
Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Implementing arrays for
fault detection in R software

Ulrike Grömping

14 December 2024,
CMStatistics London



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Contents

1 Introduction

2 Approaches for creating CAs

3 Practical aspects

4 Implementation

5 References

Ulrike Grömping 2Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Upcoming Sabbatical

Goal: implement an R package that provides covering arrays (CAs) with the
most important tools around them

I am new to that field.

I will share my fresh insights on CAs:

their usage,
algorithms for creating them,
quality criteria,
practical aspects,

and my thoughts regarding implementation.

Ulrike Grömping 3Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Test situation

Assumption: a system under test (SUT) whose behavior is driven
by m factors F1, … , Fm,
where Fi has si levels vi1, … , visi .
The test suite D
consists of N test runs,
i.e., N particular level combinations of the m factors.

For each test, the outcome is a “pass” or a “fail”.

We will assume that - in the absence of mistakes - the same test run would
yield the same outcome again and again (e.g., in software testing), i.e.,
testing itself is deterministic.

Ulrike Grömping 4Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Fault detection as a screening task

Faults can be caused by pairs, triples, quadruples, … of factors.

Interaction Rule: Most failures are induced by single factor faults
or by the joint combinatorial effect (interaction) of two factors, with
progressively fewer failures induced by interactions between three
or more factors. Kuhn et al. (2010)

Different questions:

Is the product fault-free?
sufficient to pass all runs of certain coverage quality
(e.g., all value pairs or all value triples) → Covering Arrays
What conditions lead to faults?
more difficult, distinguishing different potential candidates required

either engineering judgment combined with subsequent confirmation
experiments permitted
or experiment that directly leads to identification of failure root causes
(further types of arrays)

Ulrike Grömping 5Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

ℓway Interactions

An ℓway interaction is an ℓ-dimensional value combination for ℓ factors, i.e.,
e.g.,

A=0, B=0
A=1, B=0
A=0, B=1
A=1, B=1

are four 2way-interactions (2IAs).

Ulrike Grömping 6Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Covering arrays (CAs)

A Covering Array (CA) of strength t is a test set (=experimental design) D
for which each tIA appears at least once.

Notation:

CA(N, t, m, sm1
1 … smk

k ) with m1 + ⋯ + mk = m,
CA(N, t, m, (s1, … , sm)),
CA(N, t, m, s) (uniform arrays)

Orthogonal array (OA) vs. CA of strength t:

OA requires each tIA for a given t-tuple of factors to appear the same
number of times;
“at least once” (CA) is much less demanding.

Ulrike Grömping 7Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Impression of run savings

Example
six factors with 2,2,3,5,7,8 levels
strength t = 2:

Total number of 2IAs to be covered

5

∑
i=1

6

∑
j=i+1

sisj = 287

3360 runs – Full factorial (reference)
1680 runs – OA
56 runs – CA (7 ⋅ 8 = 56)

We can save even more runs by using many more 2-level factors in those
56 runs (at least 600 2-level factors are possible, see also below).

Ulrike Grömping 8Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

An example CA D (a CA(56, 2, 6, (2, 2, 3, 5, 7, 8)))
Run A B C D E F Run A B C D E F

1 0 0 0 0 0 0 29 1 1 1 3 3 4
2 1 0 1 1 0 1 30 0 1 2 4 3 5
3 0 1 2 2 0 2 31 1 0 0 0 3 6
4 1 1 0 3 0 3 32 0 0 1 1 3 7
5 0 0 1 4 0 4 33 1 1 2 2 4 0
6 1 0 2 0 0 5 34 0 1 0 3 4 1
7 0 1 0 1 0 6 35 1 0 1 4 4 2
8 1 1 1 2 0 7 36 0 0 2 0 4 3
9 0 0 2 3 1 0 37 1 1 0 1 4 4
10 1 0 0 4 1 1 38 0 1 1 2 4 5
11 0 1 1 0 1 2 39 1 0 2 3 4 6
12 1 1 2 1 1 3 40 0 0 0 4 4 7
13 0 0 0 2 1 4 41 1 1 1 0 5 0
14 1 0 1 3 1 5 42 0 1 2 1 5 1
15 0 1 2 4 1 6 43 1 0 0 2 5 2
16 1 1 0 0 1 7 44 0 0 1 3 5 3
17 0 0 1 1 2 0 45 1 1 2 4 5 4
18 1 0 2 2 2 1 46 0 1 0 0 5 5
19 0 1 0 3 2 2 47 1 0 1 1 5 6
20 1 1 1 4 2 3 48 0 0 2 2 5 7
21 0 0 2 0 2 4 49 1 1 0 3 6 0
22 1 0 0 1 2 5 50 0 1 1 4 6 1
23 0 1 1 2 2 6 51 1 0 2 0 6 2
24 1 1 2 3 2 7 52 0 0 0 1 6 3
25 0 0 0 4 3 0 53 1 1 1 2 6 4
26 1 0 1 0 3 1 54 0 1 2 3 6 5
27 0 1 2 1 3 2 55 1 0 0 4 6 6
28 1 1 0 2 3 3 56 0 0 1 0 6 7

Ulrike Grömping 9Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Usage principle

Sets ℱ and 𝒫 hold tIAs that occur in failed runs or passed runs,
respectively.
Potential Failure Generating 2IAs are those in ℱ − 𝒫.

Examples with design D (CA(56, 2, 6, (2, 2, 3, 5, 7, 8)), t = 2):

all runs passed: no failures from 2IAs
Run 10 failed, all others passed: There is only a single 2IA in ℱ − 𝒫,
namely levels of factors 5 and 6 both equal to 1. Thus, the 2IA is
uniquely identified.
Run 36 failed, all others passed: There are three 2IAs in ℱ − 𝒫, namely
factor 4 level 0 with factor 5 level 4,
factor 4 level 0 with factor 6 level 3,
factor 5 level 4 with factor 6 level 3

For non-unique answers, engineering judgment or further experimentation
can help.

There are suggestions of designs, LAs and DAs, for situations where
subsequent experimentation is not possible rightarrow not covered.

Ulrike Grömping 10Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Quality criteria: Coverage behavior for the two 56 run CAs

Table 2: Coverage behavior of the two 56 run CAs (in pct))

two 2-level columns 600 2-level columns

Coverage Coverage (based on JMP)

ell n.IAs total ave. simple n.projs total (approx.) ave.

2 287 100.00 100.00 100 15 100.00 100.00
3 1529 55.66 72.62 30 20 99.51 99.85
4 4296 19.04 29.87 0 15 95.61 96.89
5 6052 5.55 7.50 0 6 79.88 82.21
6 3360 1.67 1.67 0 1 55.11 57.53

Ulrike Grömping 11Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

More interesting quality criteria?

irritating that CA(56, 2, 604, 260031517181) looks better on the quality
criteria than CA(56, 2, 6, 2231517181)
usability for identifying fault-generating IAs would be of interest (LAs,
DAs)

Ulrike Grömping 12Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Outline of remaining talk

approaches for creating CAs
practical aspects
thoughts on the planned project

Ulrike Grömping 13Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Contents

1 Introduction

2 Approaches for creating CAs

3 Practical aspects

4 Implementation

5 References

Ulrike Grömping 14Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Strategies

mathematical methods for uniform CAs (e.g., Torres-Jimenez et al.
(2019)) and (fewer) for mixed level CAs (e.g., Akhtar et al. (2024))

search algorithms, as, e.g., described in Leithner et al. (2024)

IPO = in parameter order:
starts with an array in the first t columns,
extends it horizontally with further columns,
and - where necessary - vertically with further rows
various variants ((F)IPOG, (F)IPOG-F, (F)IPOG-F2)

OTAT = one test at a time:
add tests one at a time,
maximize the number of additionally covered t-way interactions with each
additional test (greedy)

metaheuristics and postoptimization
tabu search
simulated annealing
optimizing (=reducing the number of tests) an existing array with one of
these methods

Ulrike Grömping 15Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Software

Specific search tools, e.g.

CAgen (by an Austrian team around Dimitris Simos, Wagner et al. (2020),
https: //srd.sba-research.org/tools/cagen/#/help; FIPOG, FIPOG-F,
FIPOG-F2),
CTwedge (by an Italian team from Bergamo, Gargantini and Radavelli
(2018))

typically handle constraints,
these two offer free web versions.

Further software, e.g.

allpairspy (Python package) by Hombashi (2023)
JMPPro implementation (JMP Statistical Discovery LLC (2024)),
commercial, free access for students and academics

Ulrike Grömping 16Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Catalogues of arrays

The catalogues cover uniform arrays only:

NIST catalogue of CAs:
21 964 actual arrays for strengths 2 to 6, 2 to 6 levels, and up to
2 000 columns, size up to 125 683 runs (“NIST Covering Array Tables”
(n.d.); arrays are downloadable as zip-files)

Table of smallest possible sizes (Colbourn (n.d.)), without the actual
arrays but with, somewhat cryptic, references;
13 641 entries, strength 2 to 6, for 2 to 25 levels, and up to 10 000
columns; still 2 884 entries for up to 6 levels, with size up to 13 759 798)

Ulrike Grömping 17Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Contents

1 Introduction

2 Approaches for creating CAs

3 Practical aspects

4 Implementation

5 References

Ulrike Grömping 18Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Numbers of levels

Uniform arrays will rarely suffice!

Ulrike Grömping 19Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Constraints

It will often not be possible or desirable to accommodate all level
combinations.

a certain level combination is technically incompatible
a certain level combination is not sold for other reasons
…

It can also happen that there is not a single valid level for a factor, which is
called unsatisfiable constraint (e.g., in JMP, see next slide).

Ulrike Grömping 20Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Unsatisfiable constraints (created with JMPPro)

Run A B C D E F Run A B C D E F

1 0 0 2 1 5 0 29 0 0 2 4 1 6
2 1 1 2 4 2 1 30 1 0 2 3 6 5
3 1 0 1 1 0 1 31 0 1 2 2 0 2
4 1 0 2 3 3 0 32 1 0 2 2 4 7
5 1 0 1 1 3 4 33 0 1 1 2 3 3
6 0 1 2 3 1 2 34 1 1 1 3 4 1
7 1 1 2 3 6 1 35 0 1 1 3 4 6
8 0 0 1 4 6 7 36 1 1 1 4 0 0
9 0 0 1 4 5 3 37 1 0 2 0 3 5

10 1 1 1 2 1 0 38 1 1 1 0 6 0
11 0 0 1 0 0 5 39 1 0 2 3 3 7
12 0 1 2 3 2 4 40 1 0 1 4 4 5
13 1 0 2 1 1 7 41 1 0 2 4 3 2
14 0 1 1 2 4 4 42 1 0 1 1 4 3
15 1 0 1 2 2 5 43 1 1 2 0 1 4
16 1 1 2 0 2 2 44 0 1 1 3 6 4
17 1 1 2 1 5 5 45 1 0 2 4 0 4
18 0 1 1 0 5 6 46 0 1 2 4 1 3
19 1 1 2 0 2 3 47 1 0 1 0 3 6
20 1 0 2 1 2 6 48 1 1 1 1 2 7
21 0 0 1 3 0 3 49 0 0 0 . 2 0
22 0 1 2 2 6 6 50 1 1 0 . 0 7
23 1 0 1 1 6 2 51 0 1 0 . 1 5
24 0 1 1 0 1 1 52 0 0 0 . 0 6
25 0 1 1 3 5 2 53 1 1 0 . 5 4
26 1 1 2 0 5 7 54 0 0 0 . 4 2
27 0 0 1 2 5 1 55 1 0 0 . 6 3
28 0 0 2 0 4 0 56 0 0 0 . 3 1

Ulrike Grömping 21Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Don’t care values (created with CAgen)

Run A B C D E F Run A B C D E F

1 0 0 0 0 0 0 29 * 0 1 4 0 4
2 1 1 1 1 1 0 30 * * * 0 1 4
3 * * 2 2 2 0 31 * * * 1 2 4
4 * * * 3 3 0 32 0 1 2 2 3 4
5 * * 2 4 4 0 33 1 * 0 3 4 4
6 * * * 0 5 0 34 * * * * 5 4
7 * * * 1 6 0 35 * * * * 6 4
8 * * 2 1 0 1 36 * * 0 1 0 5
9 * * 0 2 1 1 37 * * * 2 1 5

10 0 0 1 3 2 1 38 * * * 3 2 5
11 * * * 4 3 1 39 * * * * 3 5
12 * 1 1 0 4 1 40 * * * * 4 5
13 1 0 * 2 5 1 41 0 1 1 4 5 5
14 * * * 3 6 1 42 1 0 2 0 6 5
15 * * 1 2 0 2 43 * * 2 4 0 6
16 * * 2 3 1 2 44 * * * 0 1 6
17 1 1 0 4 2 2 45 * * * 3 2 6
18 * * * 0 3 2 46 1 0 1 * 3 6
19 0 0 * 1 4 2 47 * * * * 4 6
20 * * * * 5 2 48 * * 0 1 5 6
21 * * * * 6 2 49 0 1 * 2 6 6
22 1 1 * 3 0 3 50 1 1 1 0 0 7
23 0 0 * 4 1 3 51 0 0 2 1 1 7
24 * * * 0 2 3 52 * * * 2 2 7
25 * * 0 1 3 3 53 * * * * 3 7
26 * * * 2 4 3 54 * * * * 4 7
27 * * 2 * 5 3 55 * * * 3 5 7
28 * * 1 * 6 3 56 * * 0 4 6 7

Ulrike Grömping 22Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Don’t care values

are useful during design creation

for high expandability
for potential optimization of quality metrics
…

Ulrike Grömping 23Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Varying strength CAs

It might be of interest to have varying strength requirements for different
subsets of factors in the SUT.

e.g. uniform array of relatively high strength for many factors with few levels,
combined with a few factors at more levels (added with a lower strength
requirement).

Ulrike Grömping 24Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Contents

1 Introduction

2 Approaches for creating CAs

3 Practical aspects

4 Implementation

5 References

Ulrike Grömping 25Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Starting points for own implementations

The catalogue “NIST Covering Array Tables” (n.d.) of Tables of
reasonably small (IPOG-F generated) uniform CAs
(s = 2, … , 6, t = 2, … , 6 without s = 6 with t = 6);
the Colbourn tables in conjunction with review papers on mathematical
algorithms, e.g. Torres-Jimenez et al. (2019)
papers on mathematical algorithms for mixed CAs (e.g., Akhtar et al.
(2024))
open source Python code for - possibly - transferring

Helpful for comparisons:
free CA generation tools

CAgen web, CAgen CLI (free academic use on request)
CTwedge web (free),
JMPPro (free academic use)

Ulrike Grömping 26Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Example for using the Colbourn tables

Tables provide combinations of k, t, s, N plus some reference,
e.g. “Cyclotomy (Colbourn)”
Cyclotomy construction (Colbourn or otherwise) is behind 183 of the
2884 entries for up to 6 levels (6.35%)
Colbourn (2010) provides several related constructions (1, 2, 3, 3a, 3b, 4,
4a, 4b) around cyclotomic start vectors (based on Galois field
logarithms).

Current state:

figured out which construction for which entry
created several arrays and confirmed their coverage properties

Expectation:

most of these arrays can be created
creation is fast, even for large arrays

Ulrike Grömping 27Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Example continued: Cyclotomy constructions

whether or not a construction yields a CA for a given prime or prime
power can only be decided by combinatorial checks of relatively
complicated conditions (mathematically proven general bounds way
too large)

these are still much much less demanding than checking coverage
brute force;
e.g., a brute force full check of strength 4 coverage a CA(1051, 4, 31051)
took 3.5 hours on a powerful machine with 30 parallel threads.

checks are needed, if only for programming mistakes;
current strategy for routine checks: sampling subgroups of columns

Ulrike Grömping 28Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Example continued: Cyclotomy constructions

2000 4000 6000 8000 10000

20000

40000

60000

80000

k

t

3 4 5 6

s

2
3
4
6
7
8
10

11
12
14
18
20
21

1

2

3

4

5

6

7

8
N/k9101112131415161718192021

N

Ulrike Grömping 29Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Example continued: Cyclotomy constructions

3 4 5 6 7 8 9

4

6

8

10

log(k)

t

3 4 5 6
s

2
3
4
6
7
8
10

11
12
14
18
20
21

log(N)

Ulrike Grömping 30Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Thoughts on planned project

Implement mathematical algorithms for good uniform CAs, based on
Colbourn tables (sounds easier than it is)
These can be building blocks for more practically relevant arrays.
Implement mathematical algorithms for mixed level CAs
It might be worth while to try and supplement the Colbourn tables with
actual arrays and/or pseudo codes of algorithms.
Identify and implement useful algorithms for extending uniform arrays
with a few different columns?
Is it worth while for applications to implement LAs and DAs?
Resource-intensive search tools can possibly be accessed via an API
from R (e.g., the command line interface of CAgen, which is, however,
not freely available for everybody)
Are there real-world good practice examples for my benefit - focusing
on usage of CAs (LAs, DAs) rather than the entire software testing cycle
?

Ulrike Grömping 31Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Many questions

???
Any advice is highly appreciated.

Ulrike Grömping 32Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

Contents

1 Introduction

2 Approaches for creating CAs

3 Practical aspects

4 Implementation

5 References

Ulrike Grömping 33Arrays for fault detection in R



Introduction

Approaches for
creating CAs

Practical aspects

Implementation

References

References

Akhtar, Y., Colbourn, C. J., and Syrotiuk, V. R. (2024), “Mixed-level covering, locating, and detecting arrays via cyclotomy,” in Combinatorics,
graph theory and computing, eds. F. Hoffman, S. Holliday, Z. Rosen, F. Shahrokhi, and J. Wierman, Cham: Springer International
Publishing, pp. 37–50.

Colbourn, C. J. (2010), “Covering arrays from cyclotomy,” Designs, Codes and Cryptography, 55, 201–219.
https://doi.org/10.1007/s10623-009-9333-8.

Colbourn, C. J. (n.d.). “Covering array tables: 2 ≤v ≤25, 2 ≤t≤6, t≤k ≤10000, 2005–23,” Available at https://www.public.asu .edu /~ccolbou
/src /tabby.

Gargantini, A., and Radavelli, M. (2018), “Migrating Combinatorial Interaction Test Modeling and Generation to the Web,” in 2018 IEEE
International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Vasteras: IEEE, pp. 308–317.
https://doi.org/10.1109/ICSTW.2018.00066.

Hombashi, T. (2023), “allpairspy.”

JMP Statistical Discovery LLC (2024), “Design of experiments guide,” Section “Covering Arrays.”

Kuhn, D. R., Kacker, R. N., and Lei, Y. (2010), Practical combinatorial testing, Gaithersburg, MD: National Institute of Standards and
Technology, pp. NIST SP 800–142. https://doi.org/10.6028/NIST.SP.800-142.

Leithner, M., Bombarda, A., Wagner, M., Gargantini, A., and Simos, D. E. (2024), “State of the CArt: evaluating covering array generators at
scale,” International Journal on Software Tools for Technology Transfer, 26, 301–326. https://doi.org/10.1007/s10009-024-00745-2.

“NIST Covering Array Tables” (n.d.). Available at https://math.nist.gov/coveringarrays/.

Torres-Jimenez, J., Izquierdo-Marquez, I., and Avila-George, H. (2019), “Methods to construct uniform covering arrays,” IEEE access :
practical innovations, open solutions, 7, 42774–42797. https://doi.org/10.1109/ACCESS.2019.2907057.

Wagner, M., Kleine, K., Simos, D. E., Kuhn, R., and Kacker, R. (2020), “CAGEN: A fast combinatorial test generation tool with support for
constraints and higher-index arrays,” in 2020 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 191–200. https://doi.org/10.1109/ICSTW50294.2020.00041.

Ulrike Grömping 34Arrays for fault detection in R

https://doi.org/10.1007/s10623-009-9333-8
https://www.public.asu%20.edu%20/~ccolbou%20/src%20/tabby
https://www.public.asu%20.edu%20/~ccolbou%20/src%20/tabby
https://doi.org/10.1109/ICSTW.2018.00066
https://github.com/thombashi/allpairspy
https://www.jmp.com/support/help/en/18.0/index.shtml#page/jmp/covering-arrays.shtml
https://doi.org/10.6028/NIST.SP.800-142
https://doi.org/10.1007/s10009-024-00745-2
https://math.nist.gov/coveringarrays/
https://doi.org/10.1109/ACCESS.2019.2907057
https://doi.org/10.1109/ICSTW50294.2020.00041

	Introduction
	Approaches for creating CAs
	Practical aspects
	Implementation
	References

