected feed-forward network (Feed Forward, blue). Identically to the encoder, all three

sub-layers use residual connections and layer normalization and feed its output to the next

layer in the stack where the output of the top-most layer is the decoder’s output. This is

fed to a linear and softmax layer to compute the model’s next output token ~8 . [73]

For both stages encode and decode, the sequences are �rst of all embedded (Input
Embedding, red), and annotated with a positional encoding. [73]

10
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Figure 2.2: Transformer architecture overview. On the left # -stacked encoder layers, and

on the right # -stacked decoder layers. [73]

2.1.3.1 RNN-less Attention Mechanisms

Vaswani et al. [73] developed the concept of attention further to abandon RNNs. The

authors described the attention mechanism as "mapping a query and a set of key-value

pairs to an output". Their proposed Scaled Dot-Product Attention is similar to Equation 2.8.

However, they introduced a scaling factor
1√
3:

. Similar to Section 2.1.2, the attention is

applied simultaneously on a set of query & , keys  , and values + . Therefore, the vectors

extend to matrices:

�CC4=C8>=(&, ,+ ) = B> 5 C<0G (& 
>

√
3:
)+ (2.11)

The computation graph of this is shown in Figure 2.3a.

Multi-head attention Another improvement in their type of attention is the idea of using

multi-head attention. Vaswani et al. [73] found that learning ℎ linear projections for

queries, keys and values to 3@ , 3: and 3E dimensions increase the performance of the

11
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(a) Scaled Dot-Product Attention. (b) Multi-Head Attention.

Figure 2.3: Attention mechanisms in the Transformer model. [73]

model, where ℎ is a hyperparameter and can be arbitrarily chosen. By using smaller

dimensions 3: = 3E =
3<>34;
ℎ

for each attention head, the overall computational complexity

stays similar. Each head applies the attention function in parallel. Their results then get

concatenated and again linearly projected, resulting in the �nal output shown in Figure

2.3b.

"D;C8�403�CC4=C8>=(&, ,+ ) = [ℎ4031, ..., ℎ403ℎ], $
(2.12)

Where the projection matrix, $ ∈ Rℎ3E×3<>34; are learned parameters. The computation

for each ℎ4038 extends, correspondingly, to:

ℎ4038 = �CC4=C8>=(&, &

8
,  ,  

8 ,+,
+
8 ) (2.13)

Where the projections are also learned parameters:,
&

8
∈ R3<>34;×3@ ,,  

8 ∈ R3<>34;×3: and

, +
8
∈ R3<>34;×3E .

As shown in Figure 2.2, multi-head attention is used in three di�erent ways [73]:

Encoder Self-attention
Keys, values, and queries come from the output of the previous layer. Therefore,

each position in the encoder can pay attention to all positions in the previous layer.

Decoder Self-attention
Similar to the encoder self-attention, each position in the decoder can pay attention

to all positions in the decoder up to and including that position. Therefore, the

scaled dot-product attention masking out (setting to −∞), see Figure 2.3a.

Global Attention
Queries are from the previous decoder layer, keys and values come from the decoder’s

output. Therefore, every position in the decoder can pay attention to all positions of

the input sequence.

12
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2.1.3.2 Positional Encoding

The Transformer model does not need RNNs to apply attention; however, it loses the

position of input sequences [73]. Therefore, the authors introduced Positional Encodings
to include position information to word embeddings.

Vaswani et al. [73] discussed and experimented with di�erent choices of positional

encodings, learned and �xed. They decided to choose �xed sinusoidal functions due to the

hypothesis "it may allow the model to extrapolate to sequence lengths longer than the

ones encountered during training" and nearly identical results during their experiments.

The used positional encoding functions are [73]:

%�(?>B,28) = B8=(
?>B

10000

28
3<>34;

) (2.14)

%�(?>B,28+1) = 2>B (
?>B

10000

28
3<>34;

) (2.15)

where ?>B is the absolute position of the input and 8 the functions’ dimension. The resulting

positional encodings have the same length as the input embeddings, so that they can be

summed.

A wide range of models are transformer-based, e.g., GPT models [55, 56, 7], or Transformer-

XL [14]. However, the most well known is BERT, which is described in the following

section.

2.1.4 Bidirectional Encoder Representations from Transformers (BERT)

Using LMs show good empirical results on many NLP tasks [55, 32, 53]. ELMo showed

that building bidirectional LMs signi�cantly improves their performance [54]. However, it

shallowly concatenates the forward and backward context on input sequences. In contrast

to this, GPT model [55] leverages the more advanced transformer decoder architecture but

neglects future context. For this reason, Devlin et al. [19] introduced BERT to overcome

the shortcomings of a unidirectional LM.

Language Model Manning, Raghavan, and Schütze [48] de�ned that a Language Model

(LM) tries to compute the probability of a wordFC given its context, e.g., % (FC |F1, ...,FC−1).
A unidirectional LM only incorporates previous tokens as context to predict the following

word. Consistently, a bidirectional LM uses all available tokens for prediction.

Cloze procedure Building a bidirectional LM based on transformer models entails chal-

lenges. The multi-layered transformer model has to ensure that the input token does not

see itself. Otherwise, predictions are trivial because the target word is part of the input.

Therefore, Devlin et al. [19] proposed Masked Language Model (MLM) that is inspired by

the idea of cloze procedure [71]. Instead of using the preceding words for prediction of the

succeeding one, MLM masks certain words (targets) and uses the remaining for prediction.

15% of the input tokens are dedicated as targets. If the 8-th token is chosen, the following

rules are applied for replacements:

13
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• 80% replace it with the token [MASK]:

I am going to miss being a student -> I am going to miss being a [MASK]

• 10% replace it with a random word:

I am going to miss being a student -> I am going to miss being a cat

• 10% keep it unchanged:

I am going to miss being a student -> I am going to miss being a student

Next Sentence Prediction For speci�c tasks, e.g., Natural Language Inference and Ques-

tion Answering (QA), the models need to understand relationships between sentences.

For this, Devlin et al. [19] introduced Next Sentence Prediction (NSP). The objective of

this task is to predict whether a sentence � follows �. Speci�cally, 50% of the time � is the

actual next sentence, and 50% is a randomly selected sentence. With the combination of

both MLM and NSP, the model learns a more comprehensive language understanding.

Input representation BERT can handle a variety of downstream tasks to make it applicable

for transfer learning. For this, it uses WordPiece embeddings and a collection of metadata

[19]. WordPiece embeddings reduce the vocabulary size and simultaneously increase

the performance for rare words by splitting them into common sub-word units (see

tokens of the word ”?;0~8=6” in Figure 2.4) [77]. Let � = (”"~”, ”3>6”, ”8B”, ”2DC4”), and

� = (”�4”, ”;8:4B”, ”?;0~8=6”) be sentences of the input - . First of all, the model adds the

unique tokens [�!(] and [(�%] to the input sequence, see Figure 2.4. [�!(] is always the

�rst token, the �nal hidden state corresponding to this token then represents the whole

aggregated sequence. The [(�%] token separates the input sentences. The augmented input

is word-piece tokenized [77] to create the Token Embeddings. Besides the usual Position
Embeddings of the transformer model, BERT adds Segment Embeddings that represent

whether the token corresponds to sentence � or �. These three representations of the

input are �nally summed up and used as the input representation for BERT. [19]

E0 E7 E10E9E1 E4E2 E6E3 E8E5

Input

Token
Embeddings

Segment
Embeddings

Position
Embeddings

likes[CLS] [SEP]##ingmy cutedog heis play[SEP]

ElikesE[CLS] E[SEP]E##ingEmy EcuteEdog EheEis EplayE[SEP]

EBEA EBEBEA EAEA EBEA EBEA

+ + + + + + + + + + +

+++++++++++

Figure 2.4: Input representation of BERT. The input embeddings are the sums of token

embeddings, segment embeddings, and position embeddings. [19]

In summary, Devlin et al. [19] introduced a simple framework that consists of pre-
training and �ne-tuning a model. They focused on usability and made sure that BERT can

easily be adapted for several downstream tasks. Most of the time, adding a single layer is

sensible to reuse BERT’s knowledge and �ne-tune the model regarding a speci�c task. The
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authors performed the computationally expensive part
1
, the pre-training, and released

two model sizes:

BERTbase
! = 12 transformer layers, ℎ = 12 attention heads, and3<>34; = 768 hidden size. Total

parameters: 110M

BERTlarge
! = 24 transformer layers, ℎ = 16 attention heads, and 3<>34; = 1024 hidden size.

Total parameters: 340M

Using a high number of parameters to achieve good model performance almost always

comes with the drawback of increasing memory consumption and prediction time. In this

thesis, we focus on compressing ��')10B4 . The following section describes the concept of

model compression and approaches to compress BERT.

2.2 Compression Approaches for BERT

Early research in the �eld of model compression compressed ensemble models into a single

model [8]. Later on, the usage of SOTA feature extractors, like VGG for Computer Vision

[63] and BERT for NLP [19], and transfer learning became popular. This shifts the focus

to compress single models and reduce the size of pre-trained large-scale generic models,

e.g., [60, 34, 25, 80, 62].

Definition and terminology In general, model compression aims to reduce the number of

parameters without or with as little performance loss as possible [8]. Nevertheless, the

reasons for model compression are manifold. For example, reducing the model’s size for

deployment on edge devices, increasing the model’s speed to reach real-time requirements,

or decreasing the training time based on a compressed model. Throughout this thesis, we

use terminology as follows.

Model Performance or Prediction Performance
Refers to the model’s prediction performance on the trained downstream task.

Common metrics are accuracy, F1, or ROC/AUC.

Model Size
The storage used to save the model’s parameters to disc. It is often speci�ed in MB.

The smaller the better.

Model Speed and Prediction or Inference Time
Model Speed can be viewed as

1

?A4382C8>= C8<4
. The model’s prediction time for one

example or a batch of examples is speci�ed in seconds (s) or milliseconds (ms), and

the smaller the better. Thus, higher model speed is better.

1
"Training of ��')10B4 was performed on 4 Cloud TPUs in Pod con�guration (16 TPU chips total)" [19]
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Model Training Speed
The time until the model performance is maximized. The smaller the better.

Model Memory Consumption
The necessary main memory used for predictions. The smaller the better.

The following sections describe the most important compression approaches for BERT.

2.2.1 Quantization

Quantization in general means the reduction of precision. In the context of compressing

BERT, this refers to the representation of the model’s weights [23]. Usually, models are

using 32-bit �oating numbers for the parameter representations because modern hardware

cannot handle high precision number calculations with less than 32 bits [75]. Truncating

each 32-bit weight to target bitwidth, e.g., 16-bit reduces the model’s size in this case by a

factor of two. This very naive static approach often produces a sizable performance drop

[23].

Quantization aware training In contrast to the static approach, quantization aware train-

ing needs additional training steps to adjust the quantized weights. However, it can,

therefore, retain more of the model’s performance. A more advanced technique also incor-

porates the layer’s sensitivity regarding quantization and uses mixed-precision quantization
to adapt the target bitwidth. [62, 80]

2.2.2 Pruning

Pruning is based on the fact that models are typically over-parameterized, and after training,

consist of signi�cant redundancy [18]. Pruning identi�es and removes the redundant or

less important weights or parts [23]. This sometimes increases the model’s performance

and makes it more robust [23]. Ganesh et al. [23] divide pruning approaches applied on

BERT into two categories: Elementwise Pruning and Structured Pruning.

Elementwise pruning The goal of elementwise pruning, also known as sparse pruning,

is omitting individual weights. For this, it uses measurements to determine the weight’s

importance and, �nally, de�nes a set of least important weights. Possible importance

measurements are, e.g., based on their absolute values or gradients. [23]

Structured pruning In contrast to elementwise pruning, structured pruning focuses on

removing architectural components. For BERT, deleting attention heads or even whole

encoder layers are the most common approaches. Since the original ��')10B4 consists of

! = 12 layers with each ℎ = 12 attention heads (see Section 2.1.4), removing redundant

parts holds great potential for compression. [23]
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2.2.3 Knowledge Distillation

Knowledge Distillation (KD) "is a compression technique in which a compact model – the

student – is trained to reproduce the behaviour of a larger model – the teacher – or an

ensemble of models" [60]. For this, it introduces one or more additional !38BC8; distillation

loss functions used to transfer BERTs language model capabilities. Ganesh et al. [23]

distinguished between three categories of KD: distillation on logits output, distillation on
encoder outputs, and distillation on attention maps.

Distillation on logits output The simplest KD scenario treats the distillation as an end-

to-end task. An additional loss function !38BC8; enables the student to take the teacher’s

output into account, i.e., the student can directly learn from the teacher’s logits. For this,

Hinton, Vinyals, and Dean [31] introduced a temperature ) hyperparameter to the softmax

function that controls to which extent the student relies on the teacher. The adjusted

softmax is computed as

B> 5 C<0G (I8,) ) =
4G? ( I8

)
)∑

9 4G? (
I 9
)
)

(2.16)

where I8 is the model score for class 8 . The student’s training objective is a linear combina-

tion of the distillation loss !38BC8; with the supervised training loss.

For distillation on logits output, the student does not need to be a smaller version of the

teacher. Often, this type of KD is used to transfer the teacher’s knowledge into another

simpler model architecture [70, 44].

Distillation on encoder outputs In contrast to quantization, pruning, and distillation on

logits output, distillation on encoder outputs is not model agnostic. As the name suggests,

it creates a smaller BERT by either reducing the number of layers !, the number of attention

heads ℎ, or both. [23]

More concrete, Jiao et al. [34] de�ned !38BC8; to reduce ℎ as follows:

!38BC8; = !ℎ8334= = "(� (H(Wℎ,H) ) (2.17)

where the matrices H( ∈ R=×3BCD34=C and H) ∈ R=×3C402ℎ4A refer to the student’s and teacher’s

hidden states and = denotes the input’s length. Usually, one chooses the 3BCD34=C < 3C402ℎ4A
to obtain a smaller student model. Matrix Wℎ ∈ R3BCD34=C×3C402ℎ4A are learned parameters to

transform the student’s hidden states into the same space as teacher network’s hidden

states. For compression, !ℎ8334= is applied on several layers. One challenge is that the

student can not learn from the teacher’s output, which can be tackled by simultaneously

reducing the number of layers ! [23].

Reducing ! forces the student’s layers to learn from a sequence of teacher’s layers.

For this, a student model with " < # layers is used, where student layers< ∈ {1, ..., "}
and teacher layers = ∈ {1, ..., # }, and Equation 2.17 with 3BCD34=C = 3C402ℎ4A is applied. This

encourages the student layer to learn from all teacher layers < =. [23, 34]
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Distillation on attention maps The before mentioned distillation approaches can be di-

rectly applied to reduce model size. Distillation on attention maps is used besides. Like

Equation 2.17, Jiao et al. [34] de�ned !0CC= as:

!38BC8; = !0CC= =
1

ℎ

ℎ∑
8=1

"(� (ℎ403(8 , ℎ403)8 ) (2.18)

This means the mean squared errors of the ℎ attention heads.

2.2.4 Theseus Compression

TC is the latest of the before mentioned compression approaches. It was proposed by Xu

et al. [78] in 2020 and is "inspired by the famous thought experiment ’Ship of Theseus’

in Philosophy, where all components of a ship are gradually replaced by new ones until

no original component exists". The main idea is the progressive replacement of parts of

the original BERT model with modules of fewer parameters. Like KD, TC encourages the

compressed model – the successor – to behave like the original model – the predecessor.

Module replacing Xu et al. [78] divided the predecessor model % into = predeces-
sor modules and de�ned for each a successor module. Thus, % = {?A431, ..., ?A43=} and

( = {BD221, ..., BD22=} where ?A438 and BD228 denote the predecessor modules and their

corresponding successor modules, respectively. This de�nes the single constraint of TC:

BD228 must have same input and output sizes as ?A438 .

��')10B4 with ! = 12 layers (see Section 2.1.4) as the predecessor model serves as

continuous example. Further, ?A438 consists of two and BD228 of one transformer layer,

Figure 2.5a shows this setting. The initialization of the successor model ( corresponds to

the �rst six layers of the predecessor model. The output of the 8-th module is denoted as

Output

Input

(a) Module Replacement.

Output

Input

(b) Successor Fine-tuning and Inference.

Figure 2.5: The two phases of Theseus Compression. (a) Module Replacement and (b)

Successor Fine-tuning. [78]
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08 , then the forward step of one layer can be described in the form of:

08 = ?A438 (08−1) (2.19)

During compression, TC replaces ?A438 with BD228 by a chance of the replacement rate an

independent Bernoulli random variable

A8 ∼ �4A=>D;;8 (?) (2.20)

which has probability ? to be 1, and (1 − ?) to be 0. Thus, Equation 2.19 can be adapted to

08 = A8 ∗ BD228 (08−1) + (1 − A8) ∗ ?A438 (08−1) (2.21)

where ∗ denotes the element-wise multiplication. During training, predecessor modules’

weights are frozen, and only the successor modules’ weights are updated. For this, TC

only uses the task-speci�c loss function, e.g., Cross Entropy.

Successor fine-tuning In the second phase of TC, all successor modules are getting col-

lected and used for successor �ne-tuning. This phase is equal to use replacement rate ? = 1

(see Figure 2.6a). Since each BD228 is smaller than ?A438 in size, the predecessor model % is

compressed into a smaller model ( . [78]

Curriculum replacement Moreover, Xu et al. [78] highlighted the improvements in using

a dynamic replacement rate ?3 instead of the constant replacement rate ? . The curriculum
replacement starts with a low value for ?3 that increases linearly throughout training (see

Figure 2.6b). Therefore, in the early stages of the training process, the model has more

guidance from the predecessor modules. Later on, the successor model gradually learns to

perform without help of predecessor modules. The dynamic replacement rate ?3 is de�ned

as

?3 =<8=(1, :B + 1) (2.22)

where B is the compression step, 1 is the starting replacement rate, and : > 0 is the coe�-

cient which controls the replacement rate changes. Figure 2.6 shows the two replacement

strategies throughout the training process. Where the constant strategy strictly divides

the two TC phases, curriculum replacement uses a much smoother transition.

2.2.5 Summary of Selected Related Work

This section gives an overview of related work for the compression approaches described

in Sections 2.2.1 to 2.2.4. It summarizes the most important insights and results for the

comparison in Section 2.3.

2.2.5.1 Quantization

As a reminder, quantization truncates the bitwidth of weights representation (see Section

2.2.1). Although many research focuses on model quantization [12, 20, 33, 81], only a few

papers apply quantization to BERT.
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(a) Constant Replacement.
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(b) Curriculum Replacement.

Figure 2.6: Replacement Strategies. Constant replacement (a) with a hard transition from

module replacement phase into the successor �ne-tuning phase and curriculum

replacement (b) with a smooth transition between these phases. [78]

Shen et al. [62] presented 13× compression by losing at most 2.3% prediction perfor-

mance. They applied mixed-precision quantization based on layer-wise analysis with

Hessian information to �nd less sensitive parameters for quantization. Further, the authors

proposed group-wise quantization that partitions the weight matrices into di�erent groups.

Each group then uses its own quantization scheme. Group-wise quantization helps to

reduce performance degradation. However, it increases hardware complexity.

Zafrir et al. [80] compared post-training quantization and quantization aware training

on the GLUE-benchmark. Using a target bitwidth of 8-bit, they achieved a 4× compression

by adding less than 1% relative error, excluding the task recognizing textual entailment
which is an outlier. Implementation is available

2
.

Both have in common that they compress the models during �ne-tuning for downstream

tasks.

2.2.5.2 Pruning

In the context of compressing BERT, pruning received much more attention than quantiza-

tion. Following Section 2.2.2, it is possible to prune speci�c weights, known as elementwise

pruning, or remove attention heads or complete layers called structured pruning.

Elementwise pruning Guo et al. [28] proposed a new pruning method speci�cally de-

signed for large-scale LMs: Reweighted Proximal Pruning (RPP). It �nds a sparse weight

pruned BERT with respect to speci�ed downstream tasks. The authors presented that RPP

achieves 59.3% sparsity without losing prediction performance on downstream tasks.

Gordon et al. [26] applied magnitude weight pruning during pre-training BERT. Mag-

nitude weight pruning removes weights close to zero. They stated that pruning 30-40%

does not decrease the prediction performance for downstream tasks. Implementation is

available
3
.

2https://github.com/NervanaSystems/nlp-architect
3https://github.com/mitchellgordon95/bert-prune
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Structured pruning Michel, Levy, and Neubig [50] iteratively pruned attention heads

based on the Taylor expansion method. They showed that it is possible to prune up to

20-40% without reducing the model’s prediction performance on the downstream task.

However, pruning was applied during �ne-tuning and its e�ciency is depending on the

downstream task and dataset. Further, GPU-based
4

experiments with a 50% pruned BERT

achieved 17.5% speedup with batch size bigger than 16. For smaller batches, the speedup

e�ect decreases. Implementation is available
5
.

Kovaleva et al. [39] con�rmed that not all heads are equally important. They even

showed that disabling parts of BERT could increase its performance for downstream tasks.

The best case shows 3.2% absolute improvement by removing a whole layer. However,

this is cumbersome because testing permutations of BERTbase’s 144 attention heads is

time-consuming.

Fan, Grave, and Joulin [21] introduced LayerDrop, a regularization technique that skips

complete layers during training time. They applied LayerDrop on pre-training from

scratch and showed that it is possible to select shallow sub-networks during inference

time without �ne-tuning them. However, they presented their results only on RoBERTa

[45], a BERT-like model.

2.2.5.3 Knowledge Distilling

KD aims to transfer knowledge of a teacher model into a student with fewer parameters.

The student must not necessarily follow the teacher’s network architecture (see Section

2.2.3).

Sun et al. [67] used distillation on encoder outputs on several intermediate layers.

They called their solution Patient Knowledge Distillation (PKD) and compressed directly

regarding speci�c downstream tasks. Their baseline implementation is very similar to

[60]; however, less e�cient since applied during �ne-tuning. Implementation is available
6
.

Sanh et al. [60] applied KD’s initial idea proposed by [31] and used distillation on logits

output. They distilled pre-trained BERTbase on the same corpus as it was originally trained,

into a general-purpose 6-layered BERT structure and named it DistilBERT. The distilling

process took 90 hours on 8 GPUs
7
. For better comparison, this is similar to train 720

hours on a single GPU. DistilBERT retains 97% of language understanding capabilities

measured on GLUE-benchmark, although the model is 1.67× smaller and 1.67× faster.

Implementation is available
8
.

Jiao et al. [34] introduced two-stage KD and released the compressed model under the

name TinyBERT. The �rst stage is similar to DistilBERT. A general-purpose TinyBERT is

trained that performs worse than BERT because of the 4-layered structure and reduced

the hidden size to 3<>34; = 312. During the second stage, TinyBERT learns from every

third layer and gets �ned-tuned based on an augmented task-speci�c dataset. TinyBERT

4
Used GPU: NVIDIA GeForce GTX 1080Ti

5https://github.com/pmichel31415/are-16-heads-really-better-than-1
6https://github.com/intersun/PKD-for-BERT-Model-Compression
7
Used GPUs: NVIDIA Tesla 16GB V100

8https://github.com/huggingface/transformers/tree/master/examples/distillation
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2 Theoretical Foundations

achieves 96% of BERTbase’s performance on GLUE-benchmark while being 9.4× faster and

7.5× smaller. Implementation is available
9
.

We would like to point out that there is more research on KD, e.g., [68, 82, 9, 10,

70]. However, those use additional techniques, like weight sharing or changed model

architectures, which are not part of this thesis.

2.2.5.4 Theseus Compression

As a reminder, TC uses module replacement to perform compression. It progressively

substitutes predecessor modules with successor modules with fewer parameters (see

Section 2.2.4).

Xu et al. [78] used the GLUE-benchmark to compare their result with KD baselines.

Like DistilBERT, they used BERTbase as predecessor and replaced two BERT layers by one,

resulting in a 1.67× smaller successor model. Although the authors compressed during

downstream task training, the compressed model retains more than 98% performance on

GLUE of the predecessor, outperforming DistilBERT. Further, TC does not need computa-

tionally expensive pre-training, �ne-tuning the GLUE downstream tasks took at most 20

GPU
10

hours. Implementation is available
11

.

2.3 Comparison of Compression Approaches

We aim to support fast experiment iterations for future research, as pointed out in Section

1.2. This results in constraints for the compression approach. In this section, we compare

di�erent approaches based on the papers discussed in Section 2.2.5. Subsequently, we

choose the most promising approach that will be analyzed and evaluated in more detail in

the following chapters.

Categories for comparison A �rst category to compare the compressing approaches with

each other is whether they need specialized hardware or not. This is of importance because

we do not have access to any specialized hardware, which can handle very low bit precision

e�ciently, and want to come up with an appropriate result for a broad range of researchers.

Second, for fast experiment iterations, the compression outcome has to be robust against

di�erent downstream tasks. A general-purpose BERT is preferable since it is not appropri-

ate to compress a model for each experiment. Thus, we analyze whether the compression is

applied during pre-training or �ne-tuning and discuss possible generalization possibilities

later on. Further, the compression e�ciency is another important consideration. This

incorporates the compression ratio, retained performance, computational costs of the

compression process, and if it is a manual or automated process. Lastly, publicly available

source code is preferable.

9https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
10

Used GPUs: NVIDIA Tesla 16GB V100

11https://github.com/JetRunner/BERT-of-Theseus
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2.3 Comparison of Compression Approaches

Comparison of related work To allow a better comparison, Table 2.1 presents the related

work papers from Section 2.2.5. It summarizes the most important aspects and classi�es

them into the described comparison categories.

Paper

Category
Comp. Ratio GLUE Time PT FT Auto HW Code

Q-BERT [62] 13× 7 7 7

Q8BERT [80] 4× 7 7 7 7

RPP [28] 1.68× 100% 7 7

Gordon et al. [25] 1.43 − 1.67× 100% 7 7 7

Michel et al. [50] 1.25 − 1.67× 100% 7 7 7

Kovaleva et al. [39] >100% 7

Fan et al. [21] 7

PKD [67] 1.67× 7 7 7

DistilBERT [60] 1.67× 97% 720h 7 7 7

TinyBERT [34] 7.5× 96% 7 7 7 7

Bert-of-Theseus [78] 1.67× 98% 20h 7 7 7

Table 2.1: Comparison of the discussed papers of Section 2.2.5. Column description: Comp.
Ratio: the stated compression ratio; GLUE: the retained GLUE score compared

to original model; Time: the reported time necessary for compression process

with one GPU; PT : if the outcome is general-purpose compressed BERT; FT :

if the outcome is a �ne-tuned BERT; Auto: if the compression process is auto-

mated; HW : if specialized hardware is necessary; Code: if the implementation is

available, links are embedded.

The two quantization techniques Q-BERT [62] and Q8BERT [80], can achieve impressive

compression ratios with only losing minimal performance. However, both have to be

deployed on specialized hardware, which can handle very low bit precision, to e�ciently

run these compressed models, which means that quantization will not be considered.

It is a disadvantage to rely on a non-automated process such as [39, 21]. Therefore,

those will be excluded. Further, [28, 50] compressed during �ne-tuning and stated that

the performance and resulting compressed BERT heavily depends on the downstream

task and dataset. The most promising pruning technique [26] uses elementwise pruning,

which has the disadvantage that it creates irregular sparsity in the model. Yao et al. [79]

demonstrated that random sparsity is di�cult to speed up on GPUs and, therefore, it is

questionable if [26] increases the compressed model’s speed, which is our main objective.

Looking at KD, DistilBERT [60] outperforms PKD [67] and compresses a general-purpose

BERT. Due to the fact that the power of TinyBERT [34] results from its two-staged approach,
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the intermediate general-purpose BERT is much worse than the �nal result (see Section

2.2.5.3). As we are interested in a general-purpose BERT, only DistilBERT and BERT-of-

Theseus remain for further considerations.

Choosing BERT-of-Theseus Both DistilBERT [60] and BERT-of-Theseus [78] use BERTbase

for compression, achieve a compression ratio of 1.67×, are fully automated processes, do

not need specialized hardware, and published their implementations. BERT-of-Theseus

states a slightly higher retained GLUE score. However, DistilBERT has the huge advantage

of creating a general-purpose compressed BERT. Further, the process to train DistilBERT

takes 36× longer on a single GPU than BERT-of-Theseus.

The combination of retaining more GLUE score performance and the fast compression

processes, �nally, leads to the decision to evaluate Theseus Compression (TC) in greater

detail.

2.4 Summary

This chapter starts with an overview of the major development steps that led to BERT.

It reassembles the transformer encoder stacks, which implement encoder self-attention

without RNNs, and uses the cloze procedure to build a bidirectional LM. BERT implements

cloze procedure as the task MLM, which hides words at random, and BERT learns to

predict these hidden words. Combined with another pre-training method, NSP, it achieves

SOTA performance on a wide range of downstream tasks, e.g., the GLUE-benchmark.

Pre-trained BERT models are easy-to-use for transfer learning, which is why they were

quickly adopted to a wide range of applications.

However, BERT’s usability and high performance come with the downside that it is

a fairly huge model. In the second part of this chapter, we describe four approaches to

compress BERT, where the main goal is to reduce the number of parameters without

or with little as possible performance loss. The concepts of these approaches are very

di�erent:

• Quantization reduces the bitwidth

• Pruning removes not necessary or less important parts

• KD trains a student model to mimic the teacher based on intermediate loss functions

• TC trains a successor model by progressively replacing the predecessor modules

Moreover, we summarize related work for these approaches and present their results.

This chapter closes with a comparison of the compression approaches for the presented

related work. Therefore, we de�ne categories for the comparison and, �nally, choose TC

as most promising for our work because:

• It does not need specialized hardware that can handle very low bit precision

• The compression process is fully automated
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2.4 Summary

• Its retained GLUE score is higher than DistilBERT

• Its compression process is 36× faster than DistilBERT

• Its code is available: https://github.com/JetRunner/BERT-of-Theseus

The following Chapter 3 presents the methodology on which we conduct our experi-

mental evaluation.
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3 Methodology

This chapter presents our methodology for the experimental evaluation of Theseus Com-

pression. At the beginning, we lay down our hypothesis that de�nes the direction of this

thesis.

We then describe the domains, hate speech, and medical domain of our experiments in

more detail and de�ne the binary classi�cation downstream tasks, hate speech detection,

and in-hospital mortality prediction we use for the evaluation. As an implication of these

domains and the chosen downstream tasks, we present the datasets for our experiments.

To be precise, we use three labeled datasets, two for hate speech detection and one for

in-hospital mortality prediction. The fourth unlabeled dataset is used for LM �ne-tuning

for the hate speech domain. Subsequently, we de�ne metrics on two dimensions for the

evaluation: model performance and compression performance.

The end of this chapter gives a brief overview of the benchmark framework we use to

evaluate TC and closes with a presentation of our infrastructural setup.

3.1 Hypothesis

We aim to increase the iteration speed of experiments with a compressed BERT (see

Section 1.2). Therefore, our hypothesis is: Using a domain-speci�c BERT compressed with
Theseus Compression helps to speed up experiment iterations for downstream task models.
This potentially holds the advantages that �ne-tuned downstream task models are smaller

in size, can be deployed on weaker hardware, and are faster during inference.

More detailed, we adapt TC so that the compression process uses the pre-training task

MLM. Thus, we �ne-tune the model’s LM and compress it simultaneously.

3.2 Definition of Downstream Tasks

To examine our hypothesis (see Section 3.1), we focus on downstream tasks in two domains:

medical and hate speech. To minimize the complexity of our experimental evaluation, we

use solely binary classi�cation tasks for both domains.

Binary classification In general, classi�cation is a supervised Machine Learning (ML)

task, whose outcome consists of a discrete variable. Speci�cally, the outcome of binary

classi�cation has exactly two possibilities. Therefore, one observation belongs either to

class � or to class �.

The following sections give a brief introduction of the medical and hate speech domain

and de�ne the downstream tasks.
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3.2.1 Medical Domain

In healthcare, ML is not as widely used as in other areas, such as society or business [16].

Davenport and Kalakota [16] stated that ethical implications, like the model’s interpretabil-

ity or biased systems, and the lack of data availability are reasons for the slow adoption of

ML to the medical domain. However, the widespread use of Electronic Health Records

or at least basic digital systems in the USA in the last years [35] enabled the creation of

structured databases [35, 59]. Further, [16] showed that in 2019 ML was used to support

tasks, such as analyzing X-ray images or engaging people to live a healthier lifestyle based

on personal data from smartphones and smartwatches. They postulated that ML systems

"will not replace human clinicians on a large scale, but rather will augment their e�orts

to care for patient[s]" [16]. As an example, systems for Clinical Decision Support (CDS)

aim to increase the quality of health outcomes by providing clinicians with additional

information based on patient-speci�c data.

Downstream task: in-hospital mortality prediction One speci�c task of CDS is the in-
hospital mortality prediction. This task predicts whether a patient dies during a hospital

stay. This helps to provide better medical care to prevent their death. Early systems, such

as MPM0-II proposed by [30], used statistical models on a wide range of measured vital

indicators. More recent approaches combine these features with NLP-based clinical texts

analysis, e.g., admission letters [49].

We solely classify using admission letters whether a patient died within the given

hospitalization.

3.2.2 Hate Speech Domain

Social media platforms like Facebook
1
, Twitter

2
, or Youtube

3
allow almost everyone to

easily participate in online discussions. However, those discussions often follow certain

patterns and do not seldom end up in the usage of insulting and o�ensive language [51].

The massive amount of online communication via social media makes it no longer possible

to moderate discussions without technical support [66].

Downstream Task: hate speech detection Following [61], there are three directions of

research in the domain of hate speech:

1. Di�erentiating o�ensive language and non-o�ensive language

2. Removing bias in existing hate speech detection systems

3. Distinguishing types of o�ensive language like racism, sexism, or violence against

minorities

We focus on hate speech detection, i.e., a binary classi�cation whether an input sequence

contains o�ensive language.

1https://www.facebook.com
2https://twitter.com/
3https://www.youtube.com
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3.3 Datasets for Experimental Evaluation

3.3 Datasets for Experimental Evaluation

This section starts with a description of our pre-processing procedure. Subsequently, we

present our datasets and describe their particularities and dataset statistics.

We use three labeled datasets for the two downstream tasks, presented in Sections

3.2.1 and 3.2.2. Since we have another available unlabeled dataset for the hate speech

domain, we use this fourth dataset solely for �ne-tuning the LM for the hate speech domain

experiments. For more information on our testing series, see Section 3.5.

3.3.1 Pre-processing

Before we use the datasets for any further explorations or experiments, we execute some

fundamental pre-processing steps: dropping duplicated and inconsistently labeled obser-

vations, excluding all data points that consist of an empty or white-space sequence, and

creating an 80/20 data split for training and testing, which keeps the class distributions.

Instead of optimizing a single model’s performance, we examine our hypothesis (see

Section 3.1) on a broad set of experiments, so we do not use a validation set.

3.3.2 MIMIC-III

In 2016, Johnson et al. [35] released the database Medical Information Mart for Intensive

Care (MIMIC-III). This database comprises clinical data on patients admitted to the Beth

Israel Deaconess Medical Center in Boston. The authors deidenti�ed the patient’s data,

e.g., removed location, telephone number, name, and shifted dates.

MIMIC-III consists of detailed information on patients, such as diagnosis, prescriptions,

and transfers. We solely use the two tables, ADMISSIONS, and NOTEEVENTS. The admissions

table contains the column HOSPITAL_EXPIRE_FLAG, which indicates whether the patient

died within the given hospitalization. Commonly, clinicians describe the patients’ medical

state in an ongoing document, leading to a discharge summary. We access these by �ltering

notes by the column CATEGORY. Since we are interested in using the document’s state at

the patients’ admission, we identify sections known at admission time and delete all other

sections. For example, sections known at the patient’s admission are Chief complaint,
Allergies, or Family history. From now on, the term admission letters refers to these cleaned

discharge summaries.

Dataset statistics After pre-processing, MIMIC-III consists of 43, 848 observations, where

4, 608 are positive, and 39, 240 are negative examples. The average admission letter has

2, 507.96 characters with a standard deviation of 1, 438.25 and a median of 2284. The

shortest has 153 characters and the longest 65, 365.

3.3.3 GermEval 19

GermEval is a competition that publishes di�erent tasks focusing on NLP for the German

language. In 2019, the second task of GermEval was about identifying o�ensive language.

The authors published the corresponding dataset, GermEval 19 [66].
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Struß et al. [66] described that GermEval 19 was collected by sampling tweets from

various users’ timelines. In contrast to random sampling or on the basis of query terms, this

approach helps to obtain a higher variance in topics and vocabulary. Before the authors

hand-labeled the comments, they checked the alignment of their sense for hate speech.

Subsequently, they hand-labeled the collected comments and used OFFENSE as the positive

class label, i.e., comments with o�ensive language. The label OTHER marks the negative

comments that belong to the negative class, i.e., without o�ensive language.

Dataset statistics After pre-processing, GermEval 19 consists of 7, 011 observations,

where 2, 252 are positive, and 4, 759 are negative examples. The average comment has

160.28 characters with a standard deviation of 108.65 and a median of 138. The shortest

has 12 characters and the longest 4, 536.

3.3.4 NOHATE

Overcoming crises in public communication about refugees, migration, foreigners (NOHATE)4

is a joint research project that consists of Freie Universität Berlin (FU), Beuth University of
Applied Sciences Berlin (BHT), and VICO Research & Consulting. It is funded by the German

Federal Ministry of Education and Research (BMBF). "NOHATE aims to analyse hateful

communication on social media platforms, in online forums and commentary sections [...]

[and] develop methods and software for (early) recognition of hateful communication [...]

and provide data for software development"
5
.

The NOHATE dataset consists of comments from a wide range of online platforms, to

name a few: FOCUS Online
6
, ZEIT

7
, Tagesspiegel

8
, Facebook

9
, Youtube

10
, gutefrage

11
,

Tichys Einblick
12

, and many more. Scientists from the FU developed a Code Book that

describes a classi�cation scheme to label hateful comments. In the end, a subset of the

downloaded comments was, based on this Code Book, hand-labeled. To be consistent with

GermEval 19, we simplify the multi-class dataset NOHATE into a binary-class dataset and

used the labels OFFENSE and OTHER respectively. [3]

Dataset statistics After pre-processing, NOHATE consists of 11, 935 observations, where

2, 918 are positive, and 9, 017 are negative examples. The average comment has 316.47

characters, with a standard deviation of 385.75 and a median of 197. The shortest has 1

character and the longest 9, 717.

4http://nohate.online
5
Source: https://www.polsoz.fu-berlin.de/en/kommwiss/v/bmbf-nohate/index.html - Accessed

July 18, 2020

6https://www.focus.de
7https://www.zeit.de/
8https://www.tagesspiegel.de
9https://www.facebook.com

10https://www.youtube.com
11https://www.gutefrage.net
12https://www.tichyseinblick.de
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3.4 Metrics for the Evaluation of Experiments

3.3.5 NOHATE Language Modeling

Hand-labeling data is a particularly time-consuming and expensive process. However,

pre-training BERT or �ne-tuning its language model does not need labeled data (see

Section 2.1.4). Therefore, we use the set of unlabeled comments (see Section 3.3.4) for LM

�ne-tuning. LM �ne-tuning adapts the model’s LM into a speci�c domain and helps to

increase the downstream task’s prediction performance.

Dataset statistics After pre-processing, NOHATE LM consists of 177, 203 observations.

The average comment has 242.94 characters with a standard deviation of 745.24 and a

median of 140. The shortest has 1 character and the longest 276, 313.

3.4 Metrics for the Evaluation of Experiments

For the evaluation of the experiments, we use metrics that aim at di�erent aspects. First,

to compare the models’ prediction performance, we use metrics that depend on the

downstream tasks. Subsequently, Section 3.4.2 de�nes metrics for the evaluation of the

compression performance.

3.4.1 Model Performance

This section describes the metrics to measure the model’s performance. As downstream

tasks, we use exclusively binary classi�cation (see Section 3.2).

Confusion Matrix, Precision, and Recall Common metrics for binary classi�cation are

precision and recall that can be easily explained and derived by looking at the confusion
matrix in Table 3.1 [24]. Columns represent the predictions and rows the actual labels.

Actual

Predicted
Negative Positive

Negative TN FP

Positive FN TP

Table 3.1: Confusion Matrix. Rows present the actual labels, and columns present the mod-

els’ predictions. The four quadrants (in case of binary classi�cation) represent

the four types of predictions: true negative (TN), false positive (FP), true positive

(TP), and false negative (FN). Derived from [24].

In the case of binary classi�cation, the four quadrants show the true negative (TN), false
positive (FP), true positive (TP), and false negative (FN) values. As an example, TN describes

how many negative predicted examples are actually negative observations; the others are
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corresponding. Therefore, a perfect classi�er would only have non-zero values on the

diagonal.

Precision is the accuracy of the positive predictions, which describes how many of the

positive predicted observations are TP; it is de�ned as:

?A428B8>= =
)%

)% + �% (3.1)

Whereas recall shows how many of the positive class are predicted correctly as so, it is

de�ned as:

A420;; =
)%

)% + �# (3.2)

In general, it is easier to compare models based on a single metric. For this reason, the

F1-score combines and balances both.

3.4.1.1 F1-score

The F1-score is the harmonic mean of precision and recall. Therefore, a classi�er only

gets a high F1-score, if both precision and recall are high. A perfect classi�er would have

�1 = 1. It is de�ned as:

�1 =
2

1

?A428B8>=
+ 1

A420;;

= 2 × ?A428B8>= × A420;;
?A428B8>= + A420;; =

)%

)% + �#+�%
2

(3.3)

The authors of GermEval 19 [66] stated that because the dataset is imbalanced (see

Section 3.3.3), the systems will be ranked based on the macro-average F1-score. For this

reason, we also use this metric to measure the performance for the datasets GermEval 19

and NOHATE.

Macro-average F1 For imbalanced datasets, classi�ers tend to give more weight to the

major class. For equal treatment of the classes, macro-averaging calculates the F1-score

for each class separately and computes the average. However, this is only legible if the

classes are equally important. [64]

3.4.1.2 ROC/AUC-score

A visual representation of a binary classi�er’s performance is the Receiver Operating

Characteristic (ROC) curve. Shown in Figure 3.1, ROC plots the true positive rate, also

known as recall, against the false positive rate, which is the ratio of negative observations

that are incorrectly classi�ed as positive. For the ROC curve, the false and true positive

rates need to be computed with di�erent cuto� points, i.e., moving the trade-o� between

precision and recall from one to the other extreme. [24]

For comparison of classi�ers, the Area Under the Curve (AUC) can be used, represented

as the gray area in Figure 3.1. The metric describes how well the model is capable of

distinguishing the classes. A perfect classi�er would achieve '$�/�*� = 1, whereas a

random binary classi�er has '$�/�*� = 0.5.

Since the ROC/AUC-score is widely used for in-hospital mortality prediction systems,

we use this metric for comparison. [30, 49]
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Figure 3.1: Example ROC/AUC plot. The gray area represents the ROC/AUC-score, which

is equal to 0.96. The dashed line shows the ROC for a random binary classi�er;

its ROC/AUC-score is equal to 0.5. Derived from [24].

3.4.1.3 Perplexity

To measure the performance of language models, the most widely used metric is perplexity,

e.g., see [19, 54, 55]. As a reminder, language modeling is the task to predict a token based

on its context (see Chapter 2.1.4). Therefore, perplexity represents the uncertainty the

model has in predicting the next word.

Entropy Perplexity is based on the information-theoretic concept of entropy, which is

a measure of information. It represents the average information of a message with a

corresponding probability distribution. A language model< tries to estimate the prob-

ability distribution ? of the actual language. Therefore, the true entropy of ? is de�ned

as � (?). By drawing sequences from ? , one can use the simpli�ed model< to estimate

the language’s entropy: � (?,<). It turns out that the cross-entropy � (?,<) is an upper

bound on � (?), mathematically: � (?) ≤ � (?,<). Thus, the di�erence between � (?) and

� (?,<) is a measure of<’s performance. By drawing a test sequence, with length #

from ? , it is possible to use Equation 3.4 to estimate LM’s entropy. [38]

� (, ) = − 1

#
;>6(?8) (3.4)

Where ?8 is <’s prediction, i.e., the probability for, . Usually, one draws a set of test

sequences and computes the average cross-entropy.

However, entropy is not an intuitive measurement, which is the reason one uses per-

plexity. It represents how surprised the model was about the predictions, or in other words,
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from how many possibilities can be randomly chosen to get the same result. Thus, better

models produce smaller perplexity. It is de�ned as [38]:

?4A?;4G8C~ = 4� (3.5)

These metrics are useful to compare models that are �ne-tuned for the corresponding

tasks. However, to represent the performance of TC itself, other metrics are necessary.

These are de�ned in the following sections.

3.4.2 Compression Performance

Measuring the compression process’s performance can be along several dimensions, such

as time, space, or predictive performance. Since we are interested in whether TC can reduce

the experiment iteration times (see Section 3.1), we focus on three metrics. First and

foremost, the predictive performance that could be retained, the speedup of �ne-tuning,

and speedup of inference.

In general, we calculate the compression performance for the corresponding baseline.

In the following sections, we denote the baseline with the subscript 10B4;8=4 .

Compression ratio The compression ratio achieved with TC is implicitly chosen by the

de�nition of predecessor and successor modules. Thus, we do not use the compression ratio

as a metric to measure compression performance. Nevertheless, we state the compression

ratio �', which is de�ned as follows in Equation 3.6, for each experiment.

�' =
?0A0<4C4AB10B4;8=4

?0A0<4C4AB2><?A4BB43
(3.6)

3.4.2.1 Retained Performance

Following Section 2.2, the goal of model compression is to reduce the number of parameters

without or with as little performance loss as possible. Thus, the most important perfor-

mance measure for the compression process is the retained performance (RP). Therefore,

the task-speci�c metric is used to compute how many percent of the baseline performance

could be retained during compression. '% is de�ned as follows:

'% =
?4A 5 >A<0=242><?A4BB43

?4A 5 >A<0=2410B4;8=4
(3.7)

Where ?4A 5 >A<0=24 denotes the model’s predictive performance measured as �1 for hate

speech detection (see Section 3.4.1.1) and '$�/�*� for in-hospital mortality prediction

(see Section 3.4.1.2).

3.4.2.2 Speedup of Fine-tuning

Using a smaller or compressed model during downstream task training theoretically in-

creases the training speed because of the reduced computational e�ort. However, the

training’s duration until a satisfying model performance is a more liable metric. Therefore,
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we de�ne the speedup of �ne-tuning as a factor of decreased training duration for down-

stream task training. It is calculated as the ratio between the baseline and the compressed

model:

B?443D?�) =
C8<4 D=C8; 14BC <>34;10B4;8=4

C8<4 D=C8; 14BC <>34;2><?A4BB43
(3.8)

For measuring the training duration we choose the best model checkpoint, where best
is measured by the model’s predictive performance.

3.4.2.3 Speedup of Inference

As stated in Section 1.1, one reason for model compression is the long inference time,

especially when models are deployed on weaker or non-specialized hardware. To gain

insights on this, we introduce a very similar metric to Section 3.4.2.2, speedup of inference.
It is the ratio of inference time between baseline and compressed model:

B?443D?=@ℎF =
8=5 4A4=24 C8<410B4;8=4

8=5 4A4=24 C8<42><?A4BB43
(3.9)

Where= denotes the number of examples predicted at the same time, andℎF states whether

�%* or �%* was used. For example, B?443D?1@�%* represents an experiment based on a

CPU with one test input, whereas B?443D?16@�%* stands for 16 examples simultaneously

predicted on a GPU.

Section 3.4 laid the foundations for the evaluation of TC by de�ning the necessary

metrics that will be used to compare the experiments. The following Section 3.5 gives an

overview of the direction of evaluation.

3.5 Benchmark Framework to Evaluate Theseus Compression

To evaluate whether TC can reduce experiment iteration times, we use a set of experiments.

The following sections give a brief outline of these. The experiment implementations are

described in greater detail in Chapter 4, a discussion follows in Chapter 5.

Testing series As described in Section 3.3, we have three datasets to train the two down-

stream tasks. Since we want to examine our hypothesis whether a domain speci�c �ne-

tuned BERT helps to decrease iteration times, there are three experiments. These are

comparing the during downstream task training compressed BERT with a during LM

�ne-tuning compressed BERT that are both afterwards trained for the corresponding

downstream task. Additionally, we use the on NOHATE LM �ne-tuned BERT and subse-

quently train the hate speech detection downstream task based on GermEval 19.

3.5.1 Baseline Strategies

To achieve maximum comparability, it is important to keep as many parameters as possible

of the experimental environment unchanged. Available implementations for hate speech

detection introduce additional data [52], use data augmentation and pre-processing [52, 58],
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or another base model [27], which makes it di�cult to compare them to our system. Further,

there are no published baseline scores for our de�nition of in-hospital mortality prediction.

For the sake of maximum comparability, we implement baselines in a comparable setting.

One can �nd a detailed evaluation in Section 5.2.

3.5.2 Initialization of Successor Model

The paper [78] that describes TC uses the �rst = layers of BERT as initialization for

predecessor modules. However, this seems to be counter-intuitive because, e.g., BD226 that

replaces layer 11 and 12 of the original BERT is initialized with the parameters of layer 6.

We hypothesize that using, in this example, layer 11 or 12 as initialization is bene�cial

for the compression process because its initial state is closer to the layers it will replace.

Detailed information on the implementation is in Section 4.2.1 and an evaluation and

discussion in Section 5.3.

3.5.3 Hyperparameter Analysis

To evaluate TC in more detail based on our real-world datasets, we use grid search to

develop a deeper understanding of the hyperparameters’ in�uence. However, to decrease

the number of experiments, we adjust our testing series. Since the dataset GermEval 19

is very small and LM �ne-tuning is not very helpful (see Sections 5.2 and 5.3), we focus

on compressing during LM �ne-tuning based on the datasets NOHATE and MIMIC-III.

Evaluation and discussion are in Section 5.4.

3.6 Infrastructure for Experimental Evaluation

For our experiments, we use the DATEXIS Kubernetes cluster. It consists of 24 nodes with

about 1, 500 CPU cores, where some nodes are additionally equipped with GPUs. In total,

there are 8 Nvidia Tesla K80, 8 Nvidia Tesla P100, and 9 Nvidia Tesla V100 GPUs.

Our experiments are solely executed on a single GPU setup with one Nvidia Tesla V100

GPU. We use Docker containers based on Python version 3.7.5, CUDA
13

version 10.1.243,

and cuDNN
14

version 7.6.5.32. The implementation of TC is based on the libraries PyTorch

version 1.4.0 and transformers version 2.7.0.

3.7 Summary

This chapter starts with the formulation of our hypothesis: Using a with Theseus Compres-
sion compressed domain-speci�c BERT helps speed up experiment iterations for downstream
task models.

13
Toolkit for creating GPU accelerated applications. Source: https://developer.nvidia.com/cuda-

toolkit - Accessed August 02, 2020

14
The Deep Neural Network library provides GPU-accelerated primitives for NNs. Source: https:

//developer.nvidia.com/cudnn - Accessed August 02, 2020
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3.7 Summary

Secondly, we de�ne the downstream tasks used for the experimental evaluation of TC

for the two domains, medical and hate speech. Both are binary classi�cations: in-hospital

mortality prediction and hate speech detection.

The training of these downstream tasks is based on four datasets. For the medical

domain, we create a dataset using the discharge summaries for each admission of the

MIMIC-III database and delete sections added after the patient’s admission (see Section

3.3.2). GermEval 19 and NOHATE are both datasets used to train hate speech detection, and

the fourth unlabeled dataset, NOHATE LM, to �ne-tune the LM of hate speech detection

base models. All three labeled datasets are heavily unbalanced, and the length of their

input sequences varies from, on average, about 160 (GermEval 19) characters to about

2, 500 (MIMIC-III).

Subsequently, this chapter describes the metrics that we use to evaluate our experiments

and the metrics to assess the model’s prediction performance. For hate speech detection,

we use �1 and for in-hospital mortality prediction, the '$�/�*�-score. Whereas LMs

are evaluated with the metric perplexity. On the other hand, we evaluate the performance

of TC by calculating the retained prediction performance, speedup of �ne-tuning, and

speedup of inference.

We then give a brief overview of our benchmark framework for the experimental

evaluation, starting with the implementation and training of our baseline models. Followed

by experiments regarding the initialization procedure, we hypothesize the procedure as

sub-optimal and propose a di�erent one. We then use a grid search to train a wide range of

models with di�erent hyperparameters to gain a deeper understanding of their in�uence

on the compression process.

In the end, we present the infrastructure of our experiments. For the implementations,

we use PyTorch version 1.4.0 and transformers version 2.7.0 and execute them with

Python version 3.7.5 in a single GPU setup with one Nvidia Tesla V100 GPU.

The subsequent Chapter 4 describes the implementation of TC and its compression

process.
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4 Implementation

This chapter presents our Theseus Compression implementation. It is based on Hugging
Face’s1 transformers2

library, which is why we start with a brief overview of this library

and describe how to use it to implement and train BERT models.

Subsequently, we give detailed information on our implementations, especially the parts

that we change in contrast to the original implementation. In the end, we outline some

particularities of the compression process when applying TC.

4.1 Model Implementations with Hugging Face’s
Transformers Library

Hugging Face’s transformers Python library for PyTorch
3

or TensorFlow 2.0
4

provides

NLP model architectures in an easy to use fashion and a wide range of pre-trained models.

As a reminder of Section 3.6, our software stack consists of Python 3.7.5, PyTorch 1.4.0,

and transformers 2.7.0.

Model implementation with transformers BERT implementations based on the trans-

formers library generally consists of four parts. First and foremost, the class BertTok-

enizer is responsible for creating token embeddings out of an input sequence. The class

BertModel combines two parts: BertEmbeddings that create BERT’s input representation

(token + segment + position embedding) and BertEncoder, which is the actual stack of

transformer encoders. Lastly, a task-speci�c layer is added on top of the encoder. On

the one hand, for downstream task implementations, i.e., binary classi�cation, we use

the class BertForSequenceClassification. On the other hand, for LM �ne-tuning, the

transformers library provides the class BertForMaskedLM. Because there is recent work

that questions the necessity of NSP [45, 37], we omit the pre-training task NSP for more

straightforward experiment implementations.

Similarly to the original implementation of BERT
5
, transformers BERT implementation

can not handle input sequences with more than 512 tokens. Therefore, the library truncates

sequences of > 512 tokens automatically.

1
Link: https://huggingface.co

2
Link: https://huggingface.co/transformers/v2.7.0/

3
Link: https://pytorch.org

4
Link: https://www.tensorflow.org

5
Original BERT implementation: https://github.com/google-research/bert - Accessed August 12,

2020
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4 Implementation

Pre-trained base models Using pre-trained models for development or inference is

extraordinarily simple. For this purpose, the base class PreTrainedModel is used for

all models implemented with the transformers library and provides a method called

from_pretrained. It takes either the name of a provided pre-trained model
6

and down-

loads it if necessary, or a local path to a directory containing model weights. These

model weights are saved by using the model’s save_pretrained method. Initializing a

BertTokenizer with a vocabulary of a pre-trained model works in the same way.

The implementation of TC, explained in the following Section 4.2, uses inheritance to

extend already implemented models from the transformers library to make use of these

features.

4.2 Theseus Compression

Xu et al. [78] built their research code based on the transformers library, described in

Section 4.1. TC is based on the idea of module replacement that randomly substitutes

predecessor modules with their corresponding successor modules (see Section 2.2.4).

Therefore, the implementation extends the BertEncoder class, as shown in Listing 1. Most

1 class BertEncoderTheseus(BertEncoder):

2 def __init__(self, config, succ_n_layer=6):

3 super(BertEncoderTheseus, self).__init__(config)

4

5 self.succ_n_layer = succ_n_layer

6 self.compression_ratio = config.num_hidden_layers // self.succ_n_layer

7

8 self.bernoulli = None

9

10 self.pred_layer = self.layer

11 self.succ_layer = []

Listing 1: Implementation of the class BertEncoderTheseus.

importantly, it de�nes the predecessor modules (Line 10) as the base model’s encoder stack

and adds the succ_layer attribute (Line 11). Detailed information on the initialization of

the successor modules is presented in Section 4.2.1.

Moreover, the module replacement implementation is added to the model’s forward

function that is used for each forward path. Listing 2 shows the crucial parts of the

implementation. The code is as straight forward as the module replacement idea itself.

During training, a Bernoulli random variable A8 decides whether the predecessor ?A438 is

replaced by its successor BD228 (Line 5). Correspondingly, the attribute layer is changed

because the parent’s forward function, called in Line 15, uses this for inference.

6
Link: https://huggingface.co/transformers/pretrained_models.html
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1 def forward(self, ...): # omitted lengthy list of parameter definitions

2 if self.training:

3 self.layer = nn.ModuleList([])

4 for i in range(self.succ_n_layer):

5 if self.bernoulli.sample() == 1: # REPLACE

6 self.layer.append(self.succ_layer[i])

7 else: # KEEP the original

8 for offset in range(self.compression_ratio):

9 self.layer.append(

10 self.pred_layer[i * self.compression_ratio + offset]

11 )

12 else: # inference always with compressed model

13 self.layer = self.succ_layer

14

15 return super(BertEncoderTheseus, self).forward(

16 ... # omitted lengthy list of parameters

17 )

Listing 2: Implementation of module replacement.

BertModelTheseus class Since we replace the original encoder implementation by the

class BertEncoderTheseus, we also need a custom BertModelTheseus class. It extends the

original class and overrides the attribute encoder, as shown in Listing 3.

1 class BertModelTheseus(BertModel):

2 def __init__(self, config):

3 super(BertModelTheseus, self).__init__(config)

4 self.encoder = BertEncoderTheseus(config)

Listing 3: Implementation of the class BertModelTheseus.

Task-specific *Theseus class In the end, the task-speci�c model implementation for TC

put all these parts together and initializes the successor modules, as shown in Listing 4.

The class de�nition for the binary classi�cation downstream tasks is respectively based on

BertForSequenceClassification and called BertForSequenceClassificationTheseus.

As discussed in Section 3.5.2, we change the initialization procedure of the successor

modules. The following Section 4.2.1 provides detailed information on the implementation.

4.2.1 Adjustment of Initialization Procedure

The original TC implementation initializes the successor modules with the �rst = layers of

the original model. However, as hypothesized in Section 3.5.2, this seems to be sub-optimal.

To examine the hypothesis, we change the initialization method, as shown in Listing 5.
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1 class BertForMaskedLMTheseus(BertForMaskedLM):

2 def __init__(self, config, init_offset):

3 super(BertForMaskedLMTheseus, self).__init__(config)

4

5 self.bert = BertModelTheseus(config)

6 self.bert.encoder.init_theseus(init_offset=init_offset)

Listing 4: Implementation of the task-speci�c model class.

1 def init_theseus(self, init_offset):

2

3 ... # omitted value checks for init_offset parameter

4

5 self.succ_layer = nn.ModuleList([])

6 if init_offset == "original":

7 for index in range(self.succ_n_layer):

8 self.succ_layer.append(self.pred_layer[index])

9 else: # init_offset = {0; 1} => first/second layer in predecessor module

10 for index in range(self.succ_n_layer):

11 self.succ_layer.append(

12 self.pred_layer[index * self.compression_ratio + init_offset]

13 )

Listing 5: Implementation of the initialization method.

These adjustments of the init_theseus method yield a maximum of �exibility over the

initialization procedure of our experiments. During the initialization of a task-speci�c

BERT model, the constructor executes this initialization method (see Listing 4, Line 6) and

sets up the model for compression.

To control the replacement rate during the compression process, we use a replacement

rate scheduler, described in the following Section 4.2.2.

4.2.2 Replacement Rate Scheduler

The missing piece of the TC implementation is the CurriculumReplacementScheduler

that is responsible for the replacement rate changes throughout the compression process.

Similarly to a learning rate scheduler, it takes care of the training step and calculates

the corresponding replacement rate and subsequently sets the attribute bernoulli of the

BertEncoderTheseus object. The encoders’ forward method uses this attribute during

compression to control the module replacement.

We make a minor change for convenience that calculates the coe�cient : automatically

based on the number of maximal compression steps, BC0AC8=6 A4?;024<4=C A0C4 , and the

ratio of replacement changes. For example, if the ratio of replacement changes is set to 85%

and the BC0AC8=6 A4?;024<4=C A0C4 = 0.1, the CurriculumReplacementScheduler calculates
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: so that the replacement rate ? is linearly increasing until it reaches the value ? = 1 after

85% of training steps for the rest of the compression process.

Section 4.2 presented the implementation of TC itself, which mainly consists of extended

classes that will be used in the training process. However, because the goal is to compress

the model, we will refer to it as compression process. We present an overview of its

implementation in the subsequent Section 4.3.

4.3 Compression Process

The implementation of the compression process only di�ers in a few minor aspects from

a training process. Therefore, we closely follow the example implementation from the

transformers library for training models for the GLUE-benchmark
7
.

Usage of *Theseus models First and foremost, instead of the model implementations for

the GLUE downstream tasks, we use our Theseus models: BertForMaskedLMTheseus or

BertForSequenceClassificationTheseus. Since these model implementations extend the

corresponding library implementations (see Section 4.2), we can use all these neat methods,

such as from_pretrained or save_pretrained, without further changes.

Freeze predecessor modules As described in Section 2.2.4, during module replacement,

TC only updates the successor modules’ weights. For this reason, we distinguish the two

phases of TC and handover the necessary weights to the optimizer. Listing 6 shows the

corresponding lines of code.

1 if fine_tune:

2 parameters = model.parameters()

3 else:

4 parameters = model.bert.encoder.succ_layer.parameters()

5

6 optimizer = AdamW(parameters, ...) # omitted other parameters

Listing 6: During module replacement, Theseus Compression only changes the successor

modules’ weights. For successor �ne-tuning, it updates all weights of the model.

Usage of replacement rate scheduler To apply TC as pointed out in Section 2.2.4, we use

the CurriculumReplacementScheduler, which is responsible for the linearly increasing

replacement rate and the smooth transition from the �rst phase of module replacement

into the second phase, the successor �ne-tuning. Therefore, the scheduler’s step method

is called once per training step and triggers the replacement rate’s adaption.

In the end, we change the code to load our corresponding datasets, described in Section

3.3, and evaluate the models based on the metrics, described in Section 3.4.1.

7
Source: https://github.com/huggingface/transformers/blob/v2.7.0/examples/run_glue.py - Ac-

cessed August 02, 2020
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1 replacement_rate_scheduler = CurriculumReplacementScheduler(

2 bert_encoder=model.bert.encoder,

3 starting_replacement_rate=starting_replacement_rate,

4 max_training_steps=max_training_steps,

5 ratio_replacement_changes=ratio_replacement_changes

6 )

7

8 # omitted other code and finally use the scheduler for replacement rate updates

9

10 replacement_rate_scheduler.step()

Listing 7: Initialization and usage of the CurriculumReplacementScheduler.

4.4 Summary

In this chapter, we �rst give an introduction of Hugging Face’s transformers library and

how to implement BERT downstream task models. It uses a nested structure of class

objects that represents di�erent parts of BERT, such as BertTokenizer, the BertModel that

combines BertEmbeddings and BertEncoder, and �nally, a downstream task-speci�c class

that adds a corresponding layer.

We then focus on the presentation of our implementations. The class BertEncoderThe-

seus that extends the transformers’ BertEncoder class distinguishes between the pre-

decessor and successor modules, implements the module replacement by extending the

BertTokenizer’s forward method, and takes care of the proper initialization of successor

modules.

This chapter closes with a detailed description of the parts we adjust compared to a

regular training process. To summarize, these are:

• Use the implemented *Theseus classes instead of the original downstream model

• Only train the successor module’s parameters by freezing the weights of the prede-

cessor modules

• Use the CurriculumReplacementScheduler, which is responsible for controlling the

replacement rate during the compression process

Based on our implementations described in this chapter, Chapter 5 benchmarks, evalu-

ates, and discusses our experiments.
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This chapter starts with the de�nition of hyperparameters that remain static throughout

our evaluation and presents our baselines.

We then successively describe our experiments, present their results, and discuss them.

Starting with the comparison of the original and our initialization method, followed by

a more detailed hyperparameter analysis of TC’s hyperparameters to learn how they

in�uence the compression’s performance.

Subsequently, we use the best compressed models to evaluate the compression perfor-

mance on di�erent dimensions. We look at the retained prediction performance, the time

to compress the model and train the downstream task, and the models’ prediction speed.

To learn whether TC transfers the predecessor’s knowledge into the successor, we

perform qualitative error analysis and use the error class distribution changes during the

compression process as an indicator.

5.1 Experimental Setup

This section describes our settings that remain static throughout all experiments to decrease

the search space of the hyperparameter analysis.

Max sequence length = 512 As pointed out in Section 4.1, the models can not handle input

sequences longer than 512 tokens. After testing the lengths of tokenized input sequences, it

turns out that for MIMIC-III, more than 62% of all observations are longer than 512 tokens.

For the other three datasets, there are almost no token sequences too long. Truncating the

token sequences to, e.g., 256 tokens would be reasonable for GermEval 19 and NOHATE,

however, almost 90% of MIMIC-III observations are a�ected. Thus, the datasets’ variance

is much smaller, which leads to models with worse prediction performance. For the sake of

consistency and a more straight forward experiment setup, we �x the<0G B4@D4=24 ;4=6Cℎ

to 512 to achieve the maximal prediction performance for the models.

Batch size = 16 For pre-training BERT, one often uses big batch sizes, e.g., 256 [19], or

1, 0241
. On the other hand, for downstream task training, batch sizes around 32 [19, 58] are

common. We use relatively long input sequences, thus, the memory consumption during

training is relatively high. Therefore, 16 is the maximal batch size that works for all our

experiments.

1
Training of German BERT. Source: https://deepset.ai/german-bert - Accessed August 03, 2020
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Curriculum Replacement Scheduler Xu et al. [78] stated that using a curriculum replace-

ment scheduler consistently outperforms compression processes with a constant replace-

ment rate. For this reason, we focus on �nding good values for its hyperparameters, i.e.,

BC0AC8=6 A4?;024<4=C A0C4 and the ratio of replacement changes.

Base models Since we use downstream tasks for di�erent languages, we need correspond-

ing base models for compression. For the in-hospital mortality prediction task, which data

is in English, we use the original pre-trained BERTbase [19]. The transformers library

uses the name bert-base-uncased to reference this architecture and pre-trained weights.

As described in Sections 3.3.3 and 3.3.4, GermEval 19 consists of German tweets and

NOHATE of comments from a wide range of German online platforms. Therefore, another

base model that is pre-trained on a German corpus is needed. The Berlin-based company

deepset
2

trained a German BERT
3
, which is integrated into the transformers library under

the name bert-base-german-cased and serves as base model for our hate speech detection

experiments.

5.2 Baseline Models

As simple baselines, we �x all hyperparameters during the training process. We �ne-

tune the LMs for 50 epochs, and measure the prediction performance of all models

within 15 epochs of downstream task training. Additionally to Section 5.1, we choose the

;40A=8=6 A0C4 = 2 × 10−5, following [78].

Table 5.1 presents the model with the best prediction performance on the test dataset for

each testing series. As pointed out in Section 3.4.1, for hate speech detection models, the

metric F1 macro is decisive, and for in-hospital mortality prediction ROC/AUC. Column

Time represents the time (LM �ne-tuning + downstream task training) necessary to train

this model.

As a reminder, the training set of GermEval 19 consists of about 5.6: observations,

which is why downstream task training starts over�tting after about 2.5 epochs and 4

minutes of training. Fine-tuning the LM of bert-base-german-cased for 50 epochs with

GermEval 19 results in a highly over�tted LM with ?4A?;4G8C~ = 11.94. Not surprisingly,

using this model as the base model for hate speech detection downstream task training

only increases the prediction performance by 0.0005 macro F1. NOHATE LM drastically

increases the prediction performance by 0.0627 macro F1.

After 50 epochs of LM �ne-tuning bert-base-german-cased on NOHATE LM, it achieves

perplexity of 6.13. Based on this model, only four epochs with about 13 minutes of

downstream task training are necessary to increase the initial macro F1 by 0.0155.

Similarly to the NOHATE baseline, �ne-tuning the LM of the model bert-base-uncased

for 50 epochs on MIMIC-III (?4A?;4G8C~ = 1.85) helps to decrease the necessary training

time for the downstream task training. Here, about 11 epochs (2 h) increase the ROC/AUC

score by 0.0139. Its baseline needs 36.5 epochs and about 11.5 h training.

2
Berlin-based NLP company with focus on Open-Source development. Link: https://deepset.ai

3
Source: https://deepset.ai/german-bert - Accessed August 03, 2020
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Prediction Performance
Setting

F1 macro ROC/AUC Accuracy
Time

GermEval 19 0.6768 0.6726 0.7262 4 min

LM + GermEval 19 0.6773 0.6748 0.7267 36 min + 4 min

NOHATE LM + GermEval 19 0.7395 0.7331 0.7799 39.2 h + 15 min

NOHATE 0.7125 0.7019 0.7990 36 min

LM + NOHATE 0.7282 0.7118 0.8082 39.2 h + 13 min

MIMIC-III 0.6728 0.7057 0.8767 11.5 h

LM + MIMIC-III 0.6802 0.7196 0.8899 118.2 h + 2 h

Table 5.1: Baselines for experiments. Only the best model based on macro F1 for hate

speech detection and ROC/AUC for in-hospital mortality prediction is shown

for each experiment. Column Time represents the training for the given model.

5.3 Initialization Method

To examine the hypothesis presented in Section 3.5.2, we use our testing series, described

in Section 3.5, vary the 8=8C80;8I0C8>= ?A>243DA4 = {>A868=0; ;>DAB}, and �x all other hyper-

parameters. As in Section 5.2, we use the ;40A=8=6 A0C4 = 2 × 10−5 and additionally choose

the starting replacement rate 1 = 0.1, and the A0C8> > 5 A4?;024<4=C 2ℎ0=64B = 85%.

Table 5.2 shows the best models’ results, measured on their test dataset prediction

performance within 15 epochs of downstream task training, for the original initialization

procedure and our method. It only shows the experiments for which we use the predecessor

modules’ lower layer as initialization for the successor modules. Using the upper layer

shows signi�cantly and consistently worse results. As Xu et al. [78] pointed out, TC adds

extra regularization, and thus the training process needs more time until it converges,

which is why we compress all models for 50 epochs during LM �ne-tuning. Section

5.2 shows that in general, LM �ne-tuning for 50 epochs results in good LMs. Even if

the language model for GermEval 19 is highly over�tted, we keep the hyperparameter

<0G 4?>2ℎB unchanged for our experiments.

On the other hand, we run experiments without LM �ne-tuning for 50 epochs and

compress them directly during downstream task training. This procedure is equal to the

original approach of TC, proposed by Xu et al. [78].

Our initialization method increases TC’s performance Our initialization procedure outper-

forms the original in almost all presented metrics. Further, it shows that during LM

�ne-tuning compressed models can retain a high degree of prediction performance. More-

over, it increases the e�ectiveness of using a pre-trained language model, especially with

bigger datasets. As an example, it increases the ROC/AUC score of the in-hospital mor-
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5 Benchmark, Evaluation, and Discussion

Prediction Performance
F1 macro ROC/AUC AccuracySetting
Orig Ours Orig Ours Orig Ours

GermEval 19 0.6660 0.6687 0.6675 0.6673 0.7066 0.7149

LM + GermEval 19 0.6647 0.6667 0.6672 0.6949 0.7040 0.7139

NOHATE LM + GermEval 19 0.7019 0.7210 0.7008 0.7110 0.7419 0.7703

NOHATE 0.7012 0.6903 0.6974 0.6755 0.7835 0.7922

LM + NOHATE 0.7096 0.7171 0.7059 0.7097 0.7893 0.7985

MIMIC-III 0.6154 0.6364 0.6212 0.6755 0.8524 0.8788

LM + MIMIC-III 0.6395 0.6491 0.6693 0.7097 0.8425 0.8618

Table 5.2: Comparison of initialization procedures. It compares the original initialization

procedure (columns Orig) with our method (columns Ours), where we use the

predecessor modules’ lower layer as initialization for the successor modules.

Because these experiments consistently outperformed the initialization with

the predecessor’s upper layer, we omit the worse testing series. Better results

within one metric are in bold.

tality prediction task by 0.0342 (our initialization), which is higher than the baseline’s

performance lift (0.0139). Whereas, the smaller dataset NOHATE lifts the macro F1 score

by 0.0268, where the baseline achieves an increase of 0.0155. For the smallest dataset,

GermEval 19, using an LM decreases the performance.

Summary This series of experiments clearly shows that our initialization procedure,

where the predecessor modules’ lower layer is used as initialization for the successor

modules’ layer, is superior to the original initialization procedure. Therefore, we use our

method for all upcoming experiments.

5.4 Hyperparameter Analysis

Based on the experiment in Section 5.3, we argue that using the predecessor’s lower layer’s

weights to initialize the successor, i.e., our initialization procedure, is bene�cial for the com-

pression’s performance. Thus we �x the hyperparameter 8=8C80;8I0C8>= ?A>243DA4 = >DAB .

With the other three hyperparameters, we build a grid for hyperparameter analysis:

;40A=8=6 A0C4 = {1 × 10−5; 2 × 10−5}, BC0AC8=6 A4?;024<4=C A0C4 = {0.1; 0.3; 0.7; 0.9}, and

ratio of replacement changes 1 = {5%; 45%; 85%; 100%}.
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5.4 Hyperparameter Analysis

Since we are interested in compressing models during �ne-tuning their LM and the

fact that GermEval 19 has proved too small, we compress models based on NOHATE and

MIMIC-III for 50 epochs. Subsequently, we evaluate them on the test dataset by training

their downstream task for 15 epochs with a learning rate equal to 2 × 10−5.
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Figure 5.1: Hyperparameter analysis. Compressed on NOHATE and evaluated on

GermEval 19. The lines distinguish experiments with di�erent ;40A=8=6 A0C4 .
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Figure 5.2: Hyperparameter analysis. Compressed and evaluated on NOHATE. The lines

distinguish experiments with di�erent ;40A=8=6 A0C4 .

Figures 5.1, 5.2, and 5.3 demonstrate the best results of the 15 epochs downstream task

training. We decide to present our results either as a function of BC0AC8=6 A4?;024<4=C A0C4

or A0C8> > 5 A4?;024<4=C 2ℎ0=64B to gain insights into the in�uence of these hyperparam-

eters. The other is then �xed to A0C8> > 5 A4?;024<4=C 2ℎ0=64B = 85% or starting replace-
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Figure 5.3: Hyperparameter analysis. Compressed and evaluated on MIMIC-III. The lines

distinguish experiments with di�erent ;40A=8=6 A0C4 .

ment rate 1 = 0.1 because in a wide range of experiments, these hyperparameters lead to

good results.

Learning rate plays a minor role in TC’s performance First and foremost, it stands out that

the learning rate has no apparent in�uence on the general trend of models’ prediction

performance. In some speci�c settings, the learning rate hardly in�uences the �nal result,

e.g., Figure 5.1a at 0.9, Figure 5.2a at 0.3, Figure 5.2b at 5, or Figure 5.3a at 0.3. This leads

to the conclusion that the learning rate plays a minor role in compression performance.

Low starting replacement rate for 85% of compression steps creates best results Further,

the hyperparameters introduced by TC, starting replacement rate, and ratio of replacement

changes are much more in�uential on the performance. As described in Section 2.2.4,

using a curriculum replacement scheduler has the advantage that at the beginning of the

compressing process, the successor modules are trained with much guidance. The guidance

decreases steadily throughout the module replacement phase because the replacement

rate gradually increases. Our experiments clearly show that using a starting replacement

rate bigger than 0.3 reduces the positive e�ect of decreasing guidance, and the prediction

performance of �nal models drops.

Similarly, using a low ratio of replacement changes also harms the performance. Com-

paring Figures 5.2a and 5.2b, or Figures 5.3a and 5.3b, the results can be much worse

than using a starting replacement rate that is too high. We assume a reason for this is

that in the �rst, e.g., 5% of compression steps, the replacing rate jumps very quickly to 1,

which vanishes the e�ect of guidance. For the remaining 95% of compression steps, the

compression process is similar to pre-training from scratch because the successor modules

are not yet adapted to the predecessor modules.
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5.5 Compression Performance Analysis for Best Models

Omit successor fine-tuning phase harms TC’s performance Moreover, in all experiments,

the performance drops when the ratio of replacement changes increases from 85% to 100%

(see Figures 5.1, 5.2, and 5.3). We conduct these experiments to test the importance of

TC’s second phase, the successor �ne-tuning. It turns out that only using the module

replacement phase harms the performance of TC signi�cantly. This e�ect increases with

decreasing learning rate.

Summary Based on our experiments, using TC works best when the replacement rate is

curriculum scheduled with a relatively low starting replacement rate of around 0.1 to 0.3,

and the successor �ne-tuning phase starts after 85% of compression steps. The learning

rate plays a minor role in the compression process in general; however, it in�uences the

prediction performance of a concrete experiment.

5.5 Compression Performance Analysis for Best Models

The previous sections deal with the in�uence of di�erent hyperparameters, such as the

initialization method in Section 5.3, or the controlling of the replacement rate in Section

5.4. This Section evaluates and discusses compression performance in greater detail.

Table 5.3 presents the models that achieve the best results on our testing series, described

in Section 5.4. These are compressed within 50 epochs of LM �ne-tuning, either based

on NOHATE or MIMIC-III and subsequently evaluated on all three datasets. For this, we

choose the best models of the test dataset within 15 epochs downstream task training.

The hyperparameter’s abbreviations in Table 5.3 stand for: learning rate (;A ), starting

replacement rate (BAA ), and ratio of replacement changes (AA2). All models have in common

that they reduce the number of parameters from originally about 110M to 66M parameters,

which equals a compression ratio of �' = 1.67×.

Model Settings Prediction
Performance

Retained
Performance

Speedup
Fine-tuning Time

NOHATE LM +
GermEval 19

;A = 2 × 10−5
BAA = 0.1

AA2 = 85

0.7210 F1 0.9750 2.5 30.5 h + 6 min

LM + NOHATE
;A = 1 × 10−5
BAA = 0.3

AA2 = 85

0.7201 F1 0.9889 2.16 30.5 h + 6 min

LM +MIMIC-III
;A = 1 × 10−5
BAA = 0.1

AA2 = 85

0.7158

ROC/AUC

0.9947 2.14 111 h + 56 min

Table 5.3: Best models after hyperparameter analysis. Abbreviations: learning rate (;A ),

starting replacement rate (BAA ), and ratio of replacement changes (AA2).
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5 Benchmark, Evaluation, and Discussion

Dataset size has a positive influence on retained performance The values in column Re-
tained Performance of Table 5.3 are calculated with the metric '% , described in Section

3.4.2.1. They clearly show that the training dataset’s size has a positive in�uence on the

compression’s performance. However, the in-hospital mortality prediction experiment

must be considered cautiously because the dataset for compression and downstream task

training of these models is the same, even though a test set is used for evaluating the

model’s �nal performance. Thus, comparing the models’ perplexity with their baselines

gives more reliable insights since it is measured after the compression process before the

dataset is reused for downstream task training. As a reminder, the baseline for NOHATE

achieves a perplexity equal to 6.13 and 1.85 for MIMIC-III. The best compressed mod-

els reach 11.70 and 2.83, which is equal to retention of 47.15% (NOHATE), and 65.37%

(MIMIC-III) of their language model capabilities. This underlines that the performance of

TC increases with the size of the training dataset used for compression.

More than 2× speedup of fine-tuning and faster LM fine-tuning Another dimension of eval-

uating the performance of TC is the time dimension. The values in column Speedup
Fine-tuning of Table 5.3 are calculated with the metric B?443D?�) , described in Section

3.4.2.2. They show that using a compressed domain-speci�c LM reduces the necessary time

for learning the actual downstream task. In our experiments, B?443D?�) is about 2.1 to 2.5.

Further, the compression process is faster too. Compared to the baseline implementations

(see Table 5.1), compressing based on NOHATE needs about 78%, and based on MIMIC-III,

about 94% of the time necessary for LM �ne-tuning of the corresponding datasets.

1.94× or 1.73× speedup of inference on CPU or GPU Moreover, we test the model’s infer-

ence speed. Inference refers to the chain of taking the examples as a batch, tokenizing

them into tensors, and using these tensors to compute the model’s output. The tokenizer

truncates the token sequences to maximum 512 tokens and pads the examples to the same

length. We measure the time required for the entire prediction chain.

For a comprehensive comparison of the predecessor and successor models’ speed, we

use di�erent batch sizes on CPU and GPU for each dataset. Figures 5.4 and 5.5 show the

mean values and their corresponding standard deviations for 100 predictions for each

setting. The datasets’ di�erent prediction times with the same batch size represent the

dataset statistics. Observations from MIMIC-III are longest with, on average about 2, 500

characters, which is the reason for the highest prediction times. NOHATE and GermEval

19 with about 316 and 160 characters on average are much shorter and therefore need less

time for inference. Comparing Figures 5.4a and 5.4b or Figure 5.5a and 5.5b, one can see

an apparent reduction of prediction time when using the compressed model.

To take a closer look at the actual speedup of inference, we use the metric B?443D?=@ℎF ,

described in Section 3.4.2.3. It uses the mean values of our measurements and presents

the results in Figure 5.6. More detailed, one can see the CPU-based experiments, i.e.,

B?443D?=@�%* in Figure 5.6a, and GPU-based (B?443D?=@�%* ) in Figure 5.6b. On average,

the speedup for CPU-based inference is 1.94× and for GPUs 1.73×with a standard deviation

of 0.10 for both. However, some clear outliers for CPU and GPU drastically increase or

decrease the speedup, which we do not evaluate any further. We assume that these e�ects
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(b) Inference time of the best compressed model.

Figure 5.4: Inference time on CPU. Mean inference time and standard deviation for 100

predictions. Lines distinguish experiments with di�erent datasets.
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(b) Inference time of the best compressed model.

Figure 5.5: Inference time on GPU. Mean inference time and standard deviation for 100

predictions. Lines distinguish experiments with di�erent datasets.

are based on the hardware architecture, such as changing e�ciency of fetching data. It

remains to say that it can be worthwhile to run experiments before deploying models in

production to �nd the sweet spot of speedup.

Summary Our experiments clearly show that using TC during LM �ne-tuning can retain

up to about 99% of the downstream task model’s performance while reducing the LM

�ne-tuning time and speedup the downstream task training by a factor of more than 2.

Moreover, the compressed model is about 1.94× on CPU and 1.73× faster for predictions

on GPU.

5.6 Qualitative Error Analysis

For a more in-depth analysis of TC, we manually analyze 100 randomly sampled false

positives (FP) and false negatives (FN) of our best models, shown in Table 5.3, and their

corresponding baselines. Subsequently, we compare the frequencies of error classes to
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(a) Speedup of inference measured on CPU

(B?443D?=@�%* ).
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Figure 5.6: Speedup of inference. The speedup of the compressed model compared to its

baseline averaged over 100 predictions. Lines distinguish experiments with

di�erent datasets.

determine whether they change during the compression process. Because we only use 100

examples for the error analysis, where a single example already changes the error by 1

percentage point, we consider a change of less than three percentage points as similar.

Dataset: GermEval 19 For the task hate speech detection, van Aken et al. [1] conducted a

detailed error analysis. Although they use di�erent datasets, their introduced error classes

for both false positives and false negatives, �t our needs. Therefore, we use their error

classes to bootstrap our qualitative error analysis.

16% of FNs and 11% of FPs have doubtful labels For both types of misclassi�cation, there

are several observations for which we question the actual labels. By combining the

examples, we �nd that 18% of 200 FPs and 15% of 200 FNs belong to the error class of

doubtful labels for the compressed and baseline model. We assume, especially for the FPs,

that the missing context this tweet was published in is why annotators have chosen the

positive class. However, without knowing to what the comment refers to it is, in our point

of view, free of hateful content.

Frequency of≥ 5mentions or hashtagsdoes not change during compression Another error

class that applies for both misclassi�cation types is when an example consists of ≥ 5

mentions or hashtags. 22% of the original and 20% of the compressed model’s FPs belong to

this class. On the other hand, for FNs, only 10% of the original and 11% of the compressed

model consists of 5 or more mentions or hashtags. Besides the doubtful labels, this is the

most signi�cant error class for the models’ FP misclassi�cations. However, the important

part for this thesis is that the error’s frequencies do not change during the compression

process.
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5.6 Qualitative Error Analysis

Distribution of error class quotations or references remains stable An error class for FPs

is the usage of quotations or references. 10% of the original and 9% of the compressed

model’s examples belong to this class. As van Aken et al. [1] pointed out, the usage of

o�ensive words in a context where it refers to, e.g., the author herself/himself or quotes a

hateful comment, can confuse the classi�er. Fortunately, the compression process does

not increase this class frequency.

Compression decreases the frequency of toxicity without swear words FNs by 5 The most

signi�cant and problematic error class for our classi�ers is toxicity without swear words.
45% of the original and 40% of the compressed model’s FNs belong to this error class.

Authors of such comments often use negatively connoted words for a given context to

discredit people or groups. Interestingly, the compression process reduces the amount of

FNs caused by this class.

Observations on misc error classes Further, for both misclassi�cation types, which contain

rare or constructed words, we can also observe a reduced frequency after compression. For

FPs and FNs, the compression process decreases the frequency by 3 points to 9% and 10%.

However, unfortunately, compression introduces the new error class of comments that

consists solely of capital letters (3%) and harms the model’s ability to handle emojis (+3%),

especially for ≥ 5 emojis in a comment. It remains to say that capital letters and emojis are

typical patterns that are pre-processed, such as change the emoji’s unicode into another

representation or the emoji’s name [52].

Dataset: NOHATE For the dataset NOHATE, there are many more examples that belong

to the error class of doubtful labels. We again combine the examples of the two models.

25% of 200 FP and 17% of FN examples are in our point of view wrongly labeled. Moreover,

it seems like the observations are inconsistently labeled. A reason for this could be that

the authors of GermEval 19 at least tried to measure the alignment of the annotators’

sense for hate speech (see Section 3.3.3). Whereas NOHATE’s authors used the Code Book,

described in Section 3.3.4, as rules for annotation [3], which depends on the annotator’s

interpretation.

Compression decreases FP error class rare or constructed words by 3 Besides doubtful la-

bels, the most problematic class for FP examples are rare or constructed words in comments.

However, in contrast to GermEval 19, this class’s frequency decreases during the compres-

sion process by 3 to 19%. This class’s impact on FNs is much smaller, with 13%, and does

not change during compression.

FN error classes frequencies remain unchanged a�er compression Further, by far, the

largest error class with 46% of the predecessor’s and 47% of the successor’s FNs belong

to toxicity without swear words. Other much smaller classes are rhetorical questions and

metaphors and comparisons. Rhetorical questions formulate a hateful comment as questions

and metaphors or comparisons often require context information or knowledge that is
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community-speci�c. These two error classes exist in 6% and 9% of the FNs, where their

changes are very small with −1 and +1.

Dataset: MIMIC-III For people without a medical background, it is hard to understand the

content of such admission letters. To the best of our knowledge, we try to �nd patterns

based on the patient’s age, pre-existing conditions, symptoms, and risky behavior such as

smoking or alcohol use. Further, as described in Section 5.1, about 62% of all observations

are too long and get truncated. For the two misclassi�cation types, we �nd that 61% of the

FPs and 58% of the FNs are truncated.

In the following analysis of the error classes, we omit the comparison between the

original and compressed models because these distributions are extremely stable within a

change of ±2.

Patient’s pre-existing conditions, age, and behavior are more important than symptoms
The in-hospital mortality classi�er is especially sensitive to the patients’ age, pre-existing

conditions, and risky behavior. We �nd three symptoms, abdominal pain, chest pain, and

shortness of breath that are for both misclassi�cation types almost the same. FP: 15%, 7%,

and 6%; FN: 13%, 9%, and 7%. Whereas, pre-existing conditions such as hepatitis infection
(6%) or cancer (20%) are much more common for FPs than for FNs (1% and 10%). This is

similar to risky behavior, 14% of FPs are smokers, and 13% drink regularly alcohol. For FNs,

only 1% drink regularly alcohol, and 5% are smokers. Lastly, the distribution of patients

between the ages of 60 and 90 is similar for both misclassi�cation types. However, 12%

of FPs are over 90 years, and no patient is younger than 50. On the other hand, only 6%

of FNs are older than 90 years, and 6% of the patients are younger than 50. This clearly

shows that the classi�er preferably predicts young patients as negative and older as of the

positive class.

Summary We �nd that the error classes we could determine remain surprisingly stable

after the compression process. Therefore, we argue that TC compresses the knowledge of

the predecessor into the successor model. Changes in the error class distributions would

indicate that TC trains a new model rather than compressing the original. Furthermore,

the bigger the dataset, the more stable the error classes.

5.7 Summary

In this chapter, we use our benchmark to run a wide range of experiments. Subsequently, we

evaluate and discuss the results based on di�erent visualizations and analysis techniques.

In Section 5.3, we show that our initialization method, i.e., using the predecessor mod-

ules’ lower layer as initialization for the successor modules, is superior to the original

initialization procedure. Therefore, we use our method in all experiments for the hyperpa-

rameter analysis, where we focus on developing a more in-depth understanding of the

hyperparameter’s in�uence on the compression performance.

The grid, we use for hyperparameter analysis, consists of the parameters: ;40A=8=6 A0C4 ,

BC0AC8=6 A4?;024<4=C A0C4 , and A0C8> > 5 A4?;024<4=C 2ℎ0=64B . The experiments clearly
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5.7 Summary

show that the learning rate’s in�uence on the compression’s performance is marginal.

Further, using a starting replacement rate of around 0.1 to 0.3 and linearly increase it until

the successor �ne-tuning phase starts after 85% of compression steps consistently achieves

good results.

We use the best results for each of the datasets for an in-depth evaluation of the

compression performance. First of all, we show that using TC during LM �ne-tuning can
retain up to 99% of the �nal model’s prediction performance. TC does not only increase

the downstream task training speed by more than 2× (depending on the dataset); the

compression process is also faster than plain LM �ne-tuning. The compressed models’

inference on CPU is, on average, 1.94× faster and on GPU 1.73×.

In the end, we argue that TC reliably compresses the knowledge of the predecessor

into the successor. This conclusion is based on the comparison of predecessor’s and

successor’s error analysis and the fact that their error class distributions (before and after

the compression) are incredibly stable.

We conclude that Theseus Compression, as presented by Xu et al. [78], has some

drawbacks. We improve the initialization procedure and show that using TC during LM

�ne-tuning based on real-world datasets is a powerful tool to decrease model sizes and

increase inference speed signi�cantly. Especially in an environment where it is planned

to use a domain-speci�c BERT and model speed or its size are essential or the limitating

factor, Theseus Compression is worth considering. However, in our experiments, using a

compressed model always comes with a loss of prediction performance even though the

retained performances are impressive.
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6 Conclusion and Future Work

In this thesis, we aim to evaluate whether a domain-speci�c TC compressed BERT helps

speed up experiment iterations for downstream task models. Therefore, we adapt the

implementation of Xu et al. [78] and propose changes to the successor model’s initialization

procedure.

We perform experiments to show the bene�ts of our initialization procedure and develop

a deeper understanding of the hyperparameters’ in�uence on the compression performance.

For the hyperparameter analysis, we use grid search to get an extensive set of experiments.

The best downstream task prediction performances are achieved when the compression

process uses a starting A4?;024<4=C A0C4 around 0.1 to 0.3 and linearly increase it until after

about 85% (A0C8> > 5 A4?;024<4=C 2ℎ0=64B) of compression steps the successor �ne-tuning

phase starts.

Based on the best models, we comprehensively evaluate and present TC’s compression

performance. The following list gives a brief overview of the most important aspects:

• The compression process itself is faster than plain LM �ne-tuning

• Compressed models are 1.67× smaller (66" parameters)

• Compressed models retain up to 99% of prediction performance

• Compressed models’ downstream task training is more than 2× faster

• Compressed models’ inference is, on average, 1.94× faster on CPU and 1.73× on

GPU

A closing qualitative error analysis shows that the models’ error class distributions do not

change during compression, revealing that TC transfers the predecessor’s knowledge into

the successor.

6.1 Conclusion

Based on our �ndings, we conclude that especially if LM �ne-tuning is part of the new

models’ development process, Theseus Compression is very powerful. Thus it speeds up

the rest of the process because of a compressed domain-speci�c BERT, which is smaller,

faster, and downstream task training time is reduced. Further, it potentially enables the

deployment of TC compressed �nal models on edge-devices [60]
1
, or where low model

prediction times are crucial.

1
The authors [60] experimented with a same-sized model on a recent smartphone.
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6 Conclusion and Future Work

Limitations On the other hand, if prediction performance is the most important metric,

TC is not useful because it, at least in our experiments, always harms the model’s prediction

performance. However, this is consistent with the de�nition of model compression: losing

less performance as possible during compression.

We argue that for industrial applications, it is often a trade-o� between high prediction

performance and speed/memory consumption. In this area, it is worth considering using

Theseus Compression. For academia, primarily focusing on pushing the prediction per-

formance boundaries, the downside of reduced prediction performance can outweigh the

smaller model size and speed.

6.2 Future Work

Throughout this thesis, several aspects arose that are worth future research. Some are

ideas to improve TC’s performance or increase the compression process’ speed. Others

complement the in-depth evaluation.

Multi-GPU compression Pre-training [19, 45, 55, 56, 7], �ne-tuning the LM of pre-trained

models, or compression [60] is usually performed on a multi-GPU setup to speed up the

training/compression time. However, all our experiments are based on a single GPU setup.

Technically, there is no reason why the *Theseus models should not support multi-GPU

compression because they are based on transformer classes. Nevertheless, benchmarking

a distributed compression would provide evidence for or disprove this assumption.

Early stopping for the compression process We stop the compression process after 50

epochs for each of our experiments. Using early stopping, which is a regularization tech-

nique, potentially increases the models’ performance. Early stopping ends the compression

process, if the test/validation error starts to increase, which is a typical over�tting indi-

cator. However, during the compression based on NOHATE and MIMIC-III, the model’s

perplexity does not start to increase. Thus, early stopping would compress the models

for some more epochs, which leads to better perplexity. A distinct disadvantage is that

the maximum number of compression steps is not known upfront and using a curricu-

lum replacement scheduler gets more challenging because it is not possible to de�ne the

A0C8> > 5 A4?;024<4=C 2ℎ0=64B hyperparameter.

Experiment with Next Sentence and Sentence Order Prediction The pre-training procedure

for BERT consists of two objectives: Masked Language Modeling (MLM) and Next Sentence

Prediction (NSP). We adapt TC that it compresses the models during MLM and omit

NSP. Some papers question whether NSP is the best objective to improve the model’s

performance [45, 40]. Thus, Lan et al. [40] proposed the Sentence Order Prediction

(SOP) objective as a replacement. Gaining insights into whether adding the NSP or SOP

objective to the compression process is bene�cial for its performance is valuable for further

improving TC.
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6.2 Future Work

Visually comparing predecessor and successor The goal of the qualitative error analysis

is to understand whether TC transfers the predecessors’ knowledge into the successor.

Van Aken et al. [2] proposed a layer-wise visualization of BERT’s hidden states to get

insights into its reasoning process. Adapting this idea to compare the predecessor and

successor models directly reveals if TC compresses the model. If so, they should show a

similar reasoning process.

Apply TC on other model architectures The last two ideas for future work are similar to

or already proposed by Xu et al. [78]. Technically, TC’s single constraint is that the input

and output sizes of a successor module have to match the predecessor module’s sizes (see

2.2.4). This means it is not restricted to BERT or the Transformer architecture. It would be

interesting to see TC’s performance on other architectures.

Replace encoders with non-transformer based layers It is known that di�erent parts of

BERT learn speci�c aspects [39]. Thus, it would be interesting to explore if specialized

layers used as successor modules can increase the compressed model’s prediction perfor-

mance.
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