
Knowledge enhanced language models

vorgelegt von

Alexei Gustavo Figueroa Rosero

EDV.Nr.:877737

dem Fachbereich VI
der Beuth Hochschule für Technik Berlin vorgelegte Masterarbeit

zur Erlangung des akademischen Grades
Master of Science (M.Sc.)

im Studiengang
Data Science

Tag der Abgabe 27. Juli 2020

Gutachter
Prof. Dr.-Ing. habil. Alexander Löser Beuth Hochschule für Technik Berlin
Prof. Dr. Felix Alexander Gers Beuth Hochschule für Technik Berlin

Abstract

This work presents a methodology to enhance state of the art transformer models with additional
knowledge, by introducing an intermediate retraining routine in a multi-task setup. Every task is
derived from external knowledge base triples. The knowledge domain chosen is commonsense
due to its relevance, data and benchmark availability. The experimental results highlight dropout
as an important setting to control the retraining process, and show promising avenues to overcome
the selected benchmark.

Contents

1 Introduction 1
1.1 Problem statement . 2

1.1.1 Hypothesis . 2
1.2 Thesis outline . 2

2 Background and Related Work 3
2.1 Recurrent networks . 3

2.1.1 RNNs in Language Models . 3
2.2 Transformer networks . 4
2.3 State Of The Art . 4

2.3.1 BERT . 5
2.4 Catastrophic forgetting . 6
2.5 Commonsense . 7
2.6 HellaSwag . 7
2.7 GLUE . 8

2.7.1 Single-Sentence . 8
2.7.2 Similarity and paraphrase . 9
2.7.3 Inference . 9

2.8 Knowledge Bases . 10
2.8.1 ATOMIC . 10
2.8.2 CONCEPTNET . 11

2.9 Summary . 13

3 Methods 15
3.1 Knowledge instillation through retraining . 15
3.2 Multitask Model . 16

3.2.1 Knowledge Graph Representation . 17
3.3 Tasks . 18

3.3.1 Triplet validation . 18
3.3.2 Edge prediction . 18
3.3.3 Node prediction via Masked Language Modelling 19
3.3.4 Multiple choice . 19

3.4 Model evaluation . 19
3.4.1 Retraining . 19
3.4.2 Common sense : HellaSwag . 20
3.4.3 General language proficiency : GLUE 20

3.5 Summary . 20

4 CONTENTS

4 Implementation 23
4.1 Experiment environment . 23
4.2 Data . 23

4.2.1 Sources . 23
4.2.2 Data Split . 23
4.2.3 Preprocessing . 24

4.3 Modelling . 25
4.3.1 Retraining Routine and Hyper-Parameter Search 27

4.4 Downstream tasks . 28
4.4.1 HellaSwag . 28
4.4.2 GLUE . 28

4.5 Summary . 29

5 Results 31
5.1 Evaluation setup . 31

5.1.1 Hypothesis . 31
5.1.2 Baseline: Raw pretrained model . 31
5.1.3 Metrics . 31

5.2 Experimental evaluation . 31
5.2.1 Retraining evaluation . 32
5.2.2 Commonsense evaluation . 34
5.2.3 General language performance evaluation 37

5.3 Error Analysis and discussion . 37
5.3.1 Quantitative Error Analysis . 37
5.3.2 Qualitative Error Analysis . 39

5.4 Conclusions . 40
5.4.1 Relevance of dropout . 41
5.4.2 Hyper-parameters . 41
5.4.3 Beyond retraining . 41

6 Summary and future work 43
6.1 Summary . 43
6.2 Future work . 44

6.2.1 MLM Tasks . 44
6.2.2 Selective propagation of the loss . 44
6.2.3 Hyper-parameter tuning . 44
6.2.4 Domain specific knowledge bases . 44
6.2.5 Further Models . 45

References 46

Chapter 1

Introduction

The field of Natural Language Processing (NLP) has sustained an increasingly rapid
transformation over the last couple of years. Not only has it captured the undeniable full
attention of industry tech giants such as Google, Facebook, Amazon and Microsoft, which indeed
are also contributors of the general advancement, but also has settled as a main focus point
for research given the wide spectrum of its applicability spanning many domains outside of IT
services. Just as in all the related branches of Machine Learning, the developments in Neural
Network architectures, hardware and software frameworks have become a fundamental factor in
the fast iterations pushing forward the state of the art.

The most recent wave of progress driving the best NLP systems has been mainly characterized
by very deep Neural Network architectures, an ever exploding number of parameters growing
in parallel with larger and larger datasets. This trend has somewhat limited the exploration of
such models to the tech industry leaders that have the viability in the sense of both economic and
technical capacity. Nevertheless, the lessons learned from Transfer Learning have transcended
NLP, and in conjunction with the publication of the parameters of such large general purpose
models after training, have lead the research community to advance the field into specializing
further on a wide range of different language tasks. This separation of the final NLP problems into
a broad and very expensive pretraining of language models, and a shorter, but highly specialized
finetuning, poses the question of where is the right boundary between these two stages specially
regarding what data and in what amount should be used for each one of them.

Deep Neural Networks generally exhibit a lack of comprehensive interpretability and the best
pretrained NLP models are no exception to this. Dissecting where and how the knowledge of
the world and its semantics are stored in the parameter space of a large model is still only an
unmaterialized dream, so adjusting methodologically the knowledge contents at either pretraining
or finetuning of these models, is a process that functionally involves model fitting and an
assessment against a commonly accepted benchmark for a specific NLP task.

This work presents an intermediate training regime that would instill additional knowledge into a
pretrained model relevant to a domain specific finetuning task. This is motivated by the fact that
highly specialized domain data is not necessarily available in an amount that is relevant for it to be
simply part of the pretraining process, and this is also forgiving the fact that pretraining at a large
scale is economically not feasible for most of the research community. A more in-depth discussion
of the scope of this work is presented next.

2 CHAPTER 1. INTRODUCTION

1.1 Problem statement

Recent results in Adversarial Datasets have shown that the State Of The Art (SOTA) models in
NLP have not been an exception of the clever Hans phenomenon, learning unintended statistical
features of the data used to train them, instead of generalizing to use a principled approach
to solve problems. Bidirectional Encoder Representations from Transformers (BERT) [Devlin
et al., 2018] made the headlines when it achieved near-human performance on the commonsense
benchmark SWAG [Zellers et al., 2018], nevertheless, by later improvement of these adversarial
datasets, BERT was shown to have exploited annotation artifacts. In NLP commonsense remains
an important dimension of knowledge since it is so tightly connected to how humans solve
ambiguities in their use of language. Further improvements in teaching this knowledge to
language models is highly desirable and many benchmarks as well as specialized knowledge
bases are available.

This work combines the ingredients of SOTA transformer models, knowledge bases, and a
multitask setup to introduce a retraining regime that lies in between the processes of pretraining
and finetuning to instill additional knowledge into these models. The commonsense knowledge is
targeted because of the availability of knowledge bases and downstream tasks, but the proposed
methodology is intended to be compatible with any kind of domain knowledge. Formally, the
experiments of this work are designed to verify the next hypothesis.

1.1.1 Hypothesis

Given a pretrained model, such as, BERT-base-uncased, and a retraining with multiple tasks
derived from commonsense knowledge bases, the retrained model will outperform a model of
the same architecture without retraining when put through a commonsense downstream task.
Additionally, this retraining procedure will not affect significantly the capability of the model
at general language tasks.

1.2 Thesis outline

This thesis is composed of the following 5 chapters:

• Background and Related work: Presents the background and parallel research relevant to
the thought process behind the hypothesis and the experimental setup for its testing.

• Methods: Illustrates the design of the experiments ran and the justification behind the
decisions made.

• Implementation: Summarizes the technical details of the experimental setup and illustrates
the full experiment flow.

• Results: Highlights the quantitative results of the experiments and compares them to the
chosen baseline, additionally presents an error analysis of the outcome of the experiment.

• Summary and future work: Depicts the extent and limitations of this work and poses open
questions to further explore in the context of the proposed hypothesis.

Chapter 2

Background and Related Work

In order to lay the foundations for the methods and experiment design of this work, few important
related notions need to be put in context. This chapter will first explore the recent transition of
the state of the art of NLP from recurrent encoder-decoder architectures to transformers, then
elaborate on a few of the problems in the commonsense dimension that this work attempts to solve
with the use of specific commonsense knowledge bases and downstream tasks.

2.1 Recurrent networks

Recurrent Neural Networks (RNN) involve a feedback of the hidden layers, in the sense of
forward computation, to the inputs. Such networks are highly relevant at modeling sequential
data, since a stateful representation of the process being modeled is stored in the hidden layers
and is constantly used to compute an output.

A breakthrough in the architecture of such networks was to include gating mechanisms to control
in a differentiable manner the flow of the input, output and state information. An example is the
Long Short Term Memory LSTM network which includes a definition of input, output, state and
forget gates [Hochreiter and Schmidhuber, 1997, Gers et al., 1999]. This network has seen wide
usage in the modeling of sound, time-series, and in general: sequences. The intuition behind the
design of these networks is to mitigate the problems of gradient explosion and vanishing which
made the training of recurrent networks fairly difficult, as well as to improve the modelling of
long term dependencies in the sequences [Hochreiter et al., 2001].

Although RNNs are theoretically very capable architectures (Turing-complete [Siegelmann and
Sontag, 1992]), and they can learn from and map to arbitrarily long sequences, they are not well
suited for parallelization, thus their training can take a significant amount of time.

2.1.1 RNNs in Language Models

The Neural Machine Translation field introduced the use of LSTMs in an encoder-decoder
pipeline. Here, the encoder would incrementally create a latent representation of the input
sequence that would be decoded and finally reinterpreted as words. Figure 2.1 presents this
architecture as originally proposed in [Cho et al., 2014].

The sequence-to-sequence learning tasks of finding latent representations or embeddings of
natural language sequences are now commonly referred to as language modelling [Graves,
2013, Sutskever et al., 2011, Sutskever et al., 2014, Cho et al., 2014].

4 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Encoder-decoder architecture for RNNs from [Cho et al., 2014].

2.2 Transformer networks

Transformer networks were introduced as a step towards tackling the issues of time complexity at
the moment of training recurrent networks, they are parallelizable feed-forward networks that rely
on attention mechanisms and don’t require the expensive sequential inference used with recurrent
models.

Attention was originally introduced in recurrent models for Neural Machine Translation so that
the models would be better at mapping the relationships between input and target sequences by
attending selectively to the source inputs [Bahdanau et al., 2014].

[Vaswani et al., 2017] proposed the Transformer architecture that, while it reuses the spirit of
the sequence to sequence modelling of having an encoder and a decoder, discards completely the
notion of recurrence by using encoder-decoder attention and self-attention, . Figure 2.2 shows the
original Transformer. The publication of this model not only meant a significant improvement in
the State Of The Art SOTA metrics in Neural Machine Translations tasks, but also, a more scalable
and faster architecture, superseding the RNN based models.

2.3 State Of The Art

As of 2020 the SOTA in NLP is dominated by Transformer-based networks, they are increasingly
large in their number of parameters to an extent that has made them exclusive to a select
number of players with the economical means to maintain the proportionally large technical
requirements. The recently introduced GPT-3 made it to the headlines with an outstanding 175
Billion parameters, but what is still an important aspect is that the performance of such models
still scales without reaching the point of diminishing returns [Brown et al., 2020].

An important aspect of the later models has been their pre-training and finetuning regimes. The

2.3. STATE OF THE ART 5

Figure 2.2: Transformer architecture from [Vaswani et al., 2017].

pre-training stage is mostly unsupervised and involves tasks like next word prediction, next
sentence prediction, and predicting masked words within sentences. This is done on very large
text corpora expecting for the model to achieve a high degree of knowledge of the language.
Finetuning is subjecting the pretrained model to an actual relevant task with domain specific
data like sentiment analysis or question answering among others. Usually finetuning is done on
considerably smaller datasets and over a few epochs. This separation of these two stages has made
possible for these large and thoroughly pretrained models to be used and researched in many fields
by players that not necessarily have the massive hardware or data to run the pre-training, yet they
can focus on more specialized tasks.

2.3.1 BERT

Bidirectional Encoder Representation from Transformers (BERT) is a mutilayer transformer
model that is based on the work of [Vaswani et al., 2017]. The main architectural difference in
contrast to other comparatively large transformer-based models is the bidirectional self-attention,
i.e. attention that is not constrained to the left of the context of every token [Devlin et al.,
2018]. Empowered with this and the two pretraining tasks of next-sentence-prediction and
masked-language-modelling, BERT set the bar across all NLP benchmarks when published.

Figure 2.3 illustrates how the pre-training and finetuning of BERT take place. In the sense of

6 CHAPTER 2. BACKGROUND AND RELATED WORK

architecture there is no actual difference between these two settings besides the output layers or
heads. This characteristic became a crucial step into generating a working framework within the
research community to transfer the language knowledge learned during pre-training to an ever
growing set of application fields or downstream tasks.

Figure 2.3: BERT, pre-training and finetuning settings differ only in the configuration of the output layers,
[CLS] is a special token denoting the start of a sequence while [SEP] delimits two sequences, from
[Devlin et al., 2018].

As mentioned before the pre-training of BERT is composed of two different tasks:

• Masked language modelling MLM where a proportion of the source tokens chosen at
random is masked with the special token [MASK], and the objective for the network is to
predict them.

• Next sentence prediction, given two sentences separated by the [SEP] token the objective
is for the network to predict whether the second sentence follows the first one, this is
approached as a binary classification problem.

2.4 Catastrophic forgetting

The subdivision of the training of a Deep Neural Network (DNN) model into multiple consecutive
stages (e.g. pretraining and finetuning) might yield severe degradation of performance in one
of these tasks. This is very relevant to this work since the methodology involves an additional
training step.

Catastrophic forgetting is a problem of neural networks when trained consecutively on two or
more different tasks. It occurs when the network loses its capability to perform on the initial
task once it has been retrained. Such pattern can be explained by the fact that the parameters
learned for the first task are replaced at the moment of specializing the network on the next
ones [McCloskey and Cohen, 1989].

Strategies of regularization like dropout and choosing the nature of the tasks might hinder the
extent of catastrophic forgetting [Goodfellow et al., 2013].

2.5. COMMONSENSE 7

2.5 Commonsense

Humans ground information of the world constantly through the diverse input from their senses,
and while context is fairly relevant for disambiguation on a case to case basis in the sense of
language understanding, there are cues that, although regularly used, have been built over the
conscious lifetime of an individual and are not necessarily present in the window of language
context. This implicit or background knowledge is also referred to as commonsense knowledge.

Although Deep Learning techniques have in recent years addressed to a successful extent
problems in the visual, speech and NLP domains, arguably many of the SOTA models fail
when needed to incorporate commonsense knowledge. In contrast, humans are very adept at
generalizing on few learning examples and render trivial questions such as If you stick a pin into
a carrot, does it make a hole in the carrot or in the pin? [Davis and Marcus, 2015], where many
neural networks would find it hard to decide between the carrot or the pin.

[Marcus, 2018] in his critical appraisal of Deep Learning (DL) postulates a set of important
aspects regarding models, data and knowledge.

• DL is data hungry.

• DL is shallow and has limited capacity of transfer.

• DL has no natural way of dealing with hierarchical structure.

• DL struggles with open-ended inference.

• DL is not sufficiently transparent.

• DL has not been well integrated with prior knowledge.

• DL cannot inherently distinguish causation from correlation.

• DL presumes a large stable world, in ways that may be problematic.

• DL works well as an approximation, but its answers cannot be fully trusted.

• DL is difficult to engineer with.

Many of these problems are subject of active research on their own, yet all seem very fundamental
if commonsense were to be infused in a model.

2.6 HellaSwag

HellaSwag is a novel benchmark for commonsense Natural Language Inference (NLI) that uses
Adversarial Filtering AF, a technique in which a set of discriminators are trained to choose
from wrongly generated samples from a language model to iteratively create a multiple choice
question answering dataset that is almost obvious for humans and very challenging for machine
models [Zellers et al., 2019b].

AF was originally the subject of SWAG [Zellers et al., 2018], the preceding attempt of creating a
dataset that would remove annotation artifacts [Gururangan et al., 2018], i.e. stylistic patterns of
the data such as length and word-preference biases that might leak the information of labels to
models under evaluation purely with features of the dataset.

8 CHAPTER 2. BACKGROUND AND RELATED WORK

With the introduction of BERT, SWAG was rendered trivial, reaching even human performance
levels on the benchmark. However, HellaSwag showed that SWAG was overcome by BERT not
because of BERT’s capacity in terms of NLI, but rather because of the cues already present in the
data. To demnostrate this, as shown in figure 2.4, different versions of SWAG were created:

• Default: The default SWAG dataset.

• Ending Only: All the context was removed from the questions.

• Shuffled: The tokens per ending in a question are shuffled.

• Shuffled + Ending only: Context is removed and additionally the order of the tokens is
randomized for each ending.

Figure 2.4: BERT validation accuracy when trained under several versions of SWAG and HellaSwag.
BERT’s performance on SWAG changes slightly, even with very aggressive alterations in the question
structure, hinting to the presence of learned statistical features of the data instead of actual commonsense
reasoning. [Zellers et al., 2019b]

Even with the most aggressive alteration of the datasets (Shuffled + Ending only) BERT managed
to surpass ESIM+ELMo [Chen et al., 2016] and LSTM+ELMo [Zellers et al., 2018] : the former
SOTA when SWAG was published.

The contribution of HellaSwag lies mainly on the substitution of both the generators and
discriminators with more recent SOTA models such as OpenAI’s GPT and BERT. When evaluated
on this novel benchmark, BERT struggled to breach 50% in overall accuracy. A single sample
from HellaSwag is shown in Figure 2.5.

2.7 GLUE

GLUE is a Natural Language Understanding NLU benchmark that emphasizes the use of a diverse
set of tasks to evaluate the performance of models [Wang et al., 2018b]. It is a collection of 9
different tasks and corresponding datasets. These tasks can be categorized as: single-sentence,
similarity and paraphrase, and inference:

2.7.1 Single-Sentence

• CoLA Corpus of Linguistic Acceptability, each example of which is a sentence labelled
with its grammatical correctness [Warstadt et al., 2019].

2.7. GLUE 9

Figure 2.5: Context and endings from HellaSwag with their probabilities as evaluated with BERT, in red is
BERT’s answer and in bold the golden label. [Zellers et al., 2019b]

• SST-2 Stanford Sentiment Treebank, a sentiment, positive/negative, is predicted from movie
reviews.

2.7.2 Similarity and paraphrase

• MRPC Microsoft Research Paraphrase Corpus, automatically retrieved from online news
sources. Consists of sentence pairs and the task is to predict whether they are semantically
equivalent.

• QQP Quora Question Pairs, involves a collection of question pairs and the goal is to
determine if they are semantically equivalent.

• STS-B Semantic Textual Similarity Benchmark is a collection of sentence pairs retrieved
from news headlines, video and image captions. The task is to assess the sentence similarity.

2.7.3 Inference

• MNLI Multi-Genre Natural Language Inference Corpus is a crowdsourced selection of
sentence pairs with textual entailment annotations. Given premises and hypothesis sentences
the task is to predict whether the premise entails, contradicts or is indifferent to the
hypothesis.

• QNLI The Stanford Question Answering Dataset consists of question-paragraph pairs,
where one of the sentences in the paragraph contains the answer to the corresponding
question. QNLI is a modified dataset that maps each sentence of the paragraph to a pair of
context and question sentences, yielding a sentence-classification problem where the goal is
to predict if the answer to the question is contained in the context [Wang et al., 2018b].

• RTE Recognizing Textual Entailment, comes from a compilation of annual textual
entailment challenges. The task involves detecting entailment in two classes entailment
and no_entailment.

• WNLI The Winograd Schema Challenge. Given a sentence containing a pronoun a system
must choose from a list the referent of that pronoun. For WNLI, the ambiguous pronoun
is replaced with every choice, and a sentence pair of the original sentence and the one with
the replacement is constructed. The task is to predict if the sentence with the replacement
entails the original sentence.

Figure 2.6 lists all the GLUE tasks, data size and their corresponding evaluation metrics.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.6: Task descriptions and metrics used for GLUE [Wang et al., 2018b]

2.8 Knowledge Bases

In the context of NLP knowledge can be either extracted from corpora or it can be manually
compiled and curated. One of the greatest challenges of automatic knowledge extraction from
corpora is reporting bias, i.e. the frequency of claims within these corpora are not necessarily
sensible to truth or facts of real life [Gordon and Van Durme, 2013]. On the other hand manually
curated knowledge bases typically present high correspondence or precision towards facts, but
lack coverage. A common technique to tackle this is by performing Knowledge Base Completion
where suitable novel relations are created among the entities of the knowledge base.

In this work two knowledge bases are used, ATOMIC and CONCEPTNET, both of them
correspond to curated graphs, yet they differ in the level of abstraction of the entities and relations
they contain.

2.8.1 ATOMIC

ATOMIC is an atlas of everyday commonsense reasoning, composed of 877k textual descriptions
of knowledge. The main contribution of ATOMIC is that it is a curated knowledge graph that
does not namely express taxonomic knowledge, but rather a set of if-then like relations focused
on causality of events, agents, themes and mental states [Sap et al., 2019].

There are 3 groups of relations in this graph that correspond to 9 edges:

• If-Event-Then-Persona: This group of relations describe how the subject is perceived
(xAttr).

• If-Event-Then-Event: These relations encompass events that might follow other events
(xNeed, xWant, oWant, xEffect, oEffect).

• If-Event-Then-MentalState: These edges relate to the mental pre and post-conditions of
an event (xIntent, xReact, oReact).

Figure 2.7 lists a few examples of the relations of ATOMIC based on this categorization.

An additional way of classifying the types of relations of ATOMIC is by their causal relations i.e.
causes, effects and stative (attributes). Figure 2.8 illustrates a small sub-graph from ATOMIC with
these in mind.

2.8. KNOWLEDGE BASES 11

Figure 2.7: Examples of If-Event-Then-X commonsense knowledge present int ATOMIC. For Inference
dimensions, "x" and "o" pertain to PersonX and others, respectively (e.g. "xAttr": attribute of PersonX,
"oEffect": effect on others) [Sap et al., 2019]

2.8.2 CONCEPTNET

ConceptNet is a knowledge graph where its nodes or terms are words and phrases of natural
language which are connected by weighted edges or assertions. It was originally released in 2004
as a parsed representation of the crowd-sourced Open Mind Common Sense knowledge project.

ConceptNet has been enhanced to include common sense of many sources, domains and languages
cite [Speer et al., 2017]. In total ConceptNet contains over 21 million edges and 8 million nodes,
the English vocabulary alone is represented by 1.5 million nodes. ConceptNet 5.5 groups relations
into 36 core edges, both symmetric and asymmetric (directed):

• Symmetric: Antonym, DistinctFrom, EtymologicallyRelatedTo, LocatedNear, RelatedTo,
SimilarTo, Synonym

• Asymmetric: AtLocation, CapableOf, Causes, CausesDesire, CreatedBy, DefinedAs,
DerivedFrom, Desires, Entails, ExternalURL, FormOf, HasA, HasContext,
HasFirstSubevent, HasLastSubevent, HasPrerequisite, HasProperty, InstanceOf, IsA,
MadeOf, MannerOf, MotivatedByGoal, ObstructedBy, PartOf, ReceivesAction, SenseOf,
SymbolOf, andUsedFor

Figure 2.9 presents 4 different relations and their terminal nodes for the word bicycle in the 5.8th
version of ConceptNet.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.8: An example of a subset of triplets of ATOMIC, with the grey overlay the edges are grouped
depending on their causal nature, i.e. effects, causes and attributes [Sap et al., 2019].

Figure 2.9: Sample of 4 different relations and their terminal nodes linked to the english word bicycle in
ConceptNet5 [ConceptNet5, 2020].

2.9. SUMMARY 13

2.9 Summary

This chapter introduces the building blocks for the experiments conducted in this work.
Transformer networks and namely BERT are briefly presented as the SOTA in NLP related
tasks. The notion of commonsense is explored by its definition, as well as, by artificially
created datasets like HellaSwag that challenge the state of the SOTA and expose BERT as a
model that exploits annotation artifacts. Additionally, two common-sense knowledge graphs are
introduced: ATOMIC, composed with highly curated triples consisting of if-then like relations and
CONCEPTNET, with a much broader coverage of common-sense knowledge. Finally, GLUE as
an important general purpose language understanding benchmark is introduced.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Methods

The design choices of this work encompass three core topics:

• A retraining routine

• A multi-task model with the corresponding task definitions

• An evaluation task

These will be discussed next.

3.1 Knowledge instillation through retraining

[Peters et al., 2019] propose a methodology for augmenting BERT with knowledge bases using
an additional architectural component called Knowledge Attention and Recontextualization KAR.
This module is inserted in between a pair of hidden layers of a pre-trained BERT. In spirit KAR
capitalizes on an entity linker that retrieves precomputed embeddings from the knowledge base,
then via word-to-entity-span attention the BERT embeddings are enriched.

A similar approach is taken by [Wang et al., 2020] with a module called K-Adapter, that might
be seen as an additional parameter set that is finetuned with a specific knowledge base and
downstream task, while selectively keeping parts of the original BERT frozen.

Both of these approaches encompass the modification and namely extension of the architecture
of the pre-trained models. This involves an increased amount of parameters, higher complexity,
training overhead and finally, slower inference times of the resulting models.

Recent results in model distillation like DistillBERT [Sanh et al., 2019], and research towards
questioning the necessity of all the parameters in the SOTA transformer models (e.g. excessive
number of heads [Michel et al., 2019]), have highlighted the redundancy existing in models
like BERT. Appending additional components like K-Adapters or KAR pushes even further the
complexity of such models, and the fact that both are intrinsically using transformer based sub
networks poses the question of whether BERT could simply re purpose its redundancy to capture
information from a domain specific Knowledge Base.

BERT is originally pre-trained in a multitask setting with two tasks: next sentence prediction and
masked language modelling [Devlin et al., 2018]. The finetuning generally involves an additional
set of output layers that implement directly to the downstream task.

16 CHAPTER 3. METHODS

[Garg et al., 2019] and [Phang et al., 2018] have shown applications of intermediate retraining
(or finetuning) that improve the performance of BERT in the final downstream task. [Wang et al.,
2018a] presents a comprehensive study on the intermediate retraining of BERT and concludes that:

• Generally a multi-task setting is shown to be more beneficial than any single task.

• Target downstream tasks do not necessarily have to be similar to the retraining tasks to
benefit from them.

• When trained on tasks that are very different from its pre-training tasks (like Machine
Translation MT) BERT shows signs of catastrophic forgetting.

Inspired by these conclusions this work aims to implement an intermediate retraining regime
that involves a multitask setting and inherently follows the spirit of the two pre-training tasks of
BERT. This retraining regime aims to instill specific domain knowledge with the help of tasks
that generate or extend a knowledge graph.

As highlighted in Chapter 2, commonsense is an important type of knowledge that SOTA models
including BERT are missing. With HellaSwag [Zellers et al., 2019b], proposes not only a critical
diagnostic of BERT but also a downstream task that can be used to benchmark the model’s
proficiency in relation to commonsense knowledge. This is the main reason why HellaSwag is
chosen to evaluate if the retraining instillation of commonsense knowledge bases is successful.

The choice of the commonsense knowledge bases in this work (ATOMIC and CONCEPTNET)
resonates around the idea of having a fairly abstract and inference-focused base (ATOMIC), as
well as very rich and general purpose knowledge (CONCEPTNET). Combining them falls in
line with having a heterogeneous and large amount of data that should be in service of both the
generalization and regularization of the model.

The details surrounding the design of the wrapping multitask model for the retraining and the
selection of tasks are presented next. Even though the choice of pretrained model for this work
lies with BERT it is important to denote the retraining regime proposed with these tasks can also
be applicable to other SOTA models. The same logic applies to different domain knowledge, i.e.
knowledge bases coming from specific domains like medical or legal, could also be instilled, to be
later benchmarked against a corresponding domain specific downstream task.

3.2 Multitask Model

The model to be retrained is BERT-base and the methodology of the intermediate retraining
regime follows the conventional downstream task finetuning of [Devlin et al., 2018]. However, the
multitask setting implies that multiple objectives are optimized simultaneously during retraining.
This is achieved by connecting to the last hidden state of BERT a set of additional layers, output
heads, that output predictions in parallel. Every training sample that is fed into the model
corresponds uniquely to a single task, but since all the output heads are concurrently yielding
predictions for all samples in a batch, during training the losses are masked with the exception
of the relevant task, so that the corresponding gradients can be propagated selectively. Figure 3.1
illustrates this retraining process for all the tasks that will be introduced next.

3.2. MULTITASK MODEL 17

BERT Base-uncased

Binary classifier head
(Triplet validation)

Masked Language
Modelling head for

Node A

Masked Language
Modelling head for

Node B

Multi-class classifier
head

(Edge prediction)

Multiple-Choice QA
head

Node A

Multiple-Choice QA
head

Node B

Example 1: MLM predict o (Node B) for {Film ; used for , ???}
Example 2: Is the triple correct? {suburban tree ; has property; Hit hard by strong winds}

Example 1 Target: -100
Example 2 target: True

 -100
 -100

 movies
 -100

-100
-100

-100
-100

-100
-100

Training Data

Figure 3.1: Training setup of the model with the six different output heads. The training examples are fed
for a single task and the output targets are masked accordingly so as to propagate the gradient of the loss
only to the corresponding output head of the model as well as to BERT Base-uncased

.

3.2.1 Knowledge Graph Representation

In order to set a common notation for this chapter the instillation knowledge graphs are represented
as a set of triples {s, r, o} s and o are graph nodes and r denotes the relation or edge between
them. Figure3.2 shows a small sample graph that follows this notation. Both ATOMIC and
CONCEPTNET are treated following this definition.

n1 n2

n4

n3e1

e2

e4

e3

{ S, R, O }
{ n1, e1, n3 }
{ n1, e2, n2 }
{ n2, e4 ,n4 }
{ n4, e3, n2 }

Figure 3.2: {s, r, o} triples in a sample directed graph, the nodes are qualified as s and o depending on the
direction of the edge or relation r

.

18 CHAPTER 3. METHODS

3.3 Tasks

The intuition behind the choice of tasks follows Knowledge Base Completion routines used to
pretrain embeddings:

• In linear models [Joulin et al., 2017] (r edge prediction and node s, o prediction).

• The original transformer model [Bosselut et al., 2019](right node o prediction).

• In LSTM based networks [Li et al., 2016] (triplet validation).

These tasks show a degree of similarity to the two original pre-training tasks of BERT [Devlin
et al., 2018], this idea is explained within the definition of each task and shows the motivation
behind the choice of tasks to be consistent with the findings of [Wang et al., 2018a].

All the tasks presented next involve at least one additional output head fed with the last hidden
layer of the model.

3.3.1 Triplet validation

This task involves the prediction of whether an s, r, o triple given to the encoder is valid or not.
Given arbitrary triples s, r, o the model must predict whether they belong to any of the triples
contained in the knowledge graph.

At an architecture level this is achieved by adding a softmax layer mapping to two classes, and
consuming the output of the last hidden layer of the model. The model prediction function is
defined in Equation 3.1.

f(s, r, o) 7→ R2
(0,1) (3.1)

During training, the loss L optimized for this task is the cross entropy between the prediction of
the model and a one hot encoded vector of size 2 symbolizing the expected classes correct and not
correct (or present and not present in the knowledge bases).

L = −y · log(ŷ) (3.2)

where y is the ground truth and ŷ the model prediction.

Given the fact that the sample triple s, r, o is represented as three consecutive sequences, this task
deeply resembles the original pre-training task of next sentence prediction of [Devlin et al., 2018].

3.3.2 Edge prediction

Similarly, the edge prediction involves a classification task. It consists of a softmax layer following
the last hidden layer of the encoder to represent the probabilities over the classes. However, in this
case the relation r is the actual target. Hence, the prediction function for this task only depends on
s and o as shown in Equation 3.3.

f(s, o) 7→ RC
(0,1) (3.3)

where C is the number of relations or edges existing in the data. The loss of the model during
training in this case remains the same as in Equation 3.2, albeit with the corresponding predictions
and targets relevant to this task.

In the edge prediction task, BERT is presented with a single sequence composed of s and o, for
the knowledge bases considered in this work the cardinality of r is significantly smaller than the
set of all s and o, or even BERT’s pretraining vocabulary, so even when it would be possible, it
does not seem reasonable to treat this task as Masked Language Modelling MLM. Nevertheless,
this task could indeed be thought of a simplified version of MLM.

3.4. MODEL EVALUATION 19

3.3.3 Node prediction via Masked Language Modelling

For this task either the s or o nodes of the triple are masked out and the model is given the task
of completing them. The prediction of the network involves a distribution over the vocabulary
size of the network for each of the possible positions in the output sequence. Since this task is
subdivided into two sub tasks, (for each of the nodes), there are two output heads. Equations 3.4
and 3.5 present the prediction of these heads:

f(r, o) 7→ RS×V
(0,1) (3.4)

f(r, s) 7→ RS×V
(0,1) (3.5)

where S is the size of the output sequence and V is the size of the vocabulary of the model.

The way these output heads are implemented is by mapping to a distribution (in the softmax sense)
over the vocabulary for each of the output tokens. The loss at training time is the cross-entropy
loss from Equation 3.2.

This task mimics very closely the MLM task in [Devlin et al., 2018].

3.3.4 Multiple choice

The multiple choice setting corresponds as well to a classification problem, yet again the task is
subdivided into two sub tasks, one for each of the nodes of the triplet s or o. The input for the
model is a sequence composed of:

• s, r, c1, c2, ..., cn where ci corresponds to n−1 randomly sampled o nodes from the training
dataset and the original o that belongs with the triple, n is the hyperparameter representing
the number of choices.

• o, r, c1, c2, ..., cn where ci and n follow the aforementioned meaning but for the s entities
within the training data.

The main assumption made here is that the directional nature of the relations r is not relevant to the
inference of the correct choice by the model. Additionally, each of the two output heads is indeed
an n classification problem that will be treated as the tasks of edge prediction and triplet validation
presented earlier, i.e. the output is produced by a softmax layer mapping to a distribution over n
classes, and the loss is the cross-entropy loss of Equation 3.2.
This task can be thought of as a simplification of the previously presented masked language
modelling retraining task, since the choices are now limited to n instead of a sequence of
combinations over the entire BERT vocabulary.

3.4 Model evaluation

As described before the knowledge instillation is expected to be achieved after an intermediate
multitask retraining routine. Subsequently whether the knowledge has been infused is assessed by
running a commonsense specific benchmark - HellaSwag. Additionally to assess the state of the
model after retraining the GLUE benchmark is also considered.

3.4.1 Retraining

In the multitask setting, each of the 6 different output heads corresponding to the 4 tasks described,
have different target metrics:

20 CHAPTER 3. METHODS

Task Task name Evaluation metric

Triplet validation IS_CORRECT F1-Score
Edge prediction MASK_EDGE F1-Score
Masked language modelling of s MASK_A Perplexity
Masked language modelling of o MASK_B Perplexity
Multiple choice of s MC_NODE_A F1-Score
Multiple choice of o MC_NODE_B F1-Score

Table 3.1: Tasks of the retraining, their naming and the metrics used to control them

• For the classification tasks the main metric observed is the F1 score

• For the two node prediction tasks the control metric is the perplexity.

As stated before these metrics are not the main goal of this work, they only present a means
to assess whether the retraining converges positively for each of the tasks, hence the eventual
meeting of good metrics in this regard doesn’t imply any success or failure in the subsequent
evaluation with the downstream tasks. Table 3.1 presents a summary of the tasks and their metrics,
additionally each of the 6 tasks is named.

Additionally, the model is put through two evaluation benchmarks corresponding to common sense
and general language proficiency.

3.4.2 Common sense : HellaSwag

As previously introduced HellaSwag is a multiple-choice task, samples of which involve a context
with 4 different endings. Figure 2.5 illustrates an example of such tasks. The general metric for
HellaSwag as proposed by [Zellers et al., 2019b] is accuracy.

3.4.3 General language proficiency : GLUE

The GLUE benchmark is commonly used as a reference for assessing the language understanding
of SOTA models. Given that both [Phang et al., 2018] and [Wang et al., 2018a] use GLUE in their
findings, it is a benchmark of interest to assess the retrained model. As stated in Chapter 2 GLUE
is a benchmark of 9 different datasets and tasks. Figure 2.6 presents more details on the evaluation
metrics behind each of these tasks.

3.5 Summary

This chapter presented the design choices made to retrain and further fine-tune the model following
the ideas of [Phang et al., 2018], [Garg et al., 2019] and [Wang et al., 2018a].
Four different tasks of graph-triplet validation, edge or relation prediction, node prediction and a
simplification of node prediction via multiple choice question answering are described. In terms
of architecture of the model these tasks involve six output heads connected to the last layer of
the model, four of which correspond to a softmax classification and two to masked language
modelling.

The initial retraining metrics target the two types of heads, being F1-score for classification and
perplexity for the language modelling task. These metrics are only a means to control the success
of the retraining phase.

3.5. SUMMARY 21

The end goal of the methods presented is to evaluate if the model after retraining has improved
its knowledge in relation to two knowledge bases. These knowledge bases are ATOMIC and
CONCEPTNET which contain different perspectives of commonsense knowledge.

To evaluate the commonsense knowledge HellaSwag by [Zellers et al., 2019b] is chosen as a
proxy downstream task. Additionally, GLUE is used to evaluate the effect of the retraining regime
on the general language knowledge of the model.

Figure 3.3 depicts the complete flow of the experiments to be conducted.

HellaSwag

GLUE

Retraining using
multiple task
objectives

Model evaluation

Pretrained
Bert-base-uncased

Figure 3.3: Experiment flow

22 CHAPTER 3. METHODS

Chapter 4

Implementation

4.1 Experiment environment

All the experiments are conducted in the computing cluster of the research group Data Science
and Text-based Information Systems (DATEXIS) at Beuth University of Applied Sciences Berlin.

The technology choices of this work are in line with the ongoing research of the DATEXIS group.
All the stages of the experiments are written in the python programming language and the PyTorch
[Paszke et al., 2019] Deep Learning library. The main deployment mechanism in the cluster
are Kubernetes jobs. The data preprocessing programs using CPU parallelism are implemented
with the Ray library [Moritz et al., 2018]. All the model training experiments were done in a
single NVIDIA V100 GPU with a batch size of 16 training examples per iteration. The finetuning
downstream tasks were run on NVIDIA P100 and K80 GPUs.

4.2 Data

4.2.1 Sources

The ATOMIC dataset is retrieved from [ATOMIC, 2020] without any filtering, the CONCEPTNET
data corresponds to the tuples from the Open Mind Common Sense in CONCEPTNET 5 [Speer
and Havasi, 2012], enriched with additional edges and scores [Li et al., 2016].

4.2.2 Data Split

The split of the data for retraining is done as follows: 80% for training, 10% for the development
set, i.e. controlling the training process, and finally, 10% for the testing. The precise number of
examples of this split is shown in table 4.1.

As for the tasks of the retraining, each one of was weighted with roughly the same amount of
examples. Table 4.2 shows the distribution of examples per task and set.

Split # of Examples

Training 6419245
Development 802405
Test 802406

Table 4.1: Data split of the total number of examples.

24 CHAPTER 4. IMPLEMENTATION

Task Train Development Test

IS_CORRECT 1069901 133670 133772
MASK_B 1070197 133406 133740
MC_NODEB 1069741 133916 133686
MC_NODEA 1069571 134328 133443
MASK_EDGE 1070183 133334 133826
MASK_A 1069652 133751 133939

Table 4.2: Number of examples per task and set.

Edge # Examples

xAttr 114,856
xWant 104,132
xEffect 81,161
xNeed 77,496
xReact 62,725
xIntent 47,040
oWant 43,622
oEffect 28,443
oReact 26,492

Table 4.3: Edges in the training set of the ATOMIC knowledge base with their corresponding number of
examples.

ATOMIC and CONCEPTNET distributions in training data

Tables 4.3 and 4.4 show the distribution of examples for ATOMIC and CONCEPTNET from
the perspective of their edges. For a total of roughly 1.07 million examples 586K come from
ATOMIC edges, and 484 from CONCEPTNET. The distribution in both bases is far from uniform
in the edge dimension. This type of sampling bias is corrected at training time by balancing the
loss proportionally for the edge prediction task.

4.2.3 Preprocessing

ATOMIC and CONCEPTNET are expressed as set of s, r, o triples. Given the large size of the
merged data the preparation of the training, development and testing sets is done in advance,
storing the results in a binary format to be preloaded at training. This processing involves the
creation of the input data for BERT’s forward pass, i.e. input tokens, targets, attention masks and
token type ids.

Since the implemented model must abstract the input to all the tasks, every single data sample
contains all the targets. However, with the exception of the relevant sample task, the targets are
masked out i.e. their value is set to −100. Additionally, every sample also contains an identifier
of the task so that when computing a prediction, the model assigns −100 to the logits that are not
relevant for the loss, masking it out of the output heads that don’t correspond to the task. With
this mechanism only the loss gradients of the relevant task are propagated in the backward pass.

The BERT-base-uncased tokenizer from the HuggingFace library includes the original pretraining
special tokens such as [CLS], [SEP], [MASK], [PAD] among others. In order to
make the tokenized input unambiguous for the retraining tasks, the additional special tokens

4.3. MODELLING 25

Edge # Examples Edge # Examples Edge # Examples

UsedFor 68,264 CausesDesire 7,738 SymbolOf 260
CapableOf 57,865 Desires 7,187 RelatedTo 148
IsA 57,539 NotDesires 6,074 InstanceOf 115
AtLocation 56,860 HasFirstSubevent 5,877 InheritsFrom 88
HasSubevent 42,131 HasLastSubevent 4,725 NotMadeOf 39
HasPrerequisite 38,237 NotCapableOf 4,595 DesireOf 22
HasProperty 29,562 PartOf 4,459 LocationOfAction 5
Causes 27,964 NotHasProperty 1,489 LocatedNear 5
MotivatedByGoal 18,893 MadeOf 1,280 HasPainIntensity 2
ReceivesAction 16,539 NotIsA 782 HasPainCharacter 2
HasA 15,536 NotHasA 655
DefinedAs 8,853 CreatedBy 426

Table 4.4: Edges in the training set of the CONCEPTNET knowledge base with their corresponding number
of examples.

Task Input Target

MASK_EDGE [CLS] [NodeStart] condor [NodeEnd] [96X PAD] [EdgeStart]
[8X MASK] [PAD] [NodeStart] a bird [NodeEnd] [SEP] [95X
PAD]

IsA

IS_CORRECT [CLS] [NodeStart] baby [NodeEnd] [96X PAD] [EdgeStart] has
##a [EdgeEnd] [6X PAD] [NodeStart] soft skin than adult
[NodeEnd] [SEP] [93X PAD]

True

Table 4.5: Samples of input and targets for the triplet validation and edge prediction tasks

[NodeStart], [NodeEnd], [EdgeStart], and [EdgeEnd] were added to the
vocabulary and tokenizer. Table 4.5 shows a preprocessed tokenized example for the tasks of
triplet validation (IS_CORRECT) and edge prediction (MASK_EDGE) the multi-task model.

4.3 Modelling

The multi-task model is implemented by extending PyTorch’s nn.Module class. Additionally
the BERT model used is the base-uncased variant from the HuggingFace transformers python
library [Wolf et al., 2019]. As explained in chapter 3, the 4 tasks correspond to 6 output heads
that are fed with BERT’s last hidden layer. Listing 4.1 presents the member objects implementing
such heads. The classification outputs, are created with an nn.Linear layer. These are:

• self.output_heads_iscorrect for binary classification in the triplet validation
task.

• self.output_heads_maskedge Classifier of the triple edges.

• self.output_heads_mc_nodea Classifier over the multiple choice question
answering task targeting node a or s.

• self.output_heads_mc_nodeb Classifier over the multiple choice question
answering task targeting node b or o.

26 CHAPTER 4. IMPLEMENTATION

The reason why these layers are implemented only as linear instances in contrast with their
definitions in chapter 3 as Softmax layers, is that the implementation of the Cross-entropy-loss in
PyTorch is meant to be fed with logits, i.e. the output of a layer meant for classification before
it has been mapped to a probability distribution. Internally this loss implementation applies the
softmax function before computing the actual Cross-entropy loss [PyTorch, 2020].

The output heads of the masked language modelling tasks are implemented with the
BertOnlyMLMHead layer from the HuggingFace library. This layer creates a nn.Linear
layer spanning the hidden size of the last decoder layer of BERT with a width of the vocabulary
size, i.e. modelling a distribution over BERT’s vocabulary for each of the tokens of the output.
This layer is also combined with a CrossEntropyLoss criterion.

Code Listing 4.1: MTLBert model members

1 from torch import nn
2 from transformers import BertModel, BertConfig, BertPreTrainedModel
3 # Additional Imports
4 # ...
5

6 class MTLBert(nn.Module):
7 def __init__(...):
8

9 # Initialization code
10 # ...
11 self.criterions_cel = nn.CrossEntropyLoss()
12

13 self.bert = BertModel.from_pretrained(...)
14

15 # Dropout layer and output heads
16

17 self.dropout = nn.Dropout(dropout)
18

19 self.output_heads_iscorrect = nn.Linear(bertConfig.hidden_size, 2)
20 self.output_heads_maskedge = nn.Linear(bertConfig.hidden_size,
21 self.num_classes)
22 self.output_heads_maska = BertOnlyMLMHead(bertConfig)
23 self.output_heads_maskb = BertOnlyMLMHead(bertConfig)
24 self.output_heads_mc_nodea = nn.Linear(bertConfig.hidden_size,
25 self.num_choices)
26 self.output_heads_mc_nodeb = nn.Linear(bertConfig.hidden_size,
27 self.num_choices)
28

29 # Additional class methods and definitions
30 # ...

The forward computation of the MTLBertmodel is presented in listing 4.2. Initially the tokenized
inputs, attention mask, token type ids and targets are passed through a BERT base-uncased model
instance of the HuggingFace transformers library, then depending on the pooling strategies, the
corresponding output or hidden state is passed through the dropout layer to subsequently be
subjected to the loss function of each task.

In the sample of listing 4.2, the representation of the first token of the last hidden state, i.e. the
[CLS] token, is passed through the dropout layer and it serves as the input for the classification
layers.

The pooling is not applied for the masked language modelling tasks, instead the whole last hidden
state of BERT is passed through the dropout layer before applying the loss.

4.3. MODELLING 27

Globally the total loss is simply computed by adding all the individual losses of each task.

Code Listing 4.2: Forward pass of MTLBert

1 def forward(...):
2 # Pass the triples through BERT first
3 encoded = self.bert(...)
4

5 # Pooling strategies
6 # ...
7

8 elif self.pooling_strategy == "CLS":
9 pooled = encoded[1]

10 pooled = self.dropout(pooled)
11 # ...
12

13

14 encoded = self.dropout(encoded[0])
15 # ...
16 logits[’IS_CORRECT’] = self.output_heads_iscorrect(pooled)
17 logits[’MASK_EDGE’] = self.output_heads_maskedge(pooled)
18 logits[’MASK_A’] = self.output_heads_maska(encoded)
19 logits[’MASK_B’] = self.output_heads_maskb(encoded)
20 logits[’MC_NODEA’] = self.output_heads_mc_nodea(pooled)
21 logits[’MC_NODEB’] = self.output_heads_mc_nodeb(pooled)
22

23 # Mask with -100 the logits that don’t belong to the classes
24 # ...
25

26 # Compute the losses
27 losses[’IS_CORRECT’] = self.criterions_cel(logits[’IS_CORRECT’]...)
28 losses[’MASK_EDGE’] = self.criterions_cel_edge(logits[’MASK_EDGE’]...)
29 losses[’MASK_A’] = self.criterions_cel(logits[’MASK_A’]...)
30 losses[’MASK_B’] = self.criterions_cel(logits[’MASK_B’]...)
31 losses[’MC_NODEA’] = self.criterions_cel(logits[’MC_NODEA’]...)
32 losses[’MC_NODEB’] = self.criterions_cel(logits[’MC_NODEB’]...)
33

34 # Accumulate the total model loss, and return it
35 # ...

4.3.1 Retraining Routine and Hyper-Parameter Search

The retraining routine is run for 3 epochs over the whole data, lasting roughly between 30
to 80 hours depending on the combinations of data and tasks in each experiment iteration.
Because of this retraining duration times an exhaustive hyper-parameter search is not conducted.
Furthermore, such search would only be reasonable in orchestration with the downstream tasks,
this renders the hyper-parameter space orders of magnitude larger. The problem of HPO can be
tackled with the use of sophisticated algorithms and adequate software frameworks. However,
this is not addressed in this work and left out as an open question.

An empirical iterative exploration of combinations of the datasets, tasks and dropout is conducted
driven by the results of the common sense downstream task. This is discussed in Chapter 5.

Table 4.6 details the hyper-parameters used for the retraining process.

28 CHAPTER 4. IMPLEMENTATION

Hyper-parameter Value

of Epochs 3
Learning Rate 3e-5
Optimizer ADAM
ADAM epsilon 1e-8
Dropout output heads 0.25 to 0.9
Dropout Hidden layers 0.1 to 0.8
Dropout Attention layers 0.1 to 0.8
BERT pooling for classification heads [CLS] token

Table 4.6: Hyper-parameters used in the retraining.

4.4 Downstream tasks

Two downstream tasks were implemented to evaluate both the commonsense proficiency of the
retrained model (HellaSwag) and the general language capabilities (GLUE).

4.4.1 HellaSwag

HellaSwag is an incremental step on SWAG, and involves a multi label classification problem
where for each question a context with 4 different endings are given for the model to choose from.
As such the implementation is identical to a SWAG implementation only with a more challenging
dataset.

This work refactored an example contributed to the HuggingFace source repository, that focused
on a multiple-choice question answering BERT model and SWAG. The main adaptions made
correspond to the HellaSwag data acquisition from [Zellers et al., 2019a], preprocessing, and the
model extraction from the MTLBert retrained binary with its corresponding modified tokenizer
and configuration.

Every experiment was run on DATEXIS kubernetes cluster as a one-shot job with at most 3
random seeds for each experiment to keep the evaluation times tractable. On average on an
NVIDIA P100 GPU every training and evaluation lasted roughly 6 hours.

The hyper-parameters chosen for this task are the same ones used by the BERT experiment
of [Zellers et al., 2019b], this is to maintain a degree of comparability.

The test set of HellaSwag is unlabeled, this is because [Zellers et al., 2019b] keep a ranking.
For the test set the evaluation of the examples must be submitted, and only then, the accuracies
are computed and published in this scoreboard. All the results of this work for HellaSwag are
computed on the evaluation set, both for the retrained models and the baseline. This is coherent
with keeping the iterations in the experimental process within reasonable times.

4.4.2 GLUE

The implementation from the GLUE benchmark is fully enabled by the HuggingFace library, in
this case the only overhead is to deploy each one of the 9 tasks as an individual job in the cluster.
The total duration for the whole GLUE benchmark lasts roughly 30 hours on a single NVIDIA
k80, even though the deployment of these jobs was heavily parallelized the benchmarks were run
only for a single random seed for all the retrained models.

4.5. SUMMARY 29

4.5 Summary

This chapter presents the implementation details of the experiments, targeting mainly the technical
stack chosen to be in line with the resources of the DATEXIS research group. The implementation
of the multi-task model uses heavily the PyTorch framework with the HuggingFace transformers
library.

The data is first processed and stored in a binary feature file so that it can readily be used during
the training routines.

The modelling simply involves the additional output heads that are fed with BERT’s last
hidden state given an input triplet. The classification tasks translate to 4 Linear layers
which in combination with the nn.CrossEntropyLoss criterion from PyTorch fulfill
the loss and softmax layers stated in Chapter 3. The masked language modelling tasks
involve a HuggingFace BertOnlyMLMHead that is simply a linear layer with dimensions
hidden_size , vocab_size that model a sequence of logits before a distribution over all
the vocabulary that yet again is completed with the nn.CrossEntropyLoss criterion in the
softmax sense.

Additionally, the forward pass implements the masking of the logits with −100 before the loss
is applied and returned for the tasks that are not relevant for the example being processed. This
guarantees that only the gradients of the loss corresponding to the example tasks are propagated
in the backward pass.

The HellaSwag downstream task is a refactored SWAG example from the HuggingFace library
adapted to the different format of the data from [Zellers et al., 2019a]. GLUE is fully implemented
in HuggingFace and as such is run without major modifications.

30 CHAPTER 4. IMPLEMENTATION

Chapter 5

Results

5.1 Evaluation setup

5.1.1 Hypothesis

Given a pretrained model such as BERT-base-uncased, and a retraining with multiple tasks
derived from commonsense knowledge bases, the retrained model will outperform a model of
the same architecture without retraining, when put through a commonsense downstream task.
Additionally, this retraining procedure will not affect significantly the capability of the model at
general language tasks.

5.1.2 Baseline: Raw pretrained model

Since the main objective of this work is to validate the improvement of the performance of a
retrained BERT-base-uncased on a commonsense downstream task like HellaSwag, the pretrained
model without any additional retraining is taken as a baseline. For this, bert-base-uncased
from HuggingFace with its default configuration is taken as a reference.

The hyper parameters chosen in the downstream task are the ones published in the source code
for BERT-base of the HellaSwag paper [Zellers et al., 2019b], however given the fact that the
implementation is different, in the sense of the machine learning frameworks used, the best
results reproduced over 7 initial random states are the ones that are used as a reference. As for
the retrained model no hyper parameter exploration is conducted, i.e. identical settings of the
baseline are the only used.

The same logic is used when assessing the general language results. In this case the 9 tasks
of GLUE are the downstream tasks and BERT-base-uncased without retraining is yet again the
baseline.

5.1.3 Metrics

As presented in Chapter 2 the critical metric for HellaSwag is the Accuracy, i.e. the proportion of
correct answers in the dataset, GLUE has various control metrics for the 9 different tasks, they are
introduced extensively in Chapter 2.

5.2 Experimental evaluation

There are two different dimensions of the evaluation of the experiment, first comes the analysis of
the retraining of BERT in the multitask setting, and subsequently the success of this retraining is

32 CHAPTER 5. RESULTS

Metric Value
Task

IS_CORRECT F1-score 0.978000
MASK_EDGE macro F1-score 0.569000
MC_NODEA macro F1-score 0.894000
MC_NODEB macro F1-score 0.949000
MASK_A Perplexity 1.012000
MASK_B Perplexity 1.013000
Multitask Dev loss 11294.046875

Table 5.1: Evaluation set final retraining results

Metric Value
Task

IS_CORRECT F1-score 0.978000
MASK_EDGE macro F1-score 0.567000
MC_NODEA macro F1-score 0.895000
MC_NODEB macro F1-score 0.950000
MASK_A test Perplexity 1.011000
MASK_B test Perplexity 1.013000
Multitask Test loss 9517.152344

Table 5.2: Test set retraining results

only validated via the fine-tuning tasks.

5.2.1 Retraining evaluation

Tables 5.1 and 5.2 present the control metrics for the evaluation and test sets of a model that was
retrained on the 6 tasks and both knowledge bases, namely the model tagged 2020-06-03_153757.
The development metrics are taken during the training routine at intervals of 100K batches or
alternatively 1.6M steps given that the batch-size for the training in this experiment was of size
16. The figures of Table5.1 are the last evaluation done during training.

For all tasks the retraining results show similar metrics for both test and development set.The
F1-score is macro averaged for the classification with multiple classes to compensate for the
uneven distribution of the labels. The model achieves high scores in the triplet validation and
multiple choice tasks. In the latter, the fact that the prediction of the o node or the MC_NODEB
consistently outperforms the other node (s or MC_NODEA), is possibly a consequence of the
arbitrary assumption on the directionality in the relations in the graph triplets made in Chapter 3
not being true after all.

The triplet validation results (IS_CORRECT) are very consistent in both the development and test
sets, with a very high F1-score of 0.97.

The edge-prediction task (MASK_EDGE) presents an F1-score of 0.56 which is not as high as
the previous 3 tasks, but it is fairly above random chance for the 43 edges of the dataset.

Figure 5.1 combines the evolution of the development metric relevant to each task (green) with its
corresponding training loss (blue). For visualization purposes the training loss has been smoothed
with an exponential moving average.

In all of the above mentioned tasks the loss decreases steadily as the control F1-score metric
increases with the training steps. This is consistent with a model that is learning. The training
is limited to 3 epochs over the data to avoid over fitting. Nevertheless, the results of the

5.2. EXPERIMENTAL EVALUATION 33

edge-prediction task might as well be explained by the fact that this task needs a longer retraining.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Steps [Millions]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 lo
ss

MC_NODEB

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Steps [Millions]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 lo
ss

MASK_EDGE

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Steps [Millions]

0.0

0.1

0.2

0.3

0.4

Tr
ai

ni
ng

 lo
ss

IS_CORRECT

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Steps [Millions]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 lo
ss

MC_NODEA

0.90

0.91

0.92

0.93

0.94

0.95

m
ac

ro
 F

1-
sc

or
e

0.44

0.46

0.48

0.50

0.52

0.54

0.56

m
ac

ro
 F

1-
sc

or
e

0.955

0.960

0.965

0.970

0.975

F1
-s

co
re

0.84

0.85

0.86

0.87

0.88

0.89

m
ac

ro
 F

1-
sc

or
e

Figure 5.1: Multitask training results, in blue the loss of each task, in green the corresponding F1-score.
The loss has been smoothed with an exponential, moving average for visualization purposes

The tasks of MLM need a deeper evaluation. The Perplexity for these tasks lays in the
neighborhood of 1 which corresponds to a loss of approximately 0, since this metric is computed
as the exponential function of the loss. Figure 5.2 shows the loss and the corresponding Perplexity
for the MLM task when retraining this model. It is evident that the loss quickly drops around
0, suggesting either a problem with the formulation of the task or an unintended feature of the
implementation.

To inspect what happens with the predictions and targets a few randomly chosen samples are
examined for both tasks. Listing 5.1 shows a single of those samples for the MASK_A task.
Although the prediction might seem fairly random at the beginning there’s a very intricate issue
in the way the problem is posed to the model. The input sequence consists of 210 tokens, for the
MLM tasks 100 tokens correspond to each of the two nodes and 10 tokens are destined to the
edges.

The input tokens for the model are constructed in a way that present multiple [MASK] tokens
(to be completed), followed by the edge r and o node. The target presents the ground truth for
the mask to be predicted padded until the start of the edge r and o node. The problem lies in the
padding .i.e. the [PAD] sequences that are appended in the target after the ground truth. These
are not masked out, so as long as the model predicts a significant amount of [PAD] tokens, for
the initial 100 tokens, the total loss for that particular sample will be significantly low.

In Listing 5.1, it can be seen that the target has 90 [PAD] tokens following the ground truth
within the initial 100 positions corresponding to s, and the model predicted 92 pads within the
same neighborhood of tokens. Furthermore, the last 110 positions of the target are a -100 value

34 CHAPTER 5. RESULTS

that intentionally is ignored in the implementation of the Cross-Entropy loss of PyTorch. This
masks out the effect of the prediction of the last 110 tokens by BERT. The combination of these
two aspects render the problem too trivial for the network (predict the padding) and explain
the values of the loss and Perplexity. This behavior is consistent over the majority of the examples.

Originally the decision behind not masking out the padding in the targets was made so as not to
hint the model with the total length of the sequence to be predicted. Nevertheless, this unwanted
feature of the target construction was not discovered until fairly late in the experimental process,
so a retraining with a different approach to the padding is left for further work. As a side effect the
poor performance in this tasks is the reason behind further iterations of the retraining to exclude
the two masked language modelling tasks.

Code Listing 5.1: MLM MASK_A inference example

1 I n p u t : [CLS] [N o d e S t a r t] [97X MASK] [PAD]
2 [E d g e S t a r t] x ##wan ## t [EdgeEnd] [5X PAD]
3 [N o d e S t a r t] t o e x p l a i n un ##im ## p o r t ## a n t t h i n g s
4 t o p e r s o n y [NodeEnd] [SEP] [87X PAD]
5

6 T a r g e t : [CLS] [N o d e S t a r t] p e r s o n ##x was te ## s p e r s o n ##y t ime [NodeEnd]
7 [90X PAD] [110X −100 MASK]
8

9 P r e d i c t i o n : [CLS] [N o d e S t a r t] p e r s o n ##x g i v e s p e r s o n ##y ’ s [92X PAD]
10 [NodeEnd] [8X PAD] [NodeEnd] [2X PAD] [NodeEnd] [PAD] [NodeEnd]
11 [3X PAD] [4X NodeEnd] [2X PAD] [NodeEnd] [12X PAD] [NodeEnd]
12 [42X PAD] [NodeEnd] [PAD] [2X NodeEnd] [CLS] [2X NodeEnd]
13 [CLS] [2X NodeEnd] [CLS] [NodeEnd] [4X PAD] [NodeEnd] [4X PAD]
14 [NodeEnd] [4X PAD] [NodeEnd] [2X PAD]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Steps [Millions]

0

1

2

3

4

5

Tr
ai

ni
ng

 lo
ss

MASK_A

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Steps [Millions]

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 lo
ss

MASK_B

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pe
rp

le
xi

ty

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pe
rp

le
xi

ty

Figure 5.2: Retraining results of the MLM tasks. The training loss steeply converges to 0 stagnating the
Perplexity in 1.

The overall Multitask loss for the retraining of this model is shown in Figure 5.3, this is simply
an aggregation of the losses of all tasks that is dominated by the negative slope consistent with a
model that is learning.

Iterations of the retraining were made with subsets of the data and the tasks, driven both by
the retraining and downstream incremental results, these are discussed in more detail in the
commonsense evaluation.

5.2.2 Commonsense evaluation

Given the duration of the retraining routines, only an empirical exploration of subsets
of combinations of datasets and tasks is conducted for different retraining instances.
Additionally, different settings of dropout are explored in the spirit of handling catastrophic

5.2. EXPERIMENTAL EVALUATION 35

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Training steps[Millions]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

MultiTask loss

Figure 5.3: Multitask loss for the model 2020-06-03_153757, the loss(orange) is an aggregation of all
the losses in the model, additionally an exponential moving average has been used to smoothen the curve
(blue). Although slow, the negative slope of the curve is consistent with a model that is learning.

forgetting [Goodfellow et al., 2013].

The results of the HellaSwag downstream task are shown in table 5.3. The models are timestamped
with the retraining initial time. There are 3 different dropout parameters that are considered in the
retraining process:

• Dropout in the output heads, as illustrated in Chapter 4.

• Dropout in the attention layers of BERT.

• Dropout in the fully connected layers of BERT.

Since the retraining of the models takes a significant amount of time, the exploration of the
dropout settings for these layers was limited mainly to edge cases i.e. high dropout on the Output
heads to drive the propagation of the loss gradients mainly to the model, and also high dropout to
BERT’s hidden layers and attention to limit the extent of what can be learned.

The results show that none of the models is able to overcome the Accuracy of the baseline
BERT-base, and in order to analyze whether the forgetting of the network could be targeted,
ablations on the retraining were undertaken such as choosing only one knowledge base and
removing the MLM tasks because of its poor retraining results.

The best performing retrained model (2020-06-23_144602) achieves 36.% of accuracy in
comparison with the 38.3% of the baseline. This model was retrained with both CONCEPTNET
and ATOMIC and all the tasks with the exception of the MLM tasks.

Furthermore, the retrained models that achieved the best results are the ones that have a very high
dropout rate in the output layers. This suggests interestingly that the retraining has a less negative
impact on the model once the gradient back propagation intuitively skips the output heads. In
contrast, the single experiment run with higher dropout on the hidden and attention layers is the
one with significantly worse accuracy in HellaSwag.

36
C

H
A

PT
E

R
5.

R
E

SU
LT

S

Acc Loss Datasets Tasks O Dropout H Dropout A Dropout

2020-06-18_135229 25.5% 1.386295 [CONCEPTNET] [MASK_EDGE, IS_CORRECT, MC_NODEA, MC_NODEB] 0.5 0.8 0.8
2020-06-10_093127 33.6% 1.475318 [CONCEPTNET] [MASK_A, MASK_B, MASK_EDGE, IS_CORRECT, MC_NODEA, MC_NODEB] 0.25 0.1 0.1
2020-06-03_153757 34.1% 1.448410 [CONCEPTNET, ATOMIC] [MASK_A, MASK_B, MASK_EDGE, IS_CORRECT, MC_NODEA, MC_NODEB] 0.25 0.1 0.1
2020-06-26_191749 34.7% 1.462585 [CONCEPTNET] [MASK_EDGE, IS_CORRECT, MC_NODEA, MC_NODEB] 0.9 0.1 0.1
2020-06-11_041946 34.8% 1.535658 [CONCEPTNET, ATOMIC] [MASK_A, MASK_B, MASK_EDGE, IS_CORRECT, MC_NODEA, MC_NODEB] 0.8 0.1 0.1
2020-06-09_072234 35.0% 1.517587 [CONCEPTNET, ATOMIC] [MASK_EDGE, IS_CORRECT, MC_NODEA, MC_NODEB] 0.25 0.1 0.1
2020-06-16_203240 35.4% 1.531923 [CONCEPTNET, ATOMIC] [MASK_EDGE, IS_CORRECT, MC_NODEA, MC_NODEB] 0.9 0.1 0.1
2020-06-16_154727 36.0% 1.489099 [ATOMIC] [MASK_EDGE, IS_CORRECT, MC_NODEA, MC_NODEB] 0.9 0.1 0.1
2020-06-15_120244 36.2% 1.570379 [CONCEPTNET, ATOMIC] [MASK_EDGE, IS_CORRECT, MC_NODEA, MC_NODEB] 0.8 0.1 0.1
2020-06-22_080804 36.5% 1.544366 [CONCEPTNET] [MASK_EDGE, IS_CORRECT, MC_NODEA, MC_NODEB] 0.25 0.1 0.1
2020-06-23_144602 36.7% 1.519188 [CONCEPTNET, ATOMIC] [MASK_EDGE, IS_CORRECT, MC_NODEA, MC_NODEB] 0.9 0.1 0.1
bert-base-uncased 38.3% 2.044656 - - - - -

Table 5.3: Baseline and retrained model results on HellaSwag, O Dropout: Dropout applied to the multiple task output heads H Dropout: Dropout applied to the fully
connected layers in the embeddings, encoder, and pooler. A Dropout: Dropout ratio for the attention.

5.3. ERROR ANALYSIS AND DISCUSSION 37

Mcorr Acc F1 Acc
task CoLA MNLI MRPC MRPC QNLI
model_name

2020-06-15-120244-42 0.46 0.83 0.77 0.85 0.89
2020-06-16-154727-673 0.38 0.81 0.73 0.83 0.88
2020-06-16-203240-673 0.37 0.81 0.76 0.84 0.88
2020-06-18-135229-673 0.00 0.35 0.68 0.81 0.51
2020-06-22-080804-673 0.48 0.82 0.78 0.85 0.90
2020-06-23-144602-673 0.41 0.81 0.80 0.86 0.88
2020-06-26-191749-141 0.26 0.80 0.78 0.85 0.87
bert-base-uncased 0.57 0.85 0.86 0.90 0.91

Table 5.4: Baseline and retrained results for the GLUE benchmark, tasks CoLA, MNLI, MRPC and QNLI

5.2.3 General language performance evaluation

The GLUE benchmark was used as a reference for the language evaluation. Tables 5.4 and 5.5
show the corresponding metrics for each one of the tasks of the retrained models and the baseline.
Each model name is followed by a number representing the seed that achieved the best Accuracy
in HellaSwag. Not all the models ran through HellaSwag were examined through the GLUE
benchmark, only the best and worst performers.

In a very similar fashion to HellaSwag, the retrained models don’t manage to overcome the raw
pretrained BERT baseline with a few exceptions where they match it, and a single case where a
retrained model surpasses it in the Winograd Schema Challenge WNLI.

The best performing retrained models on HellaSwag: 2020-06-15_120244, 2020-06-22_080804
and 2020-06-23_144602 show similar results as the baseline across all the GLUE tasks. These
results are satisfactory in the sense that they don’t show a significant degradation of the
performance of the best retrained models.

The model that surpasses the baseline in WNLI (2020-06-18-135229) performs very poorly across
other GLUE tasks and happens to be as well the model with the worst accuracy in HellaSwag. This
model is also the one where the highest dropout rate is applied to the hidden and attention layers
of BERT. This that throughout both GLUE and HellaSwag, the only dropout that makes a positive
difference, is the one applied to the output heads.

5.3 Error Analysis and discussion

5.3.1 Quantitative Error Analysis

HellaSwag is a multiple choice answering task, the main evaluation metric being accuracy. Even
though it is solved in a multi-class classification setup where each of the answers is a class, it does
not make sense to analyze class-specific metrics because there is no independent meaning to each
answer in terms of labels, i.e. every label happens to be the ordinal placement of the answer in a
specific question, yet this order is arbitrary and conveys no semantic meaning. Instead, what can
be done is to analyze the outcome of the downstream task in the sense of the Bias-Variance trade
off.

For this purpose the train and evaluation errors are computed for the model based on the accuracy.

38 CHAPTER 5. RESULTS

Acc F1 Acc Pearson Spearman Acc
task QQP QQP RTE SST-2 STS-B STS-B WNLI
Model Name

2020-06-15-120244 0.90 0.87 0.66 0.90 0.87 0.86 0.35
2020-06-16-154727-673 0.90 0.86 0.54 0.90 0.83 0.83 0.32
2020-06-16-203240-673 0.90 0.87 0.62 0.90 0.86 0.86 0.31
2020-06-18-135229-673 0.66 0.32 0.47 0.75 0.18 0.17 0.56
2020-06-22-080804-673 0.91 0.87 0.62 0.92 0.87 0.86 0.46
2020-06-23-144602-673 0.90 0.86 0.65 0.90 0.87 0.86 0.39
2020-06-26-191749-141 0.89 0.86 0.53 0.89 0.83 0.82 0.46
bert-base-uncased 0.91 0.88 0.65 0.92 0.89 0.88 0.46

Table 5.5: Baseline and retrained results for the GLUE benchmark, tasks QQP, RTE, SST-2, STS-B and
WNLI

Model name Tr. Acc Ev. Acc Tr. Error Ev. Error Bias Variance

2020-06-23_144602 71.6% 36.7% 28.4% 63.3% 24.0% 34.9%
bert-base-uncased 88.1% 38.3% 11.9% 61.7% 7.5% 49.7%

Table 5.6: Train and test error metrics for best retrained model and baseline.

The best retrained model and the baseline are compared following these metrics in table 5.6. The
training and evaluation error are computed as the difference to the 100% ideal accuracy from the
corresponding data splits, the bias is the difference between the training error and the human error
published on HellaSwag i.e. 4.4% (100% - 95.6 of accuracy % [Zellers et al., 2019b]), and the
variance is the difference between the test and train error.

It can be seen that the retraining stage hinders the evaluation accuracy by roughly 1.6 percentage
points, yet it regularizes the model by reducing roughly 14% from the variance. It is also evident
that the baseline bert-base-uncased model shows a lower bias that corresponds with the
over fitting to the training data, this can be explained with the fact that the hyper parameters of the
downstream task are chosen to be explicitly the ones yielding the results of [Zellers et al., 2019b].
The exploration of the hyper-parameter space for HellaSwag and the retrained model remains as
a potential path to improve the accuracy, however this is not pursued in this work and is left as an
open question.

Table 5.7 shows a comparison between the best retrained model and the baseline. It shows the
distribution of the correct and incorrect answers between the two models. It can be seen that
the 1.6 percentage points of the degradation of the accuracy do not come uniquely from a lower
capacity of the model to choose correctly. Instead, the retrained model chooses correctly in 1567
examples where the baseline fails, but fails in 1732 where the baseline guesses correctly. This
difference of 165 examples (1732 - 1567) explains the decreased Accuracy.

In order to quantify the comparison of the two models an important analysis is to examine the
Cross-entropy in the groups of examples of table 5.7. This is to characterize how far the models
are from predicting the right answers. These groups of evaluation examples can be subdivided as
follows:

1. Wins: Where the retrained model chooses the correct answer and the baseline does not
(1567 examples).

5.3. ERROR ANALYSIS AND DISCUSSION 39

Baseline
Retrained Correct Incorrect

Correct 2119 1567
Incorrect 1732 4624

Table 5.7: Comparison of the answers in the development set between the baseline raw pretrained BERT
model and the retrained model 2020-06-23_144602

Model Wins Fails Both right Both wrong

Retrained 0.720902 1.772751 0.533695 2.102854
Baseline 2.502814 0.376710 0.255615 3.201260

Table 5.8: Comparison of the mean losses in the development set between the baseline raw pretrained
BERT model and the retrained model 2020-06-23_144602. Wins: the retrained model chooses the correct
answer and the baseline doesn’t, Fails: the retrained model chooses the wrong answer while the baseline
chooses the correct one. Both right: Both models choose correctly the answer and Both Wrong: Both
models fail to choose a correct answer.

2. Loses: Where the retrained models chooses a wrong answer while the baseline chooses
correctly (1732 examples).

3. Both right: Both models choose correctly the answer (2119 examples).

4. Both wrong: Both models fail to choose a correct answer (4624 examples).

The Cross-entropy of both models with respect to the correct predictions for these groups are
averaged and presented in Table5.8.

Of critical importance are the predictions where the retrained model misclassifies the answer. Both
in comparison with the baseline (Fails vs Wins), and where both models predict wrong answers,
the retrained model presents a lower average Cross-entropy than the baseline. Similarly, in the
contrary cases where the models are correct, the Cross-entropy of the retrained model is higher.
This is consistent with predictions that in the softmax sense are less localized, i.e. on average
the model is more confused about the predictions, hinting at over regularization or catastrophic
forgetting. Some qualitative examples are presented next.

5.3.2 Qualitative Error Analysis

In line with the focus of the quantitative analysis, Listing 5.2 examines 3 random examples
from the group of answers where the retrained model failed in contrast with the baseline (Fails).
The listing features in the HellaSwag fashion a detokenized context or question, the label y, the
softmaxed predictions of both models, and the detokenized endings.

From the English composition of the answers there is no clear reason or conclusion behind the
choices of the retrained model. The only thing that is consistent with the quantitative analysis
is the fact that the probabilities, in the softmax sense, predicted by the retrained model are more
spread across all the choices.

40 CHAPTER 5. RESULTS

Code Listing 5.2: Examples of the Losses group

1 C o n t e x t : [CLS] a group of c h e e r ## l e a d e r ## s run on to a
2 s t a g e b e f o r e a c h e e r i n g a u d i e n c e .
3

4 y R e t r a i n e d B a s e l i n e Ending
5

6 1 0 . 1 9 0 . 8 2 t h e y g e t i n t o f o r m a t i o n , t h e n b e g i n d a n c i n g and
7 f l i p p i n g as male c h e e r ## l e a d e r ## s j o i n them .
8

9 0 0 . 7 0 0 . 0 2 t h e y pe r fo rm a c h e e r r o u t i n e b e f o r e t h e g i r l s ,
10 a l o n g wi th makeup a r t i s t s , s p r e a d o u t and pose .
11

12 0 0 . 0 1 0 . 1 3 t h e y t a k e t u r n s jumping on each o t h e r l i k e t h e y
13 a r e p e r f o r m i n g k a r a t e .
14

15 0 0 . 1 0 0 . 0 2 t h e y a r e t h e n shown p e r f o r m i n g t h e t y p e o f
16 c h e e r l e a d i n g dance , u s i n g b a t o n ## s and p o l e v a u l t s .
17

18 −−−
19 C o n t e x t : [CLS] a h e l i c o p t e r f l i e s i n some p e o p l e who t h e n s t a r t p l a y i n g
20 p a i n t ## b a l l .
21

22 y R e t r a i n e d B a s e l i n e Ending
23

24 1 0 . 2 0 0 . 9 5 t h e y run around o b s t a c l e s and have a g r e a t t ime .
25

26

27 0 0 . 0 7 0 . 0 3 t h e y l o s e t h e i r s h i r t d u r i n g t h e f i g h t and
28 run back t h e o t h e r s .
29

30 0 0 . 2 8 0 . 0 1 t h e y s h o o t a t each o t h e r w h i l e t h e h e l i c o p t e r d rone
31 who am l o o k i n g on .
32

33 0 0 . 4 5 0 . 0 1 t h e y c h a s e a b i r d i n t h e sky w h i l e o t h e r s
34 walk around .
35

36 −−−
37 C o n t e x t : [CLS] t h e mother i n s ## t r u c t ## s them on how t o b r u s h t h e i r t e e t h
38 w h i l e l a u g h i n g . t h e boy h e l p s h i s younger s i s t e r b r u s h h i s t e e t h
39

40 y R e t r a i n e d B a s e l i n e Ending
41

42 0 0 . 0 2 0 . 0 2 she shows how t o h i t t h e mom and t h e n k i s s h i s dad
43 as w e l l .
44

45 0 0 . 4 7 0 . 0 8 she b r u s h e s p a s t t h e camera , l o o k i n g b e t t e r soon
46 a f t e r .
47

48 0 0 . 1 2 0 . 0 2 she glow ## s from t h e c e n t e r o f t h e camera as a
49 r e a c t i o n .
50

51 1 0 . 3 9 0 . 8 8 she g e t s them some w a t e r t o ga ## rg ## l e i n t h e i r
52 mouths .

5.4 Conclusions

The measure of success or failure of the retraining proposed in this work, lies in the ability to
overcome the metrics of the raw pretrained BERT in the common sense task. In this regard the
retraining proved to be unsuccessful albeit by a short margin. Consistently the results of the best
retrained models in HellaSwag didn’t see any significant performance degradation in GLUE.

5.4. CONCLUSIONS 41

Generally, the iterations of the experiments left important outcomes and lessons.

5.4.1 Relevance of dropout

A high dropout on the output heads proved to be a good step towards improving the results in the
common sense task. It is probably the most puzzling and most promising result of the experiment.
It hints at the fact that the output heads are only a mapping of the encoder to a task space, in an
optimistic view this parameter can be seen as a gate or knob to inject knowledge into a model.

5.4.2 Hyper-parameters

Even though the dropout of the output heads, and combinations of the choice of datasets are
hyper-parameters and were to a very modest extent explored, a deeper search for the best
parameters in the combination of both the retraining and downstream tasks is desireable. Only
inspecting corner cases of the dropout and different initialization seeds made a significant
difference in this work.

5.4.3 Beyond retraining

Commonsense knowledge is of great interest for language models to become generally better. The
choice of knowledge bases and retraining in this work assumes that the architectural capacity of
BERT is sufficient to deal with learning commonsense. This assumption however is challenged by
the results achieved in the experimental process, and either a more selective way of targeting the
parameters, or an additional architectural component should be topics to consider. Further ideas
are explored in Chapter 6.

42 CHAPTER 5. RESULTS

Chapter 6

Summary and future work

6.1 Summary

The main goal of this work has been to explore an intermediate retraining routine as a means
to improve the domain knowledge of transformer models. Commonsense knowledge is in many
regards beneficial for the SOTA not only in NLP but in the wide spectrum of fields in Machine
Learning. The main ingredients for the methodology of knowledge instillation proposed in this
work are:

• a SOTA model, in this case BERT base.

• a domain specific downstream task, in this case HellaSwag.

• a domain specific knowledge base, in this case ATOMIC and CONCEPTNET.

• a multitask retraining routine.

The retraining routine involves a tasks rephrasing the knowledge base triples in a format
compatible with sequence to sequence modelling. This work explores 4 different ideas expressed
in 6 tasks:

• Triplet validation: given a sequence with triplet of s, r, o predict whether such triplet belongs
to a knowledge base.

• Edge prediction: Given two nodes s, o predict the edge or relation r that connects them.

• Masked Language Modelling: Given a sequence of a node and and edge s, r predict a
sequence corresponding to the correct node o. Similarly, predict a node s, given a sequence
of relation and node r, o.

• Multiple Choice: choose from 4 alternative endings including a correct node s (or o) given
the corresponding node o (or s) and an edge r

The retraining is controlled with the referent metrics for each one of the tasks, for the triplet
validation, Edge prediction and Multiple Choice a common classification metric such as the
F1-score is chosen. For the MLM tasks the Perplexity is used.

Results of the retraining include satisfactory learning metrics on all the tasks with the exception
of the MLM tasks. The latter were incrementally excluded from the retraining iterations since
they showed a poor performance. These iterations consisted on the full evaluation of all the
downstream tasks, HellaSwag and GLUE, after each retraining experiment.

44 CHAPTER 6. SUMMARY AND FUTURE WORK

The results of these downstream tasks show that the retraining procedure is not successful at
instilling commonsense to the extent of overcoming the metrics of the baseline, a raw pretrained
BERT model, in both HellaSwag and GLUE. Hence rejecting the hypothesis stated in Chapter 5.
However, the metrics achieved are very close, and dropout on the additional output heads of the
model that are attached for retraining, proved to be a critical factor in this.

The quantitative error evaluation suggests the potential in improving these results with HPO, but
given the fact that such a procedure would involve combinations of hyper-parameters of both the
retraining and downstream tasks, this idea was not explored as it is computationally beyond the
scope of this work.

6.2 Future work

The following sections elaborates on further steps in the direction of perfecting the methodology
proposed in this work.

6.2.1 MLM Tasks

Chapter 5 exposes a problem in the way the MLM task is formulated when introducing the
padding of the node sequences. If the assumption of not hinting the model with the length of the
nodes s and o is disregarded, and the padding is masked, the task can be rephrased in a non trivial
way that can potentially infuse knowledge in BERT. [Wang et al., 2018a] emphasize on how
important the original MLM task is for yielding good pretrained BERT models. This highlights
the relevance of achieving better results in this task.

[Joshi et al., 2020] Show an alternative to the MLM task by replacing its loss with a so called
Span Boundary Objective, targeting spans of sequences instead of individual tokens like in the
original pretraining of BERT or the MLM tasks of this work. Exploring this replacement of the
loss is also a step towards improving this task.

6.2.2 Selective propagation of the loss

Finding criteria to select the redundancy of the parameters of BERT like in [Michel et al., 2019],
could be a good step into selecting which sets of parameters to target when retraining the model.
This could be seen as finding sub architectures in BERT that can uniquely condense the knowledge
bases.

6.2.3 Hyper-parameter tuning

The spirit of this work was to abstain from HPO because not only it involves a significant
computation overhead, but also doing so was in favor of comparability with the baseline.
Nevertheless, given the significant difference that a single parameter like the output heads dropout
made in the experiments, HPO is most certainly an avenue towards improving on the results of
this work.

6.2.4 Domain specific knowledge bases

The application of the methodology proposed could be explored in the context of very niche
knowledge bases with smaller datasets. This in combination with different downstream tasks,
for instance, in the medical domain could yield positive results where small data is an issue.

6.2. FUTURE WORK 45

6.2.5 Further Models

Given how rapid has been the evolution of the SOTA, BERT is by far no single reference,
applying the retraining to other language models should shed light on further improvements on
the methodology.

46 CHAPTER 6. SUMMARY AND FUTURE WORK

References

[ATOMIC, 2020] ATOMIC (2020). Atomic an atlas of machine commonsense for if-then
reasoning. https://homes.cs.washington.edu/~msap/atomic/. Accessed July
13, 2020.

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine
translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

[Bosselut et al., 2019] Bosselut, A., Rashkin, H., Sap, M., Malaviya, C., Celikyilmaz, A.,
and Choi, Y. (2019). Comet: Commonsense transformers for automatic knowledge graph
construction. arXiv preprint arXiv:1906.05317.

[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

[Chen et al., 2016] Chen, Q., Zhu, X., Ling, Z., Wei, S., Jiang, H., and Inkpen, D. (2016).
Enhanced lstm for natural language inference. arXiv preprint arXiv:1609.06038.

[Cho et al., 2014] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares,
F., Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

[ConceptNet5, 2020] ConceptNet5 (2020). Bicycle, an english term in conceptnet 5.8. https:
//conceptnet.io/c/en/bicycle. Accessed July 7, 2020.

[Davis and Marcus, 2015] Davis, E. and Marcus, G. (2015). Commonsense reasoning and
commonsense knowledge in artificial intelligence. Communications of the ACM, 58(9):92–103.

[Devlin et al., 2018] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT:
pre-training of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805.

[Garg et al., 2019] Garg, S., Vu, T., and Moschitti, A. (2019). Tanda: Transfer and
adapt pre-trained transformer models for answer sentence selection. arXiv preprint
arXiv:1911.04118.

[Gers et al., 1999] Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget:
Continual prediction with lstm.

[Goodfellow et al., 2013] Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y.
(2013). An empirical investigation of catastrophic forgetting in gradient-based neural networks.
arXiv preprint arXiv:1312.6211.

[Gordon and Van Durme, 2013] Gordon, J. and Van Durme, B. (2013). Reporting bias and
knowledge acquisition. In Proceedings of the 2013 Workshop on Automated Knowledge Base
Construction, AKBC ’13, page 25–30, New York, NY, USA. Association for Computing
Machinery.

https://homes.cs.washington.edu/~msap/atomic/
https://conceptnet.io/c/en/bicycle
https://conceptnet.io/c/en/bicycle

48 REFERENCES

[Graves, 2013] Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850.

[Gururangan et al., 2018] Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman,
S. R., and Smith, N. A. (2018). Annotation artifacts in natural language inference data. arXiv
preprint arXiv:1803.02324.

[Hochreiter et al., 2001] Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al. (2001).
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.

[Joshi et al., 2020] Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L., and Levy, O. (2020).
Spanbert: Improving pre-training by representing and predicting spans. Transactions of the
Association for Computational Linguistics, 8:64–77.

[Joulin et al., 2017] Joulin, A., Grave, E., Bojanowski, P., Nickel, M., and Mikolov, T. (2017).
Fast linear model for knowledge graph embeddings. arXiv preprint arXiv:1710.10881.

[Li et al., 2016] Li, X., Taheri, A., Tu, L., and Gimpel, K. (2016). Commonsense knowledge base
completion. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1445–1455.

[Marcus, 2018] Marcus, G. (2018). Deep learning: A critical appraisal. arXiv preprint
arXiv:1801.00631.

[McCloskey and Cohen, 1989] McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference
in connectionist networks: The sequential learning problem. In Psychology of learning and
motivation, volume 24, pages 109–165. Elsevier.

[Michel et al., 2019] Michel, P., Levy, O., and Neubig, G. (2019). Are sixteen heads really better
than one? In Advances in Neural Information Processing Systems, pages 14014–14024.

[Moritz et al., 2018] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E.,
Elibol, M., Yang, Z., Paul, W., Jordan, M. I., et al. (2018). Ray: A distributed framework
for emerging {AI} applications. In 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), pages 561–577.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch:
An imperative style, high-performance deep learning library. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

[Peters et al., 2019] Peters, M. E., Neumann, M., Logan IV, R. L., Schwartz, R., Joshi, V., Singh,
S., and Smith, N. A. (2019). Knowledge enhanced contextual word representations. arXiv
preprint arXiv:1909.04164.

[Phang et al., 2018] Phang, J., Févry, T., and Bowman, S. R. (2018). Sentence encoders on stilts:
Supplementary training on intermediate labeled-data tasks. arXiv preprint arXiv:1811.01088.

[PyTorch, 2020] PyTorch (2020). Cross entropy loss. https://pytorch.org/docs/
master/generated/torch.nn.CrossEntropyLoss.html. Accessed June 9,
2020.

https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html

REFERENCES 49

[Sanh et al., 2019] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Distilbert, a distilled
version of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108.

[Sap et al., 2019] Sap, M., Le Bras, R., Allaway, E., Bhagavatula, C., Lourie, N., Rashkin, H.,
Roof, B., Smith, N. A., and Choi, Y. (2019). Atomic: An atlas of machine commonsense for
if-then reasoning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 3027–3035.

[Siegelmann and Sontag, 1992] Siegelmann, H. T. and Sontag, E. D. (1992). On the
computational power of neural nets. In Proceedings of the fifth annual workshop on
Computational learning theory, pages 440–449.

[Speer et al., 2017] Speer, R., Chin, J., and Havasi, C. (2017). Conceptnet 5.5: An open
multilingual graph of general knowledge. In Thirty-First AAAI Conference on Artificial
Intelligence.

[Speer and Havasi, 2012] Speer, R. and Havasi, C. (2012). Representing general relational
knowledge in conceptnet 5. In LREC, pages 3679–3686.

[Sutskever et al., 2011] Sutskever, I., Martens, J., and Hinton, G. E. (2011). Generating text with
recurrent neural networks. In ICML.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence
learning with neural networks. In Advances in neural information processing systems, pages
3104–3112.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

[Wang et al., 2018a] Wang, A., Hula, J., Xia, P., Pappagari, R., McCoy, R. T., Patel, R., Kim, N.,
Tenney, I., Huang, Y., Yu, K., et al. (2018a). Can you tell me how to get past sesame street?
sentence-level pretraining beyond language modeling. arXiv preprint arXiv:1812.10860.

[Wang et al., 2018b] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman,
S. R. (2018b). Glue: A multi-task benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461.

[Wang et al., 2020] Wang, R., Tang, D., Duan, N., Wei, Z., Huang, X., Cao, C., Jiang, D., Zhou,
M., et al. (2020). K-adapter: Infusing knowledge into pre-trained models with adapters. arXiv
preprint arXiv:2002.01808.

[Warstadt et al., 2019] Warstadt, A., Singh, A., and Bowman, S. R. (2019). Cola: The corpus of
linguistic acceptability (with added annotations).

[Wolf et al., 2019] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac,
P., Rault, T., Louf, R., Funtowicz, M., and Brew, J. (2019). Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv, abs/1910.03771.

[Zellers et al., 2018] Zellers, R., Bisk, Y., Schwartz, R., and Choi, Y. (2018). Swag: A large-scale
adversarial dataset for grounded commonsense inference. arXiv preprint arXiv:1808.05326.

[Zellers et al., 2019a] Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y. (2019a).
Data. https://github.com/rowanz/hellaswag/tree/master/data#data.
Accessed July 7, 2020.

[Zellers et al., 2019b] Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y. (2019b).
Hellaswag: Can a machine really finish your sentence? arXiv preprint arXiv:1905.07830.

https://github.com/rowanz/hellaswag/tree/master/data#data

	Introduction
	Problem statement
	Hypothesis

	Thesis outline

	Background and Related Work
	Recurrent networks
	RNNs in Language Models

	Transformer networks
	State Of The Art
	BERT

	Catastrophic forgetting
	Commonsense
	HellaSwag
	GLUE
	Single-Sentence
	Similarity and paraphrase
	Inference

	Knowledge Bases
	ATOMIC
	CONCEPTNET

	Summary

	Methods
	Knowledge instillation through retraining
	Multitask Model
	Knowledge Graph Representation

	Tasks
	Triplet validation
	Edge prediction
	Node prediction via Masked Language Modelling
	Multiple choice

	Model evaluation
	Retraining
	Common sense : HellaSwag
	General language proficiency : GLUE

	Summary

	Implementation
	Experiment environment
	Data
	Sources
	Data Split
	Preprocessing

	Modelling
	Retraining Routine and Hyper-Parameter Search

	Downstream tasks
	HellaSwag
	GLUE

	Summary

	Results
	Evaluation setup
	Hypothesis
	Baseline: Raw pretrained model
	Metrics

	Experimental evaluation
	Retraining evaluation
	Commonsense evaluation
	General language performance evaluation

	Error Analysis and discussion
	Quantitative Error Analysis
	Qualitative Error Analysis

	Conclusions
	Relevance of dropout
	Hyper-parameters
	Beyond retraining

	Summary and future work
	Summary
	Future work
	MLM Tasks
	Selective propagation of the loss
	Hyper-parameter tuning
	Domain specific knowledge bases
	Further Models

	References

