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Abstract Digitalized health systems produce vast amounts of Electronic Health Re-
cords (EHRs). Going over such data manually is tedious and time consuming. To provide
a high-quality patient care, clinicians need to have better and faster access to crucial in-
formation, which will be in a summarized and interpretable format. Assertion Detection
is one way of extracting medical entities from EHRs and detecting their association with
the patients. Therefore, the aim of this thesis is to provide an end-to-end solution to solve
the task of Assertion Detection. We propose our two-step solution based on a Named
Entity Recognition (NER) tool and a pretrained BERT model, BioBERT + Discharge
summaries. We fine-tune and evaluate our model on the i2b2 dataset on assertion detec-
tion. Our baseline outperforms the current state-of-the-art solution based on BiLSTM and
Attention. Furthermore we label an additional batch of Discharge Summaries, Radiology
Reports, Nurse Reports and Physician Letters from the MIMIC-III dataset, and show that
the model can be transferable to different types of EHRs.



Contents

1 Introduction 4
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Purpose and Research Question . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Approach and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.1 Research Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5.2 Research Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Related Work 9
2.1 Rule-based approach and its limitations . . . . . . . . . . . . . . . . . . . . 9

2.1.1 NegEx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Neural Network approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Convolutional Neural Networks (CNN) . . . . . . . . . . . . . . . . . 10
2.2.2 Long Short Term Memory Networks (LSTM) . . . . . . . . . . . . . 10

2.3 Studies on Assertion Detection . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Methodology 17
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Named Entity Recognition (NER) . . . . . . . . . . . . . . . . . . . 18
3.1.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 2010 i2b2/VA challenge on assertions . . . . . . . . . . . . . . . . . . 20
3.2.2 MIMIC-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 BioScope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Data Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Annotation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Annotation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Annotated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Model Architecture and Pipeline Setup . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Named Entity Recognition tool . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2



CONTENTS 3

4 Implementation 29
4.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Fine-tuning and Hyperparameter Optimization (HPO) . . . . . . . . . . . . 31
4.4 Assertion detection app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Evaluation 33
5.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.1 Hyper Parameter Optimization (HPO) . . . . . . . . . . . . . . . . . 35
5.4 Human Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6 Evaluation on MIMIC-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6.1 General overview on errors - MIMIC-III . . . . . . . . . . . . . . . . 42
5.7 Evaluation on BioScope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion 47
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



Chapter 1

Introduction

“Society is aging and healthcare costs keep rising. By digitizing the system,
health services can be provided at lower cost and higher quality.”

This is what the authors of (Hehner et al., 2020) say. As a result of the increasing
number of digital data, studies have proved able to effectively solve challenging problems
in Natural Language Processing (NLP). Using NLP for medical texts summarization,
as well as information extraction is of a great importance in handling millions of data.
Such tasks highly contribute to improving patient analysis, but can be tedious when done
manually. Clinicians frequently discuss previous findings among colleagues, in order to
use them in future treatments. Having that kind of information extracted and easily
accessible simplifies their overall analysis. Assertion Detection is one way of extracting
medical entities from EHRs and detecting their association with the patients. Therefore,
the aim of this thesis is to propose an end-to-end solution for identifying assertions in
Electronic Health Records (EHRs) and contribute to better patient care.

To solve such text-related tasks in the medical domain, our solution is based on a model
which is pretrained on medical texts and has an additional knowledge of medical concepts.
In recent years, language models such as BERT (Devlin et al., 2018) are gradually fine-
tuned to different domains, so that they can perform better on texts which are different
from Wikipedia articles. This includes fine-tuning on corpora from the medical domain,
such as EHRs which are medical free-texts, and do not always follow a specific pattern.
Moreover, they consist of medical concepts, which are not found in general-purpose texts,
that the model should be able to detect. In addition, these kinds of models can be further
fine-tuned to a specific downstream task without requiring a huge amount of data.

1.1 Motivation

The benefits of Assertion Detection The clinical information described in narrative
reports is difficult for humans to access for clinical, teaching, or research purposes (Perera
et al., 2013). To provide a high-quality patient care, clinicians need to have better and
faster access to crucial information, which will be in a summarized and interpretable
format. Moreover, clinicians gather information from diverse data sources and then have
to communicate the findings with colleagues in order to provide a better care (Feblowitz
et al., 2011). It is nearly impossible to go over all existing narrative reports and it might
still not pay off, as important findings could be missed. Methods such as assertion detection
bring valuable contribution to the process of information extraction and Cohort Analysis,
which is “Type of medical research used to investigate the causes of disease and to establish
links between risk factors and health outcomes ” (Legg, 2018). Using assertion detection
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1.2. PROBLEM DEFINITION 5

for such a purpose leads to improved patient care (Bejan et al., 2013; Chen, 2019; Bhatia
et al., 2019).

Knowledge extraction First important step in solving this task is knowledge extrac-
tion, i.e extracting the entities that are considered relevant (in our case diseases). This can
be done with Named Entity Recognition (NER), which is extracting entities or terms from
texts, no matter their source. However, extracting the entity in and of itself is not enough
to derive a conclusion about how it affects a certain patient. This is the case because the
entity would almost always be affected by its surrounding context (Chapman et al., 2001;
Chen, 2019). For example the entity “pneumonia” in “no signs of pneumonia” is negated
and should be considered as an absent condition when processing the patient’s record.
However, other proposed solutions on identifying the class of a given entity in an EHR
often focus on either negation only (Chapman et al., 2001; Khandelwal and Sawant, 2020),
or negation and uncertainty (Sergeeva et al., 2019b; Peng et al., 2017) (in our case absent
and possible). In this thesis, we focus on three classes: Present, Possible and Absent,
as they are most common, and, bring valuable information when doing Cohort Analysis.
This decision is further discussed and justified in Chapter 2.

Language Models In the last few years, we have seen an immense progress in the field
of deep learning. This includes improving machine learning models in the NLP field, that
can process language very well, known as language models (Alammar, 2019). The most
popular language models are based on Transformers (Vaswani et al., 2017) and BERT
(Devlin et al., 2018) is one of them. These Transformer-based architectures and transfer
learning are one of the biggest breakthroughs of our time and were shown to be relevant in
solving various tasks. BERT is currently the main power behind Google Search. Google
believe that this is “the biggest leap forward in the past five years, and one of the biggest
leaps forward in the history of Search” (Nayak, 2019). This topic will be discussed in more
details in Chapter 3.
Assertions are an attribute of the medical problem concepts that are markedin the c

1.2 Problem Definition

Before doing assertion detection on the data extracted from EHR (e.g Discharge sum-
maries, Radiology or Nursing reports etc.), the first step is to process those medical records
and have the medical entities (e.g. diseases) labeled. Then, assertion detection can be
defined as follows: Given an entity in a medical text, identify its asserted class from the
context. The assertion detection challenge was first introduced in 2010 by the authors of
(Uzuner et al., 2011) where the term assertion is defined as:

“Assertions are an attribute of the medical problem concepts that are marked
in the concept extraction task.”

The proposed classes are: 1. Present, 2. Absent, 3. Possible, 4. Conditional, 5. Hy-
pothetical, and 6. Not associated with the patient. In our work we focus on the first
three classes, Present; Absent; and Possible. We come to this decision after consulting a
specialist with a specialization in Internal Medicine and Nephrology, who advises us on
using those, because they are: “most common and helpful classes in the process of patient
information extraction”.
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1.3 Purpose and Research Question

The goal of our research is to come to an end-to-end solution which includes not merely
assertion detection, but also a NER processing pipeline. We rely on our chosen model to
surpass the current state-of-the-art (SOTA) solutions in assertion and negation detection,
as well as to find a way for the model to generalize on data from a different distribution, for
example Abstracts from BioScope, or medical records different than Discharge Summaries.
The research question focuses on the possibility of generalization to other EHR and it
tackles the issue of achieving better results than the existing solutions.

1.4 Approach and Methodology

Data Analysis The first step in our research is getting familiar with the data. We first
look at sample discharge summaries to become acquainted with their structure. Most of the
time the discharge summaries follow some specific pattern. Furthermore, we analyze the
MIMIC-III dataset (Johnson et al., 2019, 2016b), more specifically Discharge summaries,
Radiology and Nursing reports, and Physician Letter. All except the discharge summaries
differ to some extent and bring novelty to our evaluation data. Additionally, we label
that data and follow the same rules defined by the authors of (Uzuner et al., 2011). At
the end we process our data and transform them in a representative format. A detailed
explanation of this part follows in Chapter 3.

Architecture The scope of this research includes a final classification model for asser-
tion detection, as well as a suitable NER model which recognizes medical entities such as
diseases. We choose SciSpacy (Neumann et al., 2019) as the tool for NER. Further elabo-
ration of our decision follows in Chapter 3. As our language model, we choose BioBERT
+ Discharge Summaries (Alsentzer et al., 2019), a fine-tuned BioBERT (Lee et al., 2019)
on the MIMIC-III discharge summaries. Later in this thesis in Section 3.4.2 we justify our
decision on the language model

1.5 Hypotheses

Our approach to constructing the given solution emerges from formulating the following
hypotheses:

1.5.1 Research Question 1

The chosen fine-tuned model BioBERT + Discharge Summaries should surpass
the current state-of-the-art models

The authors of (Devlin et al., 2018) show that fine-tuning BERT exhibits improvement
on downstream tasks with limited amounts of training datasets for fine-tuning, which is
a crucial property for transfer learning (Uran et al., 2019). So, by using specialized word
embeddings from the pretrained BioBERT + Discharge summaries we can expect them
to perform better than their general-purpose counterpart. Furthermore, we will compare
it to the current state-of-the-art model on assertion detection, which is a BiLSTM with
Attention (Chen, 2019).

1.5.2 Research Question 2

The model can be transferred to the same task on datasets coming from dif-
ferent distributions
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Previous work (Dalianis and Skeppstedt, 2010; Khandelwal and Sawant, 2020) has focused
on negation detection in medical texts. In their studies, they include corpora that come
from a different distribution, like the BioScope papers and abstracts. In our research we
would also like to tackle this problem and show that the model is easily extendable to other
texts containing medical entities. Furthermore, we rely on similar results when testing on
medical texts other than discharge summaries, like radiology reports.

1.6 Scope and Limitations

We will begin by defining our limitations. To our best knowledge there is only one pub-
lic dataset available - the i2b2 dataset. Numerous research papers, which address the
negation and uncertainty problem, commonly use the BioScope dataset of negation and
uncertainty (Vincze et al., 2008). Originally, this dataset was composed of free-texts
(radiology reports), biological full papers and biological paper abstracts. However, the
radiology reports are currently not available, so we are limited to using the papers and
abstracts from this dataset. Even if all the data was to be publicly accessible, we would
still be limited to two classes only - absent and possible.
Another related dataset for this task is NegPar - A parallel corpus annotated for negation
(Liu et al., 2018). Accessing this corpus is not free of charge, therefore that restricts us
from using it in our research.
Over the past years, MIMIC-III data has become very popular and extensively used for
different tasks in NLP. For instance, it was applied to fine-tuning BioBERT (Alsentzer
et al., 2019). We therefore include it in our research as a supplementary dataset, con-
sidering that it was built upon discharge summaries, radiology and nurse reports, and
physician records amongst others.

1.7 Outline

In Chapter 2 we present studies previous to ours and describe their methods and data they
use. Furthermore we give a brief historical overview of word representations and language
models. We focus on the Transformer architecture, whose encoder is the building block of
our baseline. In Chapter 3 we will talk more about the architecture details, and the stages
of our final solution. Additionally we will define our problem in more details and how we
will assess it. We talk about the data and its structure, as well as the methods to process
them. Next, we introduce our annotation process and guideline and the metric we use to
evaluate the annotators. Furthermore, we will justify our decision of the building blocks
of our end-to-end solution. In Chapter 4 we will describe our experimental environment,
the frameworks and tools we use to train the model, as well as the libraries we used in the
data processing step. Additionally, we talk about the importance of doing Hyperparameter
Optimization, as well as the hyperparameters we will optimize. Next, in Chapter 5 we
will explain the outcomes of the experiments we carry out. We will compare those to the
current state-of-the-art solutions. Furthermore we perform an error analysis to identify
the reasons for the misclassified samples. Additionally, we set up a human baseline and
report the results from the experiments. Finally, in Chapter 6 we discuss our future work.

1.8 Summary

In this section, we gave a brief introduction of the problem that we are going to assess, and
which challenges motivated us to focus our research on assertion detection in medical texts.
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We dedicated one section on introducing the approach and methodology that we chose
for solving the problem. In the hypotheses section we stated our two hypotheses that are
the starting point of our research. The first hypothesis focused on surpassing the current
state-of-the-art solutions whereas in the second hypothesis we stated our expectations
for the model to be able to generalize on other type of medical texts. Furthermore, we
explained our limitations and how they influenced the definition of our scope. Finally, we
gave a short outline of the following chapters of this thesis.



Chapter 2

Background and Related Work

In this chapter we are going to give a detailed overview of existing solutions prior to ours,
an end-to-end solution based on a NER tool and BioBERT + Discharge summaries . We
are going to refer to not only assertion detection research, but we will reflect on some
of the most important foundations in the task of solving negation in EHR. Moreover, as
our proposed solution is utilizing the current state-of-the-art (SOTA) system in NLP, we
dedicate a section to Language Models.

2.1 Rule-based approach and its limitations

Clinical free-texts somewhat follow some basic structure (Sergeeva et al., 2019b). The
authors of (Chapman et al., 2001) approach the negation detection problem in clinical
corpora, and they first conducted an analysis of the available reports and concluded the
following:

“The narrative reports are limited to a handful of semantic types, including
findings, diseases, tests, drugs, etc., which are most often noun phrases rather
than verbs, clauses, or sentences.”

Moreover, they argue that a simple model as theirs could easily solve the problem of
negation detection, without using sophisticated linguistic methodologies. This is possible
when focusing on small amount of data with a limited set recognizable patterns. But as
all other rule-based systems, it will not be able to generalize to unseen data to which the
handcrafted rules can not apply (Sergeeva et al., 2019b).

2.1.1 NegEx

In 2001 (Chapman et al., 2001) collected around 2060 discharge summaries and stated
their hypothesis:

“A relatively simple algorithm could produce reasonably accurate results.”

Their model, NegEx, is based on 35 extracted negation phrases. Given that the model
has sensitivity of 0 to data that does not contain any of their selected negation phrases,
this is again a showcase of the weaknesses of rule-based models.

2.2 Neural Network approach

During the past two decades there has been a major shift in the world of neural networks.
Although they were long set aside and out of popularity, Dr. Yoshua Bengio and a group of

9
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researchers decided that they should do something about that and focused on transitioning
the old neural networks to the deep neural networks that are used today (Faggella, 2019).

Deep neural networks have been long accepted in the NLP community and widely used for
solving different tasks. Therefore, this section is dedicated to solutions and achievements
based on such networks.

2.2.1 Convolutional Neural Networks (CNN)

The Convolutional Neural Network was originally presented by the authors of (LeCun
et al., 1998). Their main idea was to propose a neural network architecture for handwritten
and machine-printed character recognition in the 1990’s which they called LeNet-5. The
main building blocks of this kind of networks are a convolutional and a pooling layer.
The primary concept of these networks is that in the convolutional layer there are filters
of different window sizes that go over the input and detect certain patterns. Its power
comes from the reusability of those filters, thus achieving better results with less trainable
parameters.

Although the original purpose of CNN architectures was solving computer vision related
problems, it was not long before people started using them for solving NLP tasks. It is well
suited for detecting spatial substructures, and due to its characteristic for feature detection
reusability, it is powerful in solving many text processing tasks (Rao and McMahan, 2019)

The authors of another paper on negation and speculation detection (Qian et al., 2016)
offer a CNN-based solution with probabilistic weighted average pooling to address spec-
ulation and negation scope detection in medical texts. Their solution is based on using
constituency parsing trees and dependency paths between the cues and the entities. They
use the BioScope dataset and outperform the models in their benchmark comparison in
the task of speculation detection with a F1 of 85.75%.

2.2.2 Long Short Term Memory Networks (LSTM)

One of the most used architectures in the NLP domain are the LSTM networks (Hochreiter
and Schmidhuber, 1997). Their long-time popularity in NLP comes from their sequence
dependency characteristic, as texts come in a sequence form and are full of semantic
dependencies between words (Ruder, 2019b).

A recent paper (Sergeeva et al., 2019a), which is based on LSTMs, offers a solution for
negation detection only. Their model consists of several layers - three of which are em-
bedding layers, one bi-directional LSTM layer and a final output layer. Their solution
demonstrates, like they say, “a promising performance on a publicly available corpus re-
ferred to as BioScope”. Nevertheless, they focus on solving the negation detection problem
by utilizing one dataset only.

2.3 Studies on Assertion Detection

Bidirectional LSTM with Attention On the task of Assertion Detection, the authors
of (Chen, 2019) outperform the then state-of-the-art systems on the Assertion task, with
F1 of 0.95 on the Present class, 0.93 on the Absent class and 0.64 on the Possible class.
They train their own embeddings on different corpora and achieve good results. They
implement a Bidirectional LSTM with Attention.



2.4. LANGUAGE MODELS 11

Multi-Label Assertion Detection The authors of (Ambati et al., 2020) solve the
task of multi-label assertion, and they focus on assigning multiple labels on one entity.
However, they use texts other than i2b2, since this corpus does not have multiple label
annotations.

2010 i2b2 challenge on Assertion Detection The authors of (de Bruijn et al., 2011)
proposed the best model on the task of assertion detection in 2010. Their solution consists
of large sparse binary vectors as word representation, and a SVMmulticlass model. Their
overall F1 score is 93.62%.

Conditional Softmax Shared Decoder The authors of (Bhatia et al., 2019) proposed
their Conditional Softmax Shared Decoder, which is based on sharing one decoder archi-
tecture for both entity extraction and assertion detection. However, in their study they
focus on the Absent class only and achieve a F1 score of 90.5%.

2.4 Language Models

The fuel of NLP is natural language, represented as sequences of words and characters.
Languages have many complexities that people take for granted. Words are created and
used by humans, in a way that is understandable to us only. To a computer, they are only
sequences of characters that do not have any inherent meaning. As a consequence, a need
arises to represent words in numerical format (Zhang et al., 2016; Bengio et al., 2003).

One-hot encoding Since words are a form of nominal variables, one intuition is to
encode them as discrete symbols. This concept is equivalent to one-hot encoding, a feature
extraction method, where every word is represented as a sparse vector. The vector size
is equivalent to the defined vocabulary and each index is pointing at a different word. It
consists of all zeroes except one, the position of the word we want to encode. However,
one-hot encoding is appropriate for categorical data where no relationship exists between
categories, because every vector is orthogonal to all others, and there are no similarities
between them (Zheng and Casari, 2018). Moreover, these vectors are huge in size, and yet
so little expressive.

Word embeddings Word embedding, or as is known in computational linguistics, a
distributional semantic model, roots from the early 1950s. It is often associated with
Firth’s famous saying (Firth, 1957) “You shall know a word by the company it keeps”.
(Zhang et al., 2016). The strength of word embeddings comes from their reflection to words
as low-dimensional, continuous, dense vectors by taking into account how often words
occur in similar contexts. Furthermore, word embeddings are able to encode semantic
and syntactic similarity making words comparable to one-another in the high-dimensional
vector space (Zhang et al., 2016; Sumbler, 2018). Word embeddings can be (Jurafsky and
Martin, 2019):

– Count-based, such as Latent Semantic Analysis (LSA) (Deerwester et al., 1990)
which are SVD decomposition over co-occurence matrix to reduce to lower-dimensional
space

– Prediction-based, that predict the context of a word to then learn the low-dimensional
word vector representation
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Word2vec The problem with one-hot encodings is that there is no similarity between
vectors, because all word vectors are orthogonal to each other. The intuition for solving
this problem is based on finding an approach where all words will be represented as vec-
tors, which encode their similarity. This was solved by the authors of (Mikolov et al.,
2013) by building a simple model, whose purpose was to predict between every word and
its context words. It takes words as inputs and produces a vector space model, built
from distributed representations for every word of the vocabulary. They implement two
algorithms: Skip-gram and CBOW.
Skip-Gram The intuition for the Skip-gram model is: Having an arbitrary word from a
sentence, how likely is to find the other vocabulary words nearby the input word? There-
fore, the input is a one-hot encoding of the chosen word, whereas the output is a probability
distribution of all words in the vocabulary.
CBOW With this approach, the authors take a window of surrounding words and predict
the likelihood for every word of the vocabulary to appear within the context.

Contextualized word representation The limitation of word embeddings such as
word2vec is that they provide only one representation of the word, regardless of its con-
text. Words can have considerable number of meanings, or syntactic behavior, and that
should not be disregarded. To solve that problem, a new concept was represented, called
contextualized word vectors. The idea behind it is that words will get different word
representations, depending on their context (Manning, 2019).

Language-Model-Augmented Sequence Tagger (TagLM) Among the first ap-
proaches in creating contextualized word representations was introduced by the authors
of TagLM (Peters et al., 2017), whose idea is based on a semi-supervised model (Man-
ning, 2019). They gathered plenty unlabeled data, trained an embedding model, such as
word2vec, but at the same time trained a BiLSTM1 language model. At the top they
placed a supervised model, such as a Part-Of-Speech (POS) tagger. At the end, instead
of using the fixed word2vec embedding for a sample input only, they also used the output
of the pretrained language model, then concatenated it with the hidden state from the
supervised model, and got one kind of a context-dependent representation. They achieved
best results on the CoNLL 2003 NER task, with a F1 of 91.93%, by 1.06% better than
the then best model (Manning, 2019).

ELMo: Embeddings from Language Models Not so long after TagLM was pub-
lished, a new model for contextual embeddings was introduced (Peters et al., 2018). They
were aiming for something more compact that would be easier to train on less powerful
hardware, therefore more obtainable for people. What they did differently among other
things is that they use two BilSTM layers. Also, they use character CNNs to build word
representations, thereby reducing the number of parameters that need to be stored. The
most important feature they introduce is their concatenation of all hidden states within
the language model stack, which showed an improvement in solving different tasks. With
these improvements they achieved a bit better results on the the CoNLL 2003 NER task,
with a F1 of 92.22%, by 0.29% better than TagLM. However, the popularity of this model
came from its ability to solve any NLP task, and they proved it by surpassing by then the

1Bidirectional LSTM
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SOTA solutions of tasks such SQuAD2, SNLI3, SRL4 amongst others (Manning, 2019).

ULMfit: Universal Language Model Fine-Tuning for Text Classification The
same year, 2018, the creators of ULMfit, Howard and Ruder published their paper (Howard
and Ruder, 2018), introducing a same idea of transfer learning for any NLP task. Their
architecture is built upon a deep language model, based on AWD-LSTM5 (Merity et al.,
2017), and trained on a big unsupervised corpus. The idea was to fine-tune the model on
a specific domain, and then to implement a specific task layer. With this model, NLP got
its big moment, and transfer learning was possible probably as well as in Computer Vision
(Alammar, 2018b).

Attention The idea of attention, to some extent, is to mimic how humans pay visual
attention to different parts of an image, or a sentence, in order to understand the sense
of it. This concept was introduced by the authors of (Graves et al., 2014), that built the
Neural Turing Machine (NTM). The model architecture consists of a neural network with
an external memory. The memory in NTM is finite, so using attention helped them to
store relevant information.
The idea of attention was soon a reaction to the then well-known Sequence-to-sequence
(seq2seq) (Sutskever et al., 2014) models. The whole idea of seq2seq models was to solve
problems that do not have an input of specific length, neither a specific length output.
They transform an input sequence to another, output sequence, both of which have arbi-
trary lengths.
One example of such task is machine translation. A seq2seq model is built on an encoder-
decoder architecture. The encoder concatenates the input sentence word-by-word in a
contextualized vector, which is then used as an input to the decoder component. For both
components, recurrent neural networks were used, such as LSTMs or GRUs (Alammar,
2018c). The biggest problem with this model was that the context vector at the end would
eventually forget words at the beginning of a very long sequence.
The authors of (Bahdanau et al., 2015) introduced the concept of attention and attention
weights in Neural Machine Translation (NMT), whose purpose was to perform a linear
combination of the encoded input vectors, in this case all hidden states from the encoder,
which are weighted by these attention weights. In other words, the attention layer consists
of weights for all hidden states of the encoder, which are passed to the decoder, all together
with the hidden states from the encoder. Furthermore, the decoder also consists of an
attention vector, so that in every decoding time step it considers all received hidden states,
where every state is strongly associated with a specific word from the input sequence. Next,
the decoder gives each hidden state a score, which will help the model understand which
states are less relevant to the current word (Alammar, 2018c).
There are various proposals for calculating the attention score. For example, the authors
of (Bahdanau et al., 2015) propose the following calculation in Equation 2.1, where st is
the hidden state of the decoder, hi is the concatenated hidden state from the encoder,
and both va and Wa are weight matrices that are learned by the alignment model. An
alignment model assigns some score to each pair of input and output, based on how well
they match. (Weng, 2018)

score (st,hi) = v>
a tanh (Wa [st;hi]) (2.1)

2Stanford Question Answering Dataset, https://nlp.stanford.edu/pubs/rajpurkar2016squad.pdf
3Stanford Natural Language Inference, https://nlp.stanford.edu/projects/snli/
4Semantic Role Labeling https://www.aclweb.org/anthology/W12-4501.pdf
5ASGD Weight-Dropped LSTM
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Other forms of attention were also introduced in other papers (Graves et al., 2014; Luong
et al., 2015; Vaswani et al., 2017).

Transformers The main problem with training models such as UMLfit or ELMo was
that it was not possible to train them faster, and build even bigger models, and the compu-
tation is time-dependent. That means that there is no possibility for parallel computation.
Another motivation for getting rid of the RNNs, which seq2seq models relied on, was fo-
cusing on Attention, as it provides access to any state of the recurrent model. That led
to the idea of the transformer architectures, introduced by the authors of (Vaswani et al.,
2017). The model was built on a complex encoder and a complex decoder that work non-
recurrently, in solving the task of machine translation. In this architecture, there is no
concept of timestamp and all words in a sentence are being processed simultaneously.
Encoder Block At the beginning, input embeddings are fed to the network, these can
be even some already pretrained embeddings. This way words are mapped into vectors.
A single word can have different meanings depending on how it is used. To overcome this
problem, they introduce positional encoders, which have information about the distances
between words in a sequence. They use sin and cos functions in order to calculate the
vectors. After this stage, the word encoders have a positional information (context) as
well. These encoders are passed to the encoder block, first in the Multi-Head Attention
layer, and then in the Feed Forward layer.
Decoder Block In the decoder block, the same original sentence is passed to an embed-
ding layer, and a positional encoding is added as well. The encodings are passed to the
decoder block which has a Masked Multi-Head Attention, a Multi-Head Attention and a
Feed Forward layer. Next the attention vectors from the Masked Attention layer which
uses all words from the input sentence, but only the previous words of the output sen-
tence, together with the Attention vectors from the encoder block are passed to the second
Attention layer, which determines how related each word is with the rest of the sentence.
These are then forwarded to the Feed Forward layer, then another Feed Forward layer
with the same size as the out vocabulary, after which follows a Softmax layer, predicting
the next word.
Attention The attention function they use in the Attention layers is a Scaled Dot-Product
as defined in Equation 2.2. First they define a Key (K), Value (V) and Query (Q) vectors
for every word, which help to calculate its attention scores. However, in the Multi-Head
Attention Layer, instead of vectors, they use matrices, which improve the performance of
the model in a way that it can focus on different positions, because otherwise the vector
could have too much attention on itself (Alammar, 2018a). In their paper (Vaswani et al.,
2017) they justify the need of a Scaled Dot-Product, by introducing 1√

dk
, where dk is the

size of the vectors. They argue that for large values of dk the dot product is larger in
magnitude which results in the softmax function having small gradients.

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.2)

BERT (Bidirectional Encoder Representations from Transformers) An impor-
tant feature of the Transformer model is that both its block, the encoder and the decoder,
separately have some underlying understanding of language (Uszkoreit, 2017). Models like
BERT (Devlin et al., 2018), GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020)
are built on this idea and they utilize only one part of the traditional Transformer. As
they explain it in its name, BERT is built on the encoder block from the Transformer. In
their original paper, the authors of (Devlin et al., 2018) published two versions of BERT,
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BERTBASE , built from 12 encoder blocks and BERTLARGE which is built on 24 encoder
blocks. They use WordPiece embeddings (Wu et al., 2016) with a 30,000 token vocab-
ulary, which means some words are even split in smaller chunks. The strength of this
model comes from its bidirectional architecture, which in contrast to BiLSTMs uses the
bidirectional feature simultaneously at every step. This, however, allows the model to see
all words from both left and right, and therefore it will not make sense to predict the
next word. Nevertheless, the authors of (Devlin et al., 2018) came up with two different
training tasks.

– Masked language model is the first task that the authors of BERT adopt, which
was first introduced in the early 1950s (Taylor, 1953). More specifically, this task
includes masking 15% of the words, so when the model is evaluated, the cost function
uses only those predictions. The masking process on the 15% is divided three ways:
80% of the words are replaced with the [MASK] token, 10% of the words are replaced
by a random word, and the last 10% of the words are kept unchanged, as they say,
“to bias the representation towards the actual observed word.”

– Two-sentence Tasks The authors proposed this task to make the model better at
handling different sentences. They setup a training set containing pairs of sentences,
where 50% of the cases the second sentence was actually found to be after the first
sentence in a text, and the rest of the cases, the second sentence was some random
choice. They define it as follows: Given two sentences, sentence A and B, is B likely
to appear right after A? In this task, a [CLS] token is added at the beginning of the
first sentence and at the end of each sentence there is a [SEP] token so the model
can distinguish between those two.

Therefore, BERT can be reused for different downstream tasks, with just adding a clas-
sification layer on top of it. There are many different fine-tuned versions of BERT, in
different domains, such as SciBERT: A Pretrained Language Model for Scientific Text
(Beltagy et al., 2019), ClinicalBERT (Alsentzer et al., 2019), BioBERT (Lee et al., 2019)
amongst others.

2.5 Summary

In this section we talked about previous work on assertion detection, as well as negation
detection tasks. We started by explaining the early approaches that implement rule-
based models to solve these tasks, as well as their limitations. We mentioned several
research studies which focus on attention and how we can relate to their scores. We
briefly explained some neural network architectures, such as LSTMs and CNNs, as well
as solutions on negation and speculation detection and we showed their achievements.
Furthermore, we talked about the natural language complexities and how they were over-
come gradually by incremental solutions. We started explaining the beginning of word
representations as one-hot encodings, sparse binary vectors, as well as the need for ex-
pressiveness and better feature representation. We introduced word embeddings as well
as the initial solutions for creating similarity between words, like there is in natural lan-
guage. We presented the early stage of word embeddings with the word2vec model. We
talked about the weaknesses of those models and the need for context in word embeddings.
We presented the contextualized word embeddings solution in a timeline, beginning with
TagLM. We explained ELMo and ULMfit, models which were intended to solve different
tasks, thus to be able to do transfer learning. We emphasized the Attention mechanism
and how it helped improving results for long sequences. The Transformer model followed
with its novel architecture, replacing the recurrent models with all words being processed
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simultaneously. We talked about BERT, a model built on transformers and how it can be
fine-tuned to other downstream tasks.



Chapter 3

Methodology

3.1 Problem Definition

Assertion detection is considered to be a significant and challenging task in clinical NLP
(Chen, 2019). Many different studies are focused on detecting negated entities only (Bhatia
et al., 2019; Khandelwal and Sawant, 2020). Most of them are not attempting to assert
whether the disease might be present. Also, many of them first detect the negation in a
sentence, and then identify which entities are affected by it (Bhatia et al., 2019; Sergeeva
et al., 2019b; Khandelwal and Sawant, 2020). Others focus on detecting the entity first,
and then identify its label from the context (Wang et al., 2016/04; Rumeng et al., 2018;
Chen, 2019; Ambati et al., 2020). We adopt the second approach because of the following
reasons:

– The model in (Chen, 2019) holds the highest scores in the task of assertion detec-
tion, and it is tested on all assertion classes, making it easier for us to do a direct
comparison.

– The last step of this research is setting up an API. There will be options to test the
endpoint on raw medical texts only, as well as already NER annotated data. The
architecture of the final solution will enable running tests on both annotated and
raw data.

Therefore, we are building an end-to-end solution, which focuses on both information
extraction and classification. Finally, we define our approach towards solving the task of
assertion detection:

Given an entity in a medical text, identify its asserted class from the context.

This implies that our solution will be separated in two steps:

1. Given a paragraph, detect the entities it contains.

e.g. She showed signs of pneumonia, but has no pain →pneumonia, pain

For this purpose a Named Entity Recognition model will be used

2. Having the entities marked in a paragraph, identify their asserted class.

e.g. She showed signs of pneumonia, but no [UNUSED1] pain [UNUSED1] →ABSENT

For this purpose a classification model will be used.

Our final model should be an end-to-end solution, along with an interface that will yield
the assigned class to each extracted entity, as shown on the figure below Figure 3.1.

17
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Figure 3.1: Example of the final model output. All medical entities (diseases) are extracted
and labeled as Present, Absent or Possible.

3.1.1 Named Entity Recognition (NER)

The term ”Named Entity” was first introduced by the authors of (Grishman and Sundheim,
1996) in the Sixth Message Understanding Conference (MUC-6), which until that point
of time was still focusing on the task of Information Extraction (IE). The idea of IE was
to extract knowledge from raw texts. The concept of NER came only naturally after
they recognized the need to define name units such as people, organization and location
names. This identification of entities was introduced as one of the important sub-tasks
of information extraction that seeks to locate and classify named entities. Ever since,
numerous studies tried to solve the task of Named Entity Recognition, while working on
different shared tasks. For this purpose, both supervised and unsupervised methods have
been used, with the latter trying to solve the limitations of the former (Ghiasvand and
Kate, 2018).

NER Techniques There are multiple techniques when solving the problem of named
entity recognition (Roldós and Wolff, 2020). The most popular among all are:

– Lexicon Approach The idea of the lexicon approach is that it is based on an
already defined ontology which will be used as a static source of already existing,
labeled entities. The NER task is then executed in such a manner that the model
seeks for exact entities in the raw text data. The problem with this method is that
it will not identify unseen entities (entities that do not exist in the ontology).

– Rule-Based Systems Solving the NER task while using Rule-Based methods is
focusing on defining a limited set of grammatical rules which would later be applied
to raw texts in order to extract the entities of interest. The main problem with
Rule-Based systems is that it is not possible to generalize to unseen data, especially
data from another domain. In order to extend the capacity of a Rule-Based System,
one should manually add more rules to it.

– Machine Learning-Based Systems Machine learning models are another alter-
native to other methods, as a solution for better generalization. The only drawback
of these models is, to get them running and yield good results, one should have a
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large amount of already labeled data.

– Hybrid Approach A higher-level precision model would be a mixture of both a
Machine Learning (ML) model and a Rule-Based System. The ML model will be
trained on a set of labeled data, and then fine-tuned with a series of hand-crafted
rules. These types of models produce a better precision (Roldós and Wolff, 2020).

CoNLL 2003 NER The first challenge was presented by the authors of the paper (Tjong
Kim Sang and De Meulder, 2003), known as the CoNLL 2003 NER task. They limit the set
of named entities to PERSON; LOCATION; and ORGANIZATION. The current SOTA
solution achieved on this task is presented by the authors of (Baevski et al., 2019) with a
F1 of 93.5%.

There are also other challenges on this topic which more or less focus on the same general
entities, such as WNUT2017 Shared Task on Novel and Emerging Entity Recognition
(Derczynski et al., 2017), or OntoNotes: A Large Training Corpus for Enhanced Processing
(Weischedel et al., 2011).

Medical Named Entity Recognition Although the first epochs of solving the task of
NER were mostly focused on general concepts, the necessity for applying the same idea
on identifying medical concepts soon became crucial. When thinking of using supervised
learning methods, the set of entities in the medical domain is distinctively different than the
one in the general-domain NER. The alternate method is using an unsupervised learning
strategy for that purpose, which relies on already defined dictionaries of known named
entities, so the model could match its findings. Research has shown that applying the
same unsupervised existing general-text NER methods on medical corpora is not straight
forward as it would intuitively seem (Ghiasvand and Kate, 2018).

There are two arguments supporting this statement:

1. The general-domain entities usually don’t have any linguistic variations, and not only
that, but medical entities can sometimes be mentioned in several different ways.

2. Medical entities can sometimes contain multiple tokens, which can then also be
separated into multiple entities, making these sub-entities falling into a different
category.

There are numerous tasks on this topic. For instance, on ShARe/CLEF1 and BC5CDR-
disease2, (Peng et al., 2019) have the current state-of-the-art solution with a F1 score of
79.2% and 86.8% respectively. On GENIA3, the authors of (Li et al., 2020) have a F1 score
of 83.8%. The authors of (Arnold et al., 2016) achieve a F1 of 93% on the CoNLL2003
Task, and F1 of 89% on the GENIA dataset, whereas the authors of (Neumann et al.,
2019) state that they have competitive baselines for 5 of the 9 datasets they evaluate on.

3.1.2 Classification

We define the second step of this research as a classification problem. A simple classifica-
tion problem is described as a mapping function which expects an already defined input,
X, in one or more dimensional space and maps it to a certain category, from a predefined
set of possible values, Y (James et al., 2013). In neural networks, in order to be able

1Clinical free-text notes from the MIMIC-II database (Suominen et al., 2013)
2Data from BioCreative V chemical-disease relation task (Wei et al., 2016)
3An Annotated Research Abstract Corpus in Molecular Biology Domain (Ohta et al., 2002)
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to predict among target classes, an activation function is set at the end of the model, in
order to predict for the most probable class. In our solution, we use the Softmax acti-
vation function, which computes the probability distribution on all possible outputs. It
produces an output which ranges between 0 and 1, where all probabilities sum up to 1.
The calculation for every prediction is defined in Equation 3.1. This activation function is
used in multi-class problems, where the predicted class is the one with highest probability
(Nwankpa et al., 2018). Nevertheless, our solution strongly relies on an existing pretrained
language model, which we will discuss in Section 3.4.2.

f (xi) =
exp (xi)∑
j exp (xj)

(3.1)

3.2 Data

In this section we are going to discuss the data that is the foundation of this thesis. The
primary corpus that we use is the i2b2 dataset on assertion detection (Uzuner et al., 2011).
Since the choice of labeled data is limited, we expand our scope, and label an additional
batch of data from the MIMIC-III corpus (Johnson et al., 2016b). We are going to give
a thorough overview of the data structure of each dataset, and a final overview of the
expectations of this work.

3.2.1 2010 i2b2/VA challenge on assertions

In the scope of the 2010 i2b2/VA Workshop(Uzuner et al., 2011), three challenges were
introduced, one of which is the 2010 i2b2/VA challenge on assertions. In this thesis, we
are going to focus on the challenge of assertions only. This is the only corpus being used
in the task of assertion detection because it is the only publicly available dataset on this
particular task. The corpus was provided by the i2b2 tranSMART Foundation, a non-
profit foundation developing an open-source community around the i2b2, tranSMART and
OpenBEL translational research platforms. The data was gathered from Partners Health-
care, Beth Israel Deaconess Medical Center, and the University of Pittsburgh Medical
Center.

Data Description

The data from this came in a free-text form as discharge summaries. Discharge summaries
are “clinical reports prepared by a health professional at the conclusion of a hospital stay
or series of treatments” (Kamalodeen, 2020). Although the discharge summaries come
from different sources, they follow some common pattern. Data exploration showed that
the information most relevant to this task are found in the following sections: History
of Present Illness, Past Medical History, Impression, Chief Complaint, Imaging studies,
Findings, etc.

Discharge summaries The following example is a sample text from one discharge
summary. In order to retain the privacy of the patients and the data, the paragraph is
altered.

CHIEF COMPLAINT AND HISTORY OF PRESENT ILLNESS: Pt. 111 is
a 45-year-old female with squamous cell carcinoma of the top of mouth (stage
T2 N0) that was biopsied by her dentist. Pathology was reviewed revealing
invasive cell carcinoma. The possibility of metastatic carcinoma could not be
excluded. She presented on 2018-01-23 for resection. She was admitted on
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2018-01-23 following her surgery. She underwent a joint procedure by Oto-
laryngology.

Labels The labels for the discharge summaries came in separate files - each label file
referencing the original discharge summary. Each line in the label files represents a single
label for a particular entity:

c=”nad” 42:2 42:2 || t=”problem” || a=”absent”

c=”bilateral dvt” 3:18 3:19 || t=”problem” || a=”present”

c=”atherosclerotic” 59:13 59:13 || t=”problem” || a=”possible”

The ”c” label references the entity, after which follows a beginning line : beginning
token location, and an ending line: ending token location, as one entity can be
mentioned many times in different contexts.

The ”t” label identifies the entity’s class, in our case, we only focus on ”problem”, in our
case, a disease.

Finally, ”a” is representing the entity’s asserted class.

Class Definition and Distribution The entities in this corpus are distributed within
six classes – present, absent, possible, hypothetical, conditional, and not associated with
patient. We will give a brief definition of each class:

– Present – includes all problems that are present in a patient. It is the default class
and is assigned when none of the other assertion classes fit.

– Absent – indicates that a specific medical problem doesn’t exist in a patient, or a
problem that a patient had, but no longer does.

– Possible – asserts that there is a possibility that a patient has a specific medical
problem, but that there is an uncertainty to some extent.

– Conditional – a medical problem in such a context is asserted as present under
certain conditions.

– Hypothetical – entities found in this particular context are considered as a possible
condition that the patient may develop

– Not associated with patient – the mention of a medical problem is not considered to
be associated with the patient, but with someone else, e.g. a person from her family.

In Table 3.1 we show the class distribution of all identified entities within the discharge
summaries in the dataset. The class distribution is quite skewed, which means the data
is imbalanced, with Present being the majority class.

Present Absent Possible Hypothetical Conditional Not associated with patient

21064 6144 1418 1367 274 236

Table 3.1: Class distribution - 2010 i2b2/VA challenge on assertions

After a discussion of the necessity of each class in solving this task, a professional in the
field advises us to limit our set of classes to Present, Absent, and Possible. His argument
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is that for doing such an analysis on patient records, these three classes are most common,
and, bring the most useful information from such records. Finally, our chosen subset of
data looks as follows:

Present Absent Possible

21064 6144 1418

Table 3.2: Class distribution on Present, Absent and Possible - Subset of the original data
from 2010 i2b2/VA challenge on assertions

3.2.2 MIMIC-III

MIMIC-III (Medical Information Mart for Intensive Care - III), a freely accessible critical
care database containing anonymized health-related data associated with over forty thou-
sand patients who stayed in critical care units of the Beth Israel Deaconess Medical Center
between 2001 and 2012. It consists of data associated with more than fifty-thousand hos-
pital admissions for adult patients, and 7870 neonates admitted between 2001 and 2008
(Johnson et al., 2016b). This version is an update of the MIMIC-II database (Johnson
et al., 2016a). The database consists of different types of reports, such as discharge sum-
maries, radiology and nurse reports, and physician letters amongst others. This dataset
has been used extensively and is quite popular in the medical society. A lot of research
questions have been explored thanks to the information this dataset contains. For in-
stance, the authors of (Bashar et al., 2019) try to detect atrial fibrillation in ICU patients.
Another example is from the authors of (Yang et al., 2020) who try to predict mortal-
ity in patients with a sepsis-associated encephalopathy. Altogether, there is a significant
number of research studies which tackle similar problems, and it shows that the authors
of (Johnson et al., 2016b) made an important contribution to the community.

We include part of the annotated data in one of our experiments, to see if adding more
samples to the minority class will improve the performance of the model.

3.2.3 BioScope

The BioScope corpus (Szarvas et al., 2008) is a freely available source for research on
handling negation and uncertainty in biomedical texts. The corpus contains three forms
of texts: medical free texts, biological full papers and biological scientific abstracts. In
the area of negation detection it is the most widely used corpus with a current best F1
score of 97.87 (Britto and Khandelwal, 2020). The data labels consist of negation and
speculation classes only, in our case absent and possible, and excludes the present class
within the context.

Availability Numerous other studies try to improve on the task of negation detection
based on this corpus. We also include it in our experiments. One important matter
that we work on is the imbalanced distribution of the classes in the original i2b2 dataset.
Therefore, by including the BioScope corpus in our training data we will have a less skewed
class distribution. The main problem when requesting this corpus is that the medical free
texts are no longer publicly available, hence we are limited on using the biological full
papers and scientific abstracts.
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Data Representation The data is available in an xml4 format as shown in Listing 3.1.
Each document is divided in multiple parts, and each part consists of several sentences.
Each single sentence is annotated within the sentence tag, but not every one of those
contains some label inside. The entities within the sentence are not explicitly labeled, but
given are the scope of the negation/speculation cue, marked with a xscope tag, and the
cue itself, placed within a cue tag.

<DocumentPart type="Text">

<sentence id="S1.5">Since a number of microbial genomes have

been completely sequenced to date, it is tempting to ask

<xcope id="X1.5.1">

<cue type="speculation" ref="X1.5.1">whether</cue>

the 23rd amino acid is left undiscovered in these genomes

</xcope>.

</sentence>

</DocumentPart>

Listing 3.1: Example annotated sentence from the BioScope biological full papers

Clinical Full Paper Abstract

Documents 1954 9 1273

Sentences 6383 2624 11872

Negation sentences 6.6% 13.76% 13.45%

Negation cues 871 404 1757

Speculation sentences 13.4% 22.29% 17.69%

Speculation cues 1137 783 2691

Table 3.3: Distribution of samples per document type & classes per document type -
BioScope (Szarvas et al., 2008)

Data Distribution In Table 3.3 we provide a clear representation of the document types
and the distribution between both classes in each source (Szarvas et al., 2008). The ratio
of negation and speculation sentences within the texts is rather small, especially in the
clinical summaries. In total there are around 5000 samples available from this corpus.

3.3 Data Annotation

One of the goals of this thesis is to include a novel corpus in the task of assertion detection.
The authors of (Bhatia et al., 2019) have already done this by including their proprietary
dataset and achieved good results on both i2b2 and their own corpus. We think that it is
of great importance to have a shared dataset on a specific task, so that the results can be
comparable. For this particular purpose, we decide to do manual annotation on a chosen
subset from the MIMIC-III corpus.

4The Extensible Markup Language (XML) is a simple text-based format for representing structured
information: documents, data, configuration etc.
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3.3.1 Annotation Setup

In the process of data annotation, two individuals were involved. Before doing the anno-
tation, the following was defined:

– Subset of the most representative medical records

– Annotation Guidelines, the agreement on how the data is going to be annotated

– A tool for data annotation

– The annotators

Subset of the most representative medical records Before doing manual annota-
tion, we have to choose a meaningful subset of the MIMIC-III corpus that would bring
significant variety to our data. This task can be solved by using Active Learning (Settles,
2012), but given the limited time and the scope of this thesis, using this technique was not
feasible. Therefore we do a manual comparison on some of the chosen records and make
this decision ourselves.
While going over the existing records, at the beginning we conclude that they follow some
common pattern. The choice of records is done in two epochs. First, we decide for the
Discharge Summaries, as our main idea is to bring more samples to the training set.
Nevertheless, after analyzing other records such as Physician Letters, Radiology Reports,
and Nurse Letters we annotate a second batch, containing records from all three sources.
These are the main findings which we find challenging and consider as a reason for the
additional annotations:

– Those clinical texts tend to have shorter, unstructured paragraphs, which can be
hard to understand

– Many of the entities are often listed one after another and do not follow a specific
syntactic structure

Annotation Guidelines In order to keep the consistency of the annotation rules defined
by the authors of (Uzuner et al., 2011), we decide to use their very same Rule Book, defined
as follows:

The entity for each sample is bold, and the class is obtained by the context around it.

1. Present: problems associated with the patient can be present. This is the default
category for medical problems and it contains those that do not fit the definition of
any of the other assertion category.

• the wound was noted to be clean with mild serous drainage

• history of chest pain

• patient had a stroke

• the patient experienced a drop in hematocrit

• the patient has had increasing weight gain

• He has pneumonia

2. Absent: the note asserts that the problem does not exist in the patient. This category
also includes mentions where it is stated that the patient HAD a problem, but no
longer does.
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• patient denies pain

• no fever

• no history of diabetes

• No pneumonia was suspected

• History inconsistent with stroke

• his dyspnea resolved

• elevated enzymes resolved

3. Possible: the note asserts that the patient may have a problem, but there is uncer-
tainty expressed in the note.

• This is very likely to be an asthma exacerbation.

• Doctors suspect an infection of the lungs.

• The patient came in to rule out pneumonia.

• Questionable / small chance of pneumonia.

• Pneumonia is possible / probable

• Suspicion of pneumonia

• We are unable to determine whether she has leukemia.

• It is possible / likely / thought / unlikely that she has pneumonia

• We suspect this is not pneumonia

• this is probably not cancer

• pneumonia unlikely

Data Annotation tool We choose a data annotation tool which will preferably be
free of charge. As a consequence, we choose Doccano (Nakayama et al., 2018), an open
source annotation tool. This tool provides different kinds of features for text classification,
sequence labeling and sequence to sequence tasks. One can create labeled data for NER,
text summarization, sentiment analysis etc. We set it up on our DATEXIS5 Kubernetes
cluster, so that it is accessible for every annotator.

Annotators Our group of annotators consists of two people, a Software engineer and a
Data Scientist, who have no experience in data annotation in the medical domain. Both
of them annotate the data separately.

3.3.2 Annotation Evaluation

The crucial point in the process of data annotation is to have all annotators follow and
agree on the provided annotation rules. For that purpose we select a suitable measure,
the Inter-Annotator Agreement (IAA), a criterion of how well multiple annotators can
agree on the same annotation for a certain category (Bruijn, 2020). This very evident
description of the IAA is explaining everything we need to know about the measure itself:

“IAA is a measurement of how clear the annotation guidelines are, how uni-
formly the annotators understood it, and how reproducible the annotation task
is.”

5The research group Database Systems and Text-based Information Systems at Beuth University of
Applied Sciences Berlin
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As Accuracy and F1 score do not take into account the expected chance agreements, kind
of agreements that are likely to occur when people annotate data, but are not happening
as a result of the defined annotation guidelines. For that reason we choose the Cohen’s
kappa coefficient, a statistic which measures the IAA for qualitative (categorical) items
(McHugh, 2012).
Cohen’s kappa measures the agreement between two annotators who each classify N items
into C mutually exclusive categories. The Cohen’s kappa coefficient k is defined in Equa-
tion 3.2, where po is the actual observed agreement, and pe represents chance agreement.

k =
po − pe
1− pe

= 1− 1− pe
1− pe

(3.2)

Cohen’s kappa can range from -1 to +1. In this case, 0 is the amount of agreement that
can be expected from a random change, and 1 represents the perfect agreement between
the annotators. This score was interpreted by Cohen, and he explains it as the level of
agreement between the annotators, as well as what the score means towards the reliability
of the data. These interpretations and thresholds are defined in Table 3.4. A a score
between 0.8 and 0.9 is already a strong level of agreement, whereas a score higher than 0.9
is almost perfect. The Cohen’s kappa coefficient from our annotation, based on ten shared
documents between the annotators was 0.847, which according to Cohen is a strong level
of agreement. This also means that about 64 - 81% of the data are reliable, but given that
our annotators have never annotated such clinical texts, the score can differ if experienced
people from the field did the annotation instead (Ng, 2017a).

Value of Kappa Level of Agreement % of Data that are Reliable

0 - 20 None 0 - 4%

.21 - .39 Minimal 4 - 15%

.40 - .59 Weak 15 - 35%

.60 - .79 Moderate 35 - 63%

.80 - .90 Strong 64 - 81%

Above .90 Almost Perfect 82 - 100%

Table 3.4: Cohen’s kappa interpretation

3.3.3 Annotated data

In Table 3.5 we present the final number of samples we labeled. These samples are result
from 50 labeled Discharge summaries, and 10 from every other document type.

Dataset Present Absent Possible

Discharge Summaries 2613 980 250

Physician Letters 204 66 34

Nurse Letters 293 59 14

Radiology Reports 249 130 40

Table 3.5: Class distribution on Present, Absent and Possible after labeling a subset of
the MIMIC-III dataset
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3.4 Model Architecture and Pipeline Setup

In this section we will talk about the building blocks of our end-to-end solution. First we
will explain the method we use to decide for the Named Entity Recognition tool. Further-
more we will inquire into BioBERT + Discharge Summaries, and will give a justification
of our choice.

3.4.1 Named Entity Recognition tool

Given the two steps nature of this solution, as our first assignment we applied measure-
ments to two different NER tools, in order to decide for the one which will perform better
on the annotated data from the i2b2 dataset. We choose two NER models, TeXoo (Arnold
et al., 2016) and scispaCy (Neumann et al., 2019). TeXoo has the highest F1 of 93% on
the CoNLL2003 Task, and F1 of 89% on the GENIA dataset, whereas the authors of (Neu-
mann et al., 2019) state that “Overall, we find that the scispaCy models are competitive
baselines for 5 of the 9 datasets.”.

Evaluation Metric To compare both models we choose the following metric, defined
by the authors of (Cornolti et al., 2013), also used by (Ling et al., 2015) and (Arnold et al.,
2016). The equations below are cited in a summarized from (Arnold et al., 2016). Let D be
the set of annotated documents where the gold standard is defined as G = {Gd | d ∈ D},
and N = |G| is the number of total examples. Each entity in G is defined with a start
position b, and an end position e. From each model, we define a set of predicted entities
P = {Pd | d ∈ D}. To compare the predicted values to the gold standard mentions, we
introduce the following calculations in Equation 3.3 for tp, fp, tn and fn, explained later
in Chapter 5, which calculate the number of correctly labeled samples, and the number of
misclassified samples for each class.

tpd = |{p ∈ Pd | ∃g ∈ Gd : m(p, g)}|
fpd = |{p ∈ Pd | @g ∈ Gd : m(p, g)}|
tnd = |{p /∈ Pd | @g ∈ Gd : m(p, g)}|
fnd = |{p ∈ Gd | @g ∈ Pd : m(g, p)}|

(3.3)

Where the method m is a calculation of the weak annotation match defined in Equation 3.4:

m : (p, g) 7→ (bp ≤ bg ≤ ep)∨
(bp ≤ eg ≤ ep)∨
(bg ≤ bp ≤ eg)∨
(bg ≤ ep ≤ eg)

(3.4)

In the following equation, we present the measurements of micro-averaged precision (Prec),
recall (Rec) and NER-style F1 score:

Prec =

∑
d∈D tpd∑

d∈D (tpd + fpd)

Rec =

∑
d∈D tpd∑

d∈D (tpd + fnd)

F1 =
2 · Prec ·Rec

Prec + Rec

(3.5)

Finally, we present the results of the NER-style F1 score after running both models on a
subset of documents from the i2b2 dataset. The TeXoo model has an F1 score of 46%,
whereas the score from running scispaCy is 69%, as shown on Table 3.6. Therefore we
decide to use scispaCy as the NER tool for the purpose of this research.
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TeXoo scispaCy

0.46 0.69

Table 3.6: F1 scores on TeXoo and scispaCy, after evaluating both on the same portion
of labeled data from the i2b2 dataset

3.4.2 Language Model

A few points are important in selecting our language model, which will be the base of our
solution.

– It is preferably fine-tuned on medical texts

– It works well on thirty-thousand samples

In general BERT has been been found to outperform models such as ELMo or non-
contextual embeddings on many tasks, including those from the medical domain (Alsentzer
et al., 2019). Regarding the data size, in their original paper, the authors of (Devlin et al.,
2018), perform some downstream tasks on BERT and show that it works well with datasets
similar in size to the i2b2 corpus we have. We first look at BioBERT (Lee et al., 2019),
trained on PubMed Abstracts and PMC Full-text articles, and ClinicalBERT (Alsentzer
et al., 2019), where they also offer several variations, for example, they retrain BioBERT
on MIMIC data. Furthermore, the authors of (Alsentzer et al., 2019) not only have
a pretrained BERT model on medical data, but on the discharge summaries from the
MIMIC-III corpus, which they call BioBERT + Discharge summaries. This is important
as the model has already seen data from a similar distribution to the i2b2 dataset. In
Chapter 5, we try out some initial experiments to justify our decision on the model we
choose, which is BioBERT + Discharge summaries. The pretrained model we use is based
on BioBERTBASE , and supports sequences of maximum 512 tokens.

3.5 Summary

In this chapter we defined the problem we want to solve and our approach to solving it.
We elaborated the choice of the concepts implemented in our end-to-end solution. We
proposed a two-steps solution that will consist of a Named Entity Recognition (NER)
task in its first step, and a classification model in the second step. The selection of the
corpora, i2b2 dataset on assertion detection; BioScope; the different records from MIMIC-
III, was clearly explained, as well as the need for bringing novelty in solving this task. We
explained the annotation process of the MIMIC-III corpus. As our evaluation metric we
used Cohen’s kappa and we interpreted results of our annotation evaluation. Furthermore
we explained the model architecture and the components that built it. We chose scispaCy
to be our NER tool, as it outperformed TeXoo by 23%. As our language model we chose
the pretrained BioBERT + Discharge summaries. In the following Chapter 4 we will
explain the experimental environment, the tools we used, the data processing as well as
the training during the downstream task.



Chapter 4

Implementation

In this chapter we will focus on explaining the environment of our experiment, the depen-
dencies we used and the technologies our model is based on. Next, we will explain the
process of Hyperparameter Optimization, and the methods for data processing.

4.1 Experimental Environment

In the experiment implementation, specifically the model implementation we first used
PyTorch (Paszke et al., 2019) along with several pre-trained models from the Hugging
Face library (Wolf et al., 2019). PyTorch is a Python package that provides two high-level
features, tensor computation with strong GPU acceleration and deep neural networks
built on a tape-based autograd system. Hugging Face is a library with over thousands
of pretrained models in 100+ languages and deep interoperability between PyTorch &
TensorFlow.

FARM FARM (Deepset-Ai) is a library that facilitates faster setup when working with
Transformer models. One should only specify several important features in their configu-
ration file, choose a compatible BERT model from Hugging Face and run the model. Their
architecture is built from Adaptive Model, containing the Language Model and the Pre-
diction Head(s), which is a simple classification or regression head, and a Data Processing
part, made from a Processor and Data Silo. Their main features include:

– Simplified fine-tuning

– Speed

– Modular design of language models and prediction heads

– Combining prediction heads for multitask learning

– Support custom datasets with their Processor class

– Powerful experiment tracking & execution

– Checkpointing & Caching to resume training and reduce costs with spot instances

– Simple deployment

To see the progress of our model, the experiment tracking and execution feature was
certainly helpful.

29
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Cluster setup Models such as BERT are too large to be trained on a laptop or a
working station. Therefore, we train the model on the DATEXIS1 Kubernetes cluster.
The cluster itself has the following gpus as part of its inventory: NVIDIA’s Tesla - k80,
p100 and v100. Given the amount of data we had, a k80 was a sufficient resource for us.
All experiments were carried out reasonably quickly. In order to have the models running
on the Kubernetes cluster, we create Docker images, which are pushed to the DATEXIS
registry, and also Kubernetes configuration files to allocate the required resources and get
the containers running.

4.2 Data Processing

We use the Pandas library (McKinney, 2010) to do the data processing. It provides fast,
flexible, and expressive data structures making the data storing, analysis and querying
easier. The data processing part somewhat differs for every corpus, which shows how
different types of medical free-text corpora follow diverse patterns and writing styles.

i2b2 The data in this dataset is separated in label and text files. We begin the data
processing by going over each line in the label files, which follow the structure defined in
Section 3.2.1, and detect the original sentence within the text files. In order not to lose
any relevant information about the section, or to identify ordered lists that usually point
out that a disease is present, we use our own custom processing regular expressions, so
that the paragraphs would be neither too long, nor too scarce. Our processing method
results with a csv2 format of the data, with entity-marked sentences and their respective
label.

MIMIC-III At the beginning we prepare the data for the manual labeling and mark the
diseases in the selected texts. Similarly to the i2b2 data, the labeled texts are processed in
such manner that we get paragraphs that retain all useful information and have a sufficient
input length (with number of tokens less than 512). We store the output data in csv files.

BioScope This dataset is available in a different format, as xml files. We process them
with a xml parsing library. We first extract the sentences containing some kind of negation
or speculation scope, then transform those into regular sentences (omitting all xml tags),
and mark the already labeled entity. We then assign the annotated label to every sentence.

Input sequences There is a proposed input standard by the authors of (Devlin et al.,
2018) for passing sequences into BERT. The input structure it task-dependent, and for
the classification task it looks as follows: At the beginning of the sentence, the [CLS]
(classification token) needs to be added, and then follows the rest of the sentence to be
classified. The final hidden state from the model which corresponds to the [CLS] token
is then used as an aggregate sequence representation for the classification task. However,
our task is not really a sequence classification problem. It does start with a sequence
as an input, but somewhere in the middle we have to mark the entity for which the
classifier decides its predicted class. Considering that we did not find a similar problem
nor a solution on how to treat such an input, we use one of the [UNUSEDxxx] BERT
tokens to mark the entity in the sentence, based on a thread comment3 from one of the
contributors of (Devlin et al., 2018). These tokens, as he says, “were not used and they

1The research group Database Systems and Text-based Information Systems at Beuth University of
Applied Sciences Berlin

2comma-separated value
3https://github.com/google-research/bert/issues/9#issuecomment-434796704
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are effectively randomly initialized”, and allow you to treat words that are relevant only
in your context. Therefore, at the end all samples followed this structure (the choice of
[unused1] is arbitrary, as all unused tokens are randomly initialized):

[CLS] However, the test results were negative for [unused1] COVID-19 [unused1]

4.3 Fine-tuning and Hyperparameter Optimization (HPO)

As our next step we fine-tune our baseline on the i2b2 data on assertion detection, so it will
perform better on that specific task (Devlin et al., 2018). We first define the classification
model on top of BioBERT + Discharge summaries. As BERT is already a very complex
model, the usual choice is implementing a simple feed forward layer on top of it. This is
enough to show some initial results. For any further improvement we are implementing
Hyperparameter Optimization (HPO).

HPO When training a machine learning model, there are parameters that the model will
learn in this process, as for example weights and biases of a neural network, but there are
also parameters that can’t be learned during the training process (Zheng, 2015). Instead
these have to be predefined when building the model architecture. These are known as
hyperparameters. Parameters such as learning rate, optimizer, and batch size amongst
others are considered to be hyperparameters. For that purpose, researchers need to explore
different combinations of hyperparameters in order to achieve better results. HPO can
be considered as the final step of model design and the first step of training a neural
network (Yu and Zhu, 2020). There are several ways of doing a hyperparameter search.
Grid Search, Random Search and Bayesian Optimization are the most popular among all
others. Random Search is a good alternative to the Grid Search method, which performs
an exhaustive searching through a manually specified subset of the hyperparameter space.
This can often be time and resource consuming, and not always feasible. However, given
the complexity of the task and the DATEXIS cluster resources, we choose Grid Search as
a HPO method.

Automated hyperparameter optimization The process of automated HPO has the
following benefits (Feurer and Hutter, 2019):

– It drastically reduces human effort

– It helps improving problem-specific machine learning algorithms

– It contributes to reproducibility of scientific research

As our HPO framework we choose Tune (Liaw et al., 2018), a Python library for experiment
execution and hyperparameter tuning.

Hyperparameters We are optimizing on the following hyperparameters: learning rate
(lr), training epochs, and batch size, which are proposed by the authors of the original
BERT paper (Devlin et al., 2018).
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4.4 Assertion detection app

As our final solution we set up an endpoint which can be accessed and tested on real
examples. The expected input is any raw medical text that contains diseases. There is an
additional (optional) field to insert NER annotations for the raw text, which can be used
instead of ScispaCy. In Figure 4.1 we showcase the output from our end-to-end solution.

Figure 4.1: Overview of the assertion detection endpoint. It shows an example of a raw
medical text, which is processed and labeled

4.5 Summary

In this section we first described our experimental environment. Furthermore, we elabo-
rated on our decisions to use FARM to train the models and what are the benefits of the
framework. We further elaborated on our data processing steps, the challenge of choosing
the right input structure for our problem, and the decision of an entity-marking token.
We talked about the importance of doing Hyperparameter Optimization (HPO) as well as
the hyperparametrs we will optimize. At the end, we showcased the final version of our
end-to-end solution.



Chapter 5

Evaluation

In the following section we first recall on our Hypotheses from Chapter 1. Next, a definition
of the chosen evaluation metric will follow. Furthermore, we will elaborate the results and
compare them to a human baseline. There we will explain the necessity of a human
baseline and the possibility of improving the model by using other methods. Finally,
we will demonstrate the results yielded from all different test datasets and conclude the
outcome of our hypotheses. At the end we will have a discussion about the limitations,
and suggest improvements on the existing model.

5.1 Hypotheses

Our primary hypothesis is expecting that our model, based on BioBERT + Discharge
Summaries will surpass the current state-of-the-art models (Chen, 2019; Bhatia et al.,
2019). The second hypothesis is focused on expectations for the model to be able to
generalize on other types of medical texts.

5.2 Evaluation Metrics

When evaluating the outcomes of a classification task, one has to do a contingency table,
or also known as a confusion matrix, as shown on Figure 5.1, which shows the number of
correct and incorrect predicted samples, per class. These are called: true positive (TP)
equivalent with hit; true negative (TN) equivalent with correct rejection; false positive
(FP) equivalent with false alarm, Type I error; and false negative (FN) equivalent with
miss, Type II error. (James et al., 2013)

Precision, defined in Equation 5.1, is a quantitative measure for: What proportion of
positive identifications was actually correct? (James et al., 2013)

Precision =
TP

TP + FP
(5.1)

Whereas recall, defined in Equation 5.2, answers the following question: What proportion
of actual positives was identified correctly? (James et al., 2013)

Recall =
TP

TP + FN
(5.2)

33
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Figure 5.1: Confusion Matrix

F1, as defined in Equation 5.3, is a combined measure from both precision and recall, or
more precisely, F1 score represents the balance between precision and recall (Ng, 2017b).

F1 = 2 ∗ Precision ∗Recall

Precision + Recall
(5.3)

In classification, some of the most common metrics for model evaluation are recall, pre-
cision, and F1. In his book, Machine Learning Yearning (Ng, 2017b), Ng specifies that
when working on a task such as classification, it is very important to have one metric when
evaluating our models:

“Having a single-number evaluation metric such as accuracy allows you to
sort all your models according to their performance on this metric, and quickly
decide what is working best.”

Following this practice we decide to use the F1 measure as our evaluation metric, more
specifically the macro-average F1, as we are dealing with an imbalanced dataset and the
macro-average considers all classes as equal when calculating the overall score, as it does
not take into account the size behind the minority class scores (Zhang and Luo, 2018).

5.3 Results

A few remarks are important in this section:

– All initial experiments are done on the i2b2 data on assertion

– For any further improvements of the model, we use part of the MIMIC-III labeled
data

– The transfer-learning tests are carried out on MIMIC-III and BioScope

– The classes are mapped into numbers where 0 replaces Present, 1 represents Ab-
sent and 2 is a replacement for Possible

First iteration of tests To prove that BioBERT + Discharge Summaries (Alsentzer
et al., 2019) is a better fit than Clinical BERT (Alsentzer et al., 2019) in solving our
problem, our first set of experiments includes running both models on the same set of
data, the i2b2 corpus, using the same, arbitrary parameters in both trials.



5.3. RESULTS 35

We use the following set of parameters, stated in Table 5.1, which are some of the recom-
mendations from the authors of (Devlin et al., 2018), when fine-tuning BERT.

Learning rate Batch Size Weighted CrossEntropyLoss

5e-5 16 True

Table 5.1: Initial set of training parameters

p r e c i s i o n r e c a l l f1−s co r e support

0 0 .9893 0 .9163 0 .9514 1314
1 0 .9438 0 .9782 0 .9607 412
2 0 .5027 0 .9029 0 .6458 103

accuracy 0 .9295 1829
macro avg 0 .8119 0 .9325 0 .8526 1829

weighted avg 0.9517 0 .9295 0 .9363 1829

Listing 5.1: Clinical BERT results. Trained and tested on i2b2 data on assertion, using
the parameters from Table 5.1

p r e c i s i o n r e c a l l f1−s co r e support

0 0 .9807 0 .9665 0 .9736 1314
1 0 .9924 0 .9466 0 .9689 412
2 0 .6596 0 .9029 0 .7623 103

accuracy 0 .9584 1829
macro avg 0 .8775 0 .9387 0 .9016 1829

weighted avg 0.9652 0 .9584 0 .9606 1829

Listing 5.2: BioBERT + Discharge Summaries results. Trained and tested on i2b2 data
on assertion, using the parameters from Table 5.1

As shown on Listing 5.1 and Listing 5.2, BioBERT + Discharge Summaries outperforms
Clinical BERT, especially in the minority (Possible) class. Based on these outcomes, all
further experiments use BioBERT + Discharge Summaries. Furthermore, from these sets
of trials we notice that the dev and train errors are very close. There is no high variance
in the model, and that helps us when doing Hyper Parameter Optimization, for example
when deciding whether to use regularization techniques (Ng, 2017a).

5.3.1 Hyper Parameter Optimization (HPO)

We explained the necessity of going over the process of Hyper Parameter Optimization in
Section 4.3. The Grid Search is based on the following parameters and respective values,
shown in Table 5.2, as recommended by the authors of (Devlin et al., 2018). We use Early
Stopping in order to overcome possible overfitting.
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Learning Rate 1e-5, 2e-5, 5e-5

Batch Size 16, 32

Weighted CrossEntropy True, False

Epochs 2, 3

Table 5.2: Set of Hyperparameters for HPO

First set of results From the Grid Search we get the best set of hyperparameters, as
shown on Table 5.3. Our expectations were that using Weighted CrossEntropyLoss would
help the model to handle the minority class better, but the results seem to differ.

Learning rate Batch Size Weighted CrossEntropyLoss Epochs

1e-5 32 False 2

Table 5.3: Best set of parameters from Table 5.2 in HPO of BioBERT + Discharge Sum-
maries

Finally, we show the best results from our second trial of tests. In Listing 5.3 we show
the output from the test phase of the model, which outperforms the first BioBERT +
Discharge summaries trial (results in Listing 5.2), trained with an arbitrary set of hyper
parameters. We see a bigger improvement in the F1 of the minority (Possible) class, as
well as a slight improvement in the other two classes.

p r e c i s i o n r e c a l l f1−s co r e support

0 0 .9877 0 .9795 0 .9836 1314
1 0 .9832 0 .9927 0 .9879 412
2 0 .8091 0 .8641 0 .8357 103

accuracy 0 .9759 1829
macro avg 0 .9267 0 .9454 0 .9357 1829

weighted avg 0.9766 0 .9759 0 .9762 1829

Listing 5.3: Test results from the best trained model in the process of HPO

Again, the test results do not differ by much with those from the dev set, and we show
that on Figure 5.2, where it is clearly demonstrated that at one point the model achieves
a good result at the 420th batch, and does an early stopping at batch 690.

First step of improvements In Table 3.2 we show that the i2b2 dataset is imbalanced.
The Present class covers almost 72% of the data, the Absent class represents around 22.5%
and the Possible class covers only 5.5% of the data. It is a real challenge to achieve good
results on all three classes. However, the results that BERT achieves are satisfactory in
this clinical setting, as it handles imbalanced data pretty well, which also shown by the
authors of (Tayyar Madabushi et al., 2019). To improve results on the minority class,
we add more samples from the Possible class. In this regard, we take a subset (rows
representing the Possible class) of our MIMIC-III Discharge Summaries labeled samples
and add it to the training set. We use the same set of hyperparameters that outperformed
all other in the HPO process. The training set is updated with 250 additional samples.
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Figure 5.2: Model training with the best set of hyper parameters, shown on Table 5.3. On
the X axis we represent the number of current (accumulative) batches, whereas the Y axis
is shared between Train Loss, Dev Loss and Dev F1 Macro. At batch #690, the model
does an early stopping and uses the best saved model, at batch #420

p r e c i s i o n r e c a l l f1−s co r e support

0 0 .9855 0 .9825 0 .9840 1314
1 0 .9926 0 .9806 0 .9866 412
2 0 .7946 0 .8641 0 .8279 103

accuracy 0 .9754 1829
macro avg 0 .9243 0 .9424 0 .9328 1829

weighted avg 0.9764 0 .9754 0 .9758 1829

Listing 5.4: Test results after adding more data from the Possible class, gathered from the
labeled MIMIC-III data, to the i2b2 training set

In Listing 5.4 we present the final test scores after we tried to improve the model. And
in Table 5.4 we give a clear comparison of the F1 scores between both trials. Surprisingly
the model did worse on the Possible class. We analyze this further in Section 5.5 and
discuss why our expectations were not fulfilled. For any further experiments we will use
the model trained on the i2b2 dataset only.
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Class F1 - i2b2 F1 - i2b2 + MIMIC-III

0 0.9836 0.9840

1 0.9879 0.9866

2 0.8357 0.8279

Table 5.4: Comparison of BioBERT + Discharge Summaries trained on the original i2b2
dataset, and after adding samples of the Possible class from a subset of our labeled MIMIC-
III - Discharge Summaries

Comparison with current state-of-the-art models Next, we compare our model
to the current state-of-the art solution as well as the best paper from the 2010 i2b2/VA
task on assertion detection (Uzuner et al., 2011). We prove that BioBERT + Discharge
summaries outperforms the so far best results, especially in the Absent and Possible case.
Having that said, we confirm our first hypothesis, as defined in Section 1.5.1.

Model F1

Present Absent Possible

Conditional Softmax Shared Decoder (Bhatia et al., 2019) - 0.905 -

Bidirectional LSTM with Attention (Chen, 2019) 0.950 0.927 0.637

BioBERT + Discharge Summaries (ours) 0.984 0.988 0.836

Table 5.5: Test set performance (measuring F1) on 2010 i2b2/VA. Our baseline outper-
forms current state-of-the art solution, as well as the best paper from the challenge

5.4 Human Baseline

As the results from our model are already satisfactory in comparison to other models,
and considering that we already tried out some minor improvement on the minority class,
we set up another, human baseline, to see if there is room for improvement. The human
baseline is a group of two people, tested separately, one of which is a Software Engineer,
and the other, a Data Scientist.
In this regard we defined our labeling test set, which counts 20% of the original test set.
The goal is to find the F1 score for each annotator individually, and to check their Cohen’s
Kappa score. Both annotators are already familiar with the Annotation Guideline from
Section 3.3.1.

Cohen’s Kappa This score is equal to 0.7382, which according to the Cohen’s interpre-
tation, this is a moderate level of agreement. The percentage of the data that is reliable
is in the range of 35–63% (McHugh, 2012). Furthermore, we present the overlap between
annotators, on each class separately. This results in 88% overlap on samples from the
Present class, 75% overlap on Absent samples, and 72% overlap on samples labeled as
Possible.

Annotators’ test scores The annotators’ separate F1 scores are evidently lower than
the F1 scores that our Baseline yielded, as shown on Table 5.6. To understand the source
of the large disparities we look further into the original i2b2 data. There are notable
inconsistencies between the annotators there, as well as deviations from the Annotation
Guideline. This will be looked into in more details in Section 5.5.
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F1 Score

Annotator 1 Annotator 2 Our Baseline

0 0.941 0.937 0.98

1 0.915 0.846 0.993

2 0.625 0.6 0.717

Table 5.6: F1 scores comparison of Annotator 1, Annotator 2 and our Baseline, BioBERT
+ Discharge Summaries, on 20% of the i2b2 test data

The right Human Baseline Nevertheless, this raises the question of what a proper
Human Baseline is. According to Ng (Ng, 2017a), when evaluating the model, we try to
reach the Bayes Optimal Error, which is the theoretical optimal level of performance, even
better than a human performance. But in practice this is practically impossible, as there
is almost always noise in the data, which will probably decrease the accuracy of the model.
A human-level error is a proxy Bayes error, but yet not all human baselines will yield the
same error. Therefore, in a medical sense, more types of human baselines can be defined:

(a) Typical human, an untrained person that does not work in the medical field

(b) Typical doctor, which is a less experienced doctor

(c) Experienced doctor

(d) Group of experienced doctors

All of them will gradually be slightly better than the previous person’s performance, and
also will be closer to the optimal Bayes error. In such scenarios it is expected that the group
of experienced doctors will have the lowest possible error of all, by bringing their expertise
and finding the right consensus. Therefore, we treat our annotators as the first type of
human baseline, which is a typical human. We expect that a group of experienced doctors
will outperform the scores in Table 5.6. This is also discussed later in the Chapter 6, as a
part of our future work.

5.5 Error Analysis

In order to understand where the model goes wrong, we do a quantitative and qualitative
error analysis. This is a common and preferred practice in many research studies, like the
authors of (van Aken et al., 2018) that did a profound error analysis in their research and
gave helpful insights about the data. In this error analysis we elaborate the weaknesses of
the model which are highly important in a medical setting. In Figure 5.3 see a normalized
version of the confusion matrix which depicts the False Negatives and False Positives,
class by class. It becomes clear where the model does most of its mistakes, most of the
false negatives are found in the intersection between Possible as true label, and Present
as predicted label.
We are surprised to find out that most of the times the mistakes that the model did were
because of irregularities in the labeled data. After doing a thorough analysis, sample by
sample, we come to a general conclusion and divide our findings in the following categories:

– Typos Although not so common, there are a few misclassified samples that we
believe are mistaken by the model because of mistyped key words such as appeas or
probalbe. These kinds of errors are only around 5% of the analyzed data. In many
cases, these words are decisive for the Possible class, which were correctly labeled
by the annotators of the i2b2 dataset, but were confused by the model.
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Figure 5.3: Confusion Matrix of the results previously presented in Listing 5.3. The values
are normalized so it is easier to see which portion of the data was wrongly labeled by the
model. We see that the diagonal is where the highest values are found. The biggest
confusions that the model does are the Possible class False Negatives in respect to the
Present class.

– Wrongly labeled test samples Another problem that we identify is that there
are samples in the test set that are wrongly labeled. Words such as likely and
concerning for, used to indicate uncertainty of a disease; or not, no and resolved
always used as negation cues were found among samples labeled as Present, which
clearly were not. Around 45% of the misclassified samples fall into this category.

– Overall labeling inconsistency Most of the misclassifications (around 35%) that
the model makes are as a result of inconsistent labeling that we mostly found in
the training data. There are clearly disagreements among the annotators, and there
are examples to prove that. For example, words and phrases such as appeared
to be, concerning for and consistent with were all labeled differently in the
train data, sometimes as Present, and other times as Possible. For some of these
misclassifications, the model also had a lower confidence in its decision due to the
inconsistent labels in training time.

– Model weaknesses All other cases of misclassification (15%) can be attributed to
the model itself. We recognize some examples that have longer dependencies that
the model might have problem detecting as shown on the following example, where
may is the cue indicating that the underlined entity should be marked as possible.

Example: May be either viral or secondary to resolving abdominal pain with resul-
tant hematoma.

There are other cases as well. For example there were samples that did not con-
sist of any phrase indicating Absent or Possible, but the model treated them as
such. This is shown in the following example that the model considers as Absent.

Example: His hospital course was remarkable for ruling in for pneumonia.

After analyzing a large portion of the data, our main conclusion is that:

– Although there was a general Annotation Guideline, annotators still had trouble
distinguishing between classes when some exact samples were not found in it.
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– The annotators responsible for the annotation of i2b2 dataset had more trouble
than our annotators in deciding what Possible means. That resulted in confusing
the model when predicting that class, and when adding our labeled data to the
training set.

– We agree that most of the samples in the Present and Absent class follow some
similar pattern, but it is not easy to come to a general agreement for the Possible
class.

5.6 Evaluation on MIMIC-III

In Section 3.3.1 we spoke about which datasets we decided to annotate in order to see
how will the model generalize on unseen data, other than i2b2. In this section test scores
from all different labeled data will follow. Furthermore, we will discuss the results and
do a short error analysis. We use our best model, trained on i2b2 only. We will give a
short overview of each evaluation trial, and then give a general error analysis on all four
datasets.

Discharge Summaries In Listing 5.5 we show the test results from evaluating the model
on the labeled discharge summaries from MIMIC-III. The model is doing well on the larger
classes, but performs really poorly on the Possible class. We do a further error analysis
on these results in Section 5.6.1 to find out where did the model go wrong.

p r e c i s i o n r e c a l l f1−s co r e support

0 0 .9528 0 .9499 0 .9513 2613
1 0 .9148 0 .9643 0 .9389 980
2 0 .7024 0 .5760 0 .6330 250

accuracy 0 .9292 3843
macro avg 0 .8567 0 .8301 0 .8411 3843

weighted avg 0.9268 0 .9292 0 .9274 3843

Listing 5.5: Test results from the MIMIC - III Discharge Summaries

Physician letters In Listing 5.6 we present the results from the evaluation on physician
letters. The model has lower scores on all classes, especially on the Possible class. Although
only 304 samples are labeled, the proportion of Possible samples is rather large. This gives
us an inside view on our annotators’ idea of that class, which is slightly broader when
comparing it to the i2b2 annotators. The annotators found these letters most challenging
as they are very unstructured, and consist of many listed entities in the middle of the
document that are sometimes hard to follow.

p r e c i s i o n r e c a l l f1−s co r e support

0 0 .8955 0 .9657 0 .9292 204
1 0 .9062 0 .8788 0 .8923 66
2 0 .8000 0 .4706 0 .5926 34

accuracy 0 .8914 304
macro avg 0 .8672 0 .7717 0 .8047 304

weighted avg 0.8871 0 .8914 0 .8836 304

Listing 5.6: Test results from the MIMIC - III Physician Letters
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Nurse letters In general all types of medical texts were similar to some extent. However,
we, as annotators found nurse letters to be most comparable to the discharge summaries, as
they were better in structure and writing, and we find them second most convenient type of
medical texts to annotate, which results in an easier annotation process. In Listing 5.7, we
show some improvement on both Present and Absent class, but the model is still struggling
on the Possible class. Again, there are more samples from that class, in comparison with
the i2b2 data.

p r e c i s i o n r e c a l l f1−s co r e support

0 0 .9757 0 .9590 0 .9673 293
1 0 .8852 0 .9153 0 .9000 59
2 0 .6471 0 .7857 0 .7097 14

accuracy 0 .9454 366
macro avg 0 .8360 0 .8867 0 .8590 366

weighted avg 0.9485 0 .9454 0 .9466 366

Listing 5.7: Test results from the MIMIC - III Nurse letters

Radiology reports The results on Radiology Reports as shown in Listing 5.8 were good
on both Present and Absent class. However, the model shows weaknesses in predicting
the Possible class.

p r e c i s i o n r e c a l l f1−s co r e support

0 0 .9444 0 .9558 0 .9501 249
1 0 .9921 0 .9615 0 .9766 130
2 0 .6829 0 .7000 0 .6914 40

accuracy 0 .9332 419
macro avg 0 .8731 0 .8725 0 .8727 419

weighted avg 0.9343 0 .9332 0 .9336 419

Listing 5.8: Test results from the MIMIC - III Radiology Reports

5.6.1 General overview on errors - MIMIC-III

In this section we are going to elaborate our findings in the error analysis that we did
on samples from MIMIC - III. We present a mutual analysis for all documents at once
because the errors are common among all test results.

Again, we can divide our key findings in several categories:

– Data processing There are around 20% of the analyzed samples which the model
got right, but were not meant to be classified as such. Those samples were originally
part of a larger context, but important information was lost in the processing part
and key words such as no, or not found were cut out of the context. We find this
problem to be most common in the physician letters, which were also most challeng-
ing in the annotation process as they have very unstructured form. Therefore, it is
a challenge to find a good processing function for such letters.

– Annotators’ mistakes Around 55% of the misclassified samples are due to wrong
labels. There are sentences which contain a question mark in front of the entities,
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and our annotators considered those as typos. Many of the misclassfications are then
because the annotators labeled those data wrong. There are also obvious wrong la-
bels, such as possibly consistent with, which is clearly a sample from the Possible
class, and we found it to be labeled as Present. We conclude that the majority of
the problems come from the Possible class, which is now expected, because it was
clear in the human baseline that the annotators struggled as well.

– Labeling disagreements Only around 7% of the misclassifications are found in
samples where unlikely is the decisive word. Our annotators treat it as Possible,
whereas in the i2b2 dataset we found it to be labeled as Absent.

– Model Weaknesses Nearly 18% of the mistakes are due to confusions that the
model makes. We classify those as follows:

Key phrases One type of misclassification is when the model misses key phrases.
For example, the model fails to identify probably when it was long before the entity,
or examples that do not consist of cues indicating absence or possibility, but it tSreats
it as such. The model also failed to miss neither as a negation. There were cases
which we also find challenging such as the underlined entity in: no hydrocephalus,
subarachnoid hemorrhage, no fracture. However, even in such cases, the model had
lower confidence.

Cue following an entity Another case of misclassifications was when the decisive
cue was found after the entity, such as: His rash on the right hand was examined
further and is now resolved was treated as positive.

5.7 Evaluation on BioScope

The BioScope dataset consists of already labeled data which is available in a xml for-
mat. We do not do any further processing, just extraction of the cues and scopes, where
the scopes are significantly long, and sometimes even the cue is within the whole scope.
Therefore, the final structure of this dataset is quite different than the so far used medical
corpora. We examine the data and find many samples whose class we are not sure of. A
representative example is the following sentence, where the underlined part is the whole
entity within the scope, and there is also the cue, in this case predict.

Example: However, it can predict interacting protein pairs with a posterior odds ratio
above 1.0 when used in combination with any single module in group A

Nevertheless, as we do not find any guidance on how to process the data, nor have seen
some other authors doing it, we decide to leave the samples as they are and use them in
their original format.

Next, we run the experiment on the BioScope data, which consists of Absent and Possible
samples and got the results presented in Listing 5.9. Other studies (Dalianis and Skepp-
stedt, 2010; Khandelwal and Sawant, 2020) managed to overcome the complexity of this
dataset and had better results. The authors of (Khandelwal and Sawant, 2020) had an
average F1 of 93.46% on the Absent (Negation) class. However, an important note is that
they trained and tested their model on the BioScope data.

p r e c i s i o n r e c a l l f1−s co r e support
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1 0.8645 0 .8255 0 .8446 1840
2 0 .9617 0 .4286 0 .5930 2697

accuracy 0 .5897 4538
macro avg 0 .6090 0 .7514 0 .4796 4538

weighted avg 0.9221 0 .5897 0 .6949 4538

Listing 5.9: Test results from BioScope Abstracts and Papers

Unseen patterns The model is making mistakes (24% of all analyzed samples) on
unseen speculation (Possible) cues such as hypothesise or raises the question, as well
as on negation (Absent) cues such as instead, presence or absence and cannot amongst
others.

Disagreement between annotators Around 10% of the analyzed samples fall in this
category. There are samples whose key words are apparent and assumed which are
labeled as Present in the i2b2 training data, but do not seem as such in the examples.
We also found samples where estimated was the decisive word for the Present class, but
were labeled as Possible.

Model weaknesses There are cases of known phrases that are missed by the model
(56% of the analyzed samples), such as may, would and was not. However, usually
a very long entity was found after such phrases, which was probably unexpected for the
model. For example the following sequence is treated as an entity: false positive rate of
available computational and high-throughput experimental interaction datasets is as high
as 90%.

Not recognizing non-medical entities We tested some of the misclassifications which
do not seem hard for the model. For example, we took the following sample from the Bio-
Scope dataset: If the N- and C-terminal parts of an iORF have distinct but closely arranged
BLAST hits in other genomes, it strongly suggests the iORF is actually two adjacent genes,
which the model predicted as present and replaced the underlined part with a disease. By
replacing the original entity with the disease, the model predicted the corrected class.
This happened with around 10% of the analyzed data, and gives us some insight about
the model, that it is not easily transferable to data other than diseases.

Having the results from this dataset, our general conclusion is that the problem lies in
both the complexity of the BioScope data, and the disparities between medical reports
and scientific papers and abstracts. Regardless the different key phrases that are decisive
for the predicted class, the entities in the BioScope dataset contain ten tokens on average,
which might be challenging for the model. Another important finding is that the model
can make different predictions if the entities are altered with diseases.

There are also similar findings from the authors of (Clark et al., 2011) that implement
cue detection in their solution. For this purpose they used the annotated BioScope cues.
However, while testing their model, they concluded that the cue detection task did not
contribute that much to achieving better results as the BioScope data is significantly
different than the i2b2 corpus.
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5.8 Discussion

During the evaluation process we learned some essential insights, which will be helpful in
our future research. At first we thought that the medical records have obvious patterns,
so it was no surprise that many rule-based systems achieved good results. Nevertheless,
the first iteration of error analysis already revealed some inconsistencies in the labels and
we agreed that the data was not as simple as it may seemed before. We proved this by
setting up our human baseline, where two annotators labeled 20% of the data, and were
far from the baseline. Again, we proved that we were wrong regarding the simplicity of
this data. Therefore, our main take-away notes from these experiments are:

Annotators agreement We showed how this point it most crucial when assembling data.
We tried it for ourselves and realized that sometimes language can be perceived differently,
therefore even for humans there needs to be more training examples in order to be able
to generalize.

Model capability Regarding the MIMIC-III dataset, the model showed to be robust,
because it achieved an overall good results on unseen data, which also came from another
source, and were labeled by different annotators. Although when it came to generalizing on
general texts, the BioScope corpus, it had trouble recognizing novel Absent and Possible
phrases. Such problems were detected by others as well (Feblowitz et al., 2011), and
therefore, we conclude they are due to the different text styles of the BioScope dataset.

Adding more data This experiment caused the model to be less accurate when predicting
the Possible class, because of the disparities that our batch of annotated data brought. In
general the model managed to achieve good results.

Possible improvement Another thing we learned from the error analysis is that the
label inconsistencies were not at random (Ng, 2017a). One suggestion for solving such a
problem is eliminating the samples that were wrongly labeled, but we did not consider
this, as the size of the Possible class samples will be much smaller, and we already deal
with a small proportion of the dataset. The biggest improvement of all is rethinking the
labeling process and including more experts from the field as annotators and supervisors.
This is discussed in more details in Chapter 6.

Model reliablity The most important words that can be said to a patient are “You
do not have cancer”(Harvey, 2017). This means that, once it is said, the observer is as
certain about it as feasibly possible. Nevertheless, like machine learning models, doctors
can make mistakes as well, and making a mistake in such case can be catastrophic for
patients. In order for our model to avoid such scenarios, it should maximize its True
Positives (where positive refers to the Present class in this research) and be as certain as
possible about the Absent and Possible predictions. That is measured with the Recall of
the Positive class (in this research the Present class) and therefore should be maximized.
Our model yields a 0.9795 Recall of the Present class which is the highest of all existing
solutions. In our error analysis we found out that the model was making mistakes which
were due to longer dependencies. These were not common, but such mistakes should not
be allowed as the predictions may result in misleading analysis and wrong interpretations.
Nevertheless, these examples are only a few and will be reviewed in our future steps. Also,
the high Recall (0.9927) of the Absent class also shows the capability of the model not
to mistake such samples for another class. This is crucial in comparing results to similar
patients, as the model will provide more precise information in the process of deciding for
common treatments. In general, the overall F1 score of our model (0.9357), shows that it
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outperforms current state-of-the-art solutions, and it can contribute more in the Cohort
Analysis. Finally, here are some techniques that will pursue clinical professionals to trust
our model (McCaw, 2019):

– Testing We use millions of drugs, whose biochemical effects are not fully under-
stood, but are still accepted because they passed some randomized clinical trials
and received FDA approval. Similarly, we should allow our model to undergo rig-
orous tests in order to gain more trust. This can be done once the Annotation
Guideline is approved by experts so that appropriate tests can be constructed.

– Boundary conditions This method is based on specifying a set of boundary condi-
tions and rules which the data should fulfill in order to assure that the model will be
consistent and certain about its predictions. In our case these rules include reduced
inconsistencies in the annotated data, and constructing a strong definition of what
an instance from the Possible class should look like.

– Explainability For most of the misclassifications made by the model we state in our
error analysis that those mistakes are due to inconsistent labeling. Moreover, adding
our additional labeled data to the original i2b2 dataset showed that our definition
of the Possible class somewhat differs from the i2b2 annotators. Again, as long as
this problem exists among humans, it is only acceptable for the model incapability
to generalize on that class. We elaborate the currently inexplicable misconceptions
of the model in Chapter 6.

5.9 Summary

We began this chapter with a recall on our two hypotheses. First, we did our first trial of
experiments, to compare Clinical BERT and BioBERT + Discharge Summaries on same
set of parameters to show that BioBERT + Discharge Summaries is more suitable for this
task. Next, we did a Hyperparameter Optimization and chose the best model. We showed
that our Baseline outperforms the current state-of-the-art solutions. It achieved an overall
macro F1 score of 0.9357. The Present class had a F1 of 0.9836, the Absent class had a F1
score of 0.9879, whereas the Possible class resulted in a F1 of 0.8357. We determined the
weakness of the model, which results in lower scores on the Possible (minority) class. We
trained the model again by adding more labeled data of the MIMIC-III corpus. However,
we did not see any improvement. Next, we did an experiment with a Human Baseline,
where two annotators were tested on 20% of the test data. The annotators had low level
of agreement, as well as lower scores than our baseline. Next, we tested the model on
the MIMIC-III data and the BioScope corpus. It showed good results on the MIMIC-III
data, but lower performance on the BioScope set. From our error analysis we concluded
that most of the wrongly labeled samples are a consequence of the inconsistent labeling
we detected in the i2b2 dataset. We also detected some typos, long dependencies that we
assume the model was having trouble with, and the rest of the incorrectly labeled data
were mistakes made by the model. We further elaborated on the explainability of our
results and how applying tests and a clear annotation guideline will help the model to
improve. We talked about setting boundary conditions in the future so that the model
can be more certain about its decisions, and therefore can be trusted even more.



Chapter 6

Conclusion

6.1 Summary

The goal of this thesis was to present an end-to-end solution in solving the task of assertion
detection. First, in our introduction we stated our motivation and the challenges we want
to solve, which would help experts in doing Cohort Analysis and providing better patient
care. We defined our problem as follows:

Given an entity in a medical text, identify its asserted class from the context.

The assertion classes that we focus on are Present, Absent and Possible. Next, we de-
fined the building blocks of our solution, which are ScispaCy, a Named Entity Recognition
(NER) tool, and BioBERT + Discharge Summaries, a fine-tuned language model which
was trained on medical corpora and Discharge summaries. Next we stated our two hy-
potheses, one of which stated that we expect our solution to surpass the current state-of-
the-art models, and the other was about our expectations that the model should be easy
transferable to other medical texts.
In the Background and Related work chapter we talked about solutions previous to ours.
We first mentioned that a lot of the solutions are focused on either Absent or Possible
samples and many of them ignore all three classes that we focus on. We explained how
rule-based models were widely used and what are their limitations. We continued with
a brief history of word representations and language models. We also talked about the
machine learning models based on different architectures, such as Convolutional Neural
Networks (CNNs) and Long Short Term Memory Networks (LSTMs). We listed the solu-
tions which are considered to tackle this problem at best and their scores as well.
Next, in the Methodology chapter we outlined the definition of the problem we want to
solve and how we decided to approach it. We proposed a two-steps solution that consists
of a Named Entity Recognition (NER) task in its first step, and a classification model
in the second step. We defined the selection of the corpora that we trained and tested
our model on: i2b2 dataset on assertion detection, BioScope, and clinical texts from the
MIMIC-III corpus. We explained the need for new data and our decision to annotate part
of the MIMIC corpus as well as the annotation process. Two annotators were labeling the
data. Their level of agreement, measured by the Cohen’s kappa score was 0.76.
Furthermore, we introduced our working environment, the cluster and the resources we
used to run our experiments, we talked about FARM and Tune, the two frameworks we
used to train and tune our models.
Finally, in the evaluation section we presented our final results. We first did a Hyperpa-
rameter Optimization and chose the best model. We showed that our Baseline outperforms
the current state-of-the-art solutions. It achieves an overall macro F1 score of 0.9357. The
Present class had a F1 of 0.9836, the Absent class had a F1 score of 0.9879, whereas the
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Possible class resulted in a F1 of 0.8357. We noticed the weakness of the model on the
minority, Possible, class and added more from our labeled data to it. Those were 250 sam-
ples from the Possible class of the MIMIC-III Discharge summaries. However, we did not
see any improvement on the Possible class. Furthermore, we defined our human baseline,
consisted of two different annotators and tested them on part of the i2b2 test data. Both
annotators seemed to fail on the Possible class the most. This was an important insight as
we realized that the Possible class is challenging to the annotators as well. Next, we tested
the model on the MIMIC-III newly labeled data, as well as on the BioScope corpus. Our
baseline showed good results on MIMIC-III, but had problems detecting certain patterns
in the BioScope dataset.
We did an error analysis and concluded the following: Most of the misclassifications the
model did were due to inconsistent labeling of the i2b2 dataset, which was also a problem
for the authors of (Clark et al., 2011). There were many similar examples that were
labeled differently, therefore the model had struggled when predicting for similar samples.
We further elaborated on the explainability of our results and why should the model be
trusted. We talked about setting boundary conditions in the future so the model can be
more certain about its decisions.

6.2 Future work

Although BioBERT + Discharge summaries, which we fine-tuned for the purpose of the
Assertion Detection task, showed good results and outperformed the current state-of-the-
art solutions, there is still room for improvement, and the following points are what we
consider to implement in the future.

Adding more layers The authors of (Liu, 2019) show that by adding an additional layer
at the beginning of BERT, in their case an Interval Segment Layer which distinguishes
between sentences in a document, can improve its overall performance. Our idea is to
add an additional encoding layer which will emphasize key patterns and words that are
decisive for the asserted class of the entities.

Syntactic dependency The Transformer architecture consists of a positional encoding
layer at the beginning to compute the linear distance between words. However, the syntac-
tic dependency in the language should not be omitted. Research shows that the attention
heads in BERT track some kind of syntactic dependencies between tokens (Clark et al.,
2019; Htut et al., 2019; Voita et al., 2019). However, as the authors of (Qian et al.,
2016) showed, including constituency and dependency parsing as an additional encod-
ing layer can improve the performance of the model, we hypothesize this can also be a
helpful insight to BERT. This should be important as the model will have an additional
information about the dependency between the entities and cues that are decisive for the
entities’ classes. That might help the model in identifying some long dependencies which
it sometimes failed to do so.

Including experts We strongly encourage the inclusion of medical professionals in the
annotation guideline and process as one of our main findings from this research is that the
model cannot learn properly due to inconsistent labeled data. That way the model will
be more confident in its weak predictions.

Interpretability We showed that we can explain most of the errors in our error analysis,
which are due to inconsistent labeling. However, it is of great importance to be able to
interpret the decisions that BERT makes and what happens within its layers. This has
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been tackled in many studies (van Aken et al., 2019; Htut et al., 2019; Voita et al., 2019)
and it has been shown that certain patterns can be found in those layers. As our next
step, we will use LIT (Language Interpretability Tool) (Tenney et al., 2020) which is a
visual, interactive model-understanding tool for NLP models. We expect to benefit from
it to answer questions about the decisions of the model and its consistency.
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