

Criteria for assessing space filling of a design, with emphasis on the stratification pattern

Ulrike Grömping

30 August 2024, COMPSTAT Gießen

2 Stratification pattern with refinement

3 Further metrics for space-filling

- **4** Simulation exercise
- 5 Conclusions

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

References

Thanks to an anonymous reviewer for comments on

A new kid on the block: The stratification pattern for space-filling, with dimension by weight tables which is available at https://doi.org/10.1002/qre.3627

How does **design performance on various space-filling metrics** affect **prediction performance of the emulator model** *in practice*?

Space filling

Computer experiments for quantitative variables:

- replication not needed (same input \rightarrow same output)
- easy to modify levels \rightarrow columns can have many levels
- large experimental space may need non-linear model, possibly non-parametric
- Latin hypercube design (LHD) in n runs: each column has levels 0 to n-1

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

References

Completely aliased LHD

Ulrike Grömping

LHD = expansion of OA (non-unique operation)

OA = collapsed version of LHD (unique operation)

Any expansion of the OA has a single point in each of the sixteen cells.

2 Stratification pattern with refinement

3 Further metrics for space-filling

- **4** Simulation exercise
- 5 Conclusions

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

For applicability of stratification pattern:

- each column has s^{ℓ} levels for some *s* and ℓ (e.g. 2^2 or 2^4),
- individual columns can be coarsened to $s^1, \ldots, s^{\ell-1}$ levels,
- one can consider
 - s to s^{ℓ} strata for individual columns (1D), e.g. 2, 4, 8, 16,
 - s^2 to $s^{2\ell}$ strata for pairs of columns (2D), e.g., 4, 8, 16, 32, 64, 128, 256,
 - ... s^d to $s^{d\ell}$ strata for sets of d < m columns (*d*D)
 - s^m to $s^{m\ell}$ strata involving all *m* columns (*m*D)
- Coarser stratifications and lower dimensions are considered more important.

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

Stratification pattern for given *s* and ℓ :

$$(\mathbf{S_1},\mathbf{S_2},\ldots,\mathbf{S_{m\ell}})$$

 S_j measures imbalance from stratification into s^j strata Perfect balance $\rightarrow S_j = 0$.

Consider, e.g., $16 = 2^4$ strata for the four example designs (s = 2, j = 4):

■ 1D is perfectly balanced for all LHDs (and impossible for OA)

2D: 4×4 or 8×2 or 2×8 for all LHDs, 4×4 only for the OA

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

Stratification into $2^4 = 16$ strata

Orthogonal array (OA)

Optimized LHD

Less optimized LHD

Completely aliased LHD

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

Stratification into $2^4 = 16$ strata

Introduction

Stratification

Orthogonal array (OA)

Less optimized LHD

Optimized LHD

Completely aliased LHD

Further metrics for space-filling

Simulation exercise

Conclusions

Stratification into $2^4 = 16$ strata

Orthogonal array (OA)

Optimized LHD

Less optimized LHD

Completely aliased LHD

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

References

S_j measures imbalances of stratifications into 2^j strata

	S_1	S ₂	S ₃	S ₄	S_5	S_6	S ₇	S ₈	Sum
OA	0	0.0000	0.000	0.0000					0
LHD									
opt.	0	0.0000	0.000	1.0000	2.00	4	4	4	15
less opt.	0	0.0625	0.625	0.5625	1.75	3	5	4	15
aliased	0	1.0000	0.000	2.0000	0.00	4	0	8	15

Best LHD worst LHD

Stratification aberration: better, if leftmost different pattern entry is smaller

- can only fairly compare designs with same numbers of levels
- possibly enhance by dimensional considerations

Refinement: Dimension by weight tables (Shi and Xu 2023)

	dim	1	2	3	1	5	6	7	R	Introduction
	unn	-	2	5	7	5	0	/	0	Stratification
optimized	1D	0	0	0	0					refinement
	2D		0	0	1	2	4	4	4	Further metrics for space-filling
less opt.	1D	0	0	0	0					Simulation exercise
•	2D		0.0625	0.625	0.5625	1.75	3	5	4	Conclusions
aliased	1D	0	0	0	0					References
	2D		1	0	2	0	4	0	8	
	1D	2	4	8	16	•	•	•		
	2D		2x2	2x4	2x8	2x16	4x16	8x16	16x16	
				4x2	4x4	4x8	8x8	16x8		
					8x2	8x4	16x4			
						16x2				•

2 Stratification pattern with refinement

3 Further metrics for space-filling

- **4** Simulation exercise
- 5 Conclusions

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

- minimum distance between pairs of points should be maximal (maximin), the larger the better (Johnson, Moore and Ylvisaker 1990)
- ϕ_p : minimizing ϕ_p serves as a norm-based emulation of maximin, the smaller the better (Morris and Mitchell 1995)

$$\phi_{p}(\mathbf{X}) = \left(\sum_{\{i,j\} \subset \{\mathbf{1},\dots,n\}, i \neq j} d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})^{-p}\right)^{1/p}$$

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

Centered L_2 **discrepancy** (Hickernell 1998): measures discrepancy from continuous uniform distribution on *m*-dimensional experimental hypercube, in our example case on $[0, 15]^2$.

With z_{ii} referring to a design rescaled to $[0, 1]^m$, centered L_2 discrepancy is:

$$\begin{split} & CD(\mathbf{X}) = \left(\frac{13}{12}\right)^m - \frac{2}{n}\sum_{i=1}^n\sum_{j=1}^m \left(1 + 0.5|z_{ij} - 0.5| - 0.5|z_{ij} - 0.5|^2\right) + \\ & + \frac{1}{n^2}\sum_{i=1}^n\sum_{k=1}^n\prod_{j=1}^m \left(1 + 0.5|z_{ij} - 0.5| + 0.5|z_{kj} - 0.5| - 0.5|z_{ij} - z_{kj}|\right), \end{split}$$

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise Conclusions References

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

References

$$\psi(\mathbf{X}) = \left(\frac{1}{\binom{n}{2}} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{\prod_{k=1}^{m} (x_{ik} - x_{jk})^2}\right)^{1/m}$$

For a design **X** with *m* columns, the maximum projection criterion (Joseph.

Gul and Ba 2015) considers 2D projections and requires minimizing

Ulrike Grömping

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

References

This criterion (Sun, Wang and Xu 2019) considers the average centered L_2 discrepancy over all pairs of columns, i.e., over all 2D projections.

For the four above designs, it coincides with the centered L_2 discrepancy, because there is only one pair.

Design columns should be as uncorrelated as possible.

- maximum absolute correlation between columns (the smaller the better) or
- average absolute correlation or
- average squared correlation

or further demands, regarding correlation also with product columns (Ye 1998 design)

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

References

....

Remember the four 2D designs

Optimized LHD

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

References

Less optimized LHD

Completely aliased LHD

Ulrike Grömping

		small = good						Stratification pattern with refinement	
	min.	ϕ_{n}	cent.	max.	$\frac{1}{S_2}$	S ₃	S₄	max.	Further metrics for space-filling
	dist.	Υp	discr.	proj.	2	0	-	abs.	Simulation
								corr.	Conclusions
OA	5	0.247	0.1773	Inf	0.0000	0.000	0.000	0.000	References
OptLHD	4	0.258	0.0460	0.111	0.0000	0.000	1.000	0.000	
LessOptLHD	3	0.376	0.0567	0.162	0.0625	0.625	0.562	0.138	
AliasedLHD	2	0.599	0.1210	0.366	1.0000	0.000	2.000	1.000	

Best LHD worst LHD

Ulrike Grömping

23

- 2 Stratification pattern with refinement
- **3** Further metrics for space-filling

4 Simulation exercise

5 Conclusions

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

- two LHDs from the 1998 Ye construction (one optimized for maximin distance), which have uncorrelated columns and even correlation zero between linear and bilinear columns
- two SOAs ("Strong" or "Stratified" Orthogonal Arrays) with eight-level columns that perform well on the stratification pattern
- expansions of the SOAs to LHDs, also called General SOAs (GSOAs)

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

		small = good						Introduction	
	min.	ϕ_p	cent.	unif.	max.	<i>S</i> ₃	S ₄	max.	Stratification pattern with
	dist.		discr.	proj.	proj.			abs.	refinement
								corr.	Further metrics for space-filling
YeRandom	89	0.0131	0.159	0.0173	0.0265	1.88	20.4	0.0000	Simulation exercise
YeOpt	101	0.0121	0.162	0.0177	0.0153	1.88	19.8	0.0000	Conclusions
SOA_ST	108	0.0110	0.293	0.0820	Inf	0.00	10.0	0.0000	References
GSOA_ST	120	0.0110	0.148	0.0157	0.0117	0.00	10.0	0.0485	
SOA_HT	99	0.0120	0.393	0.0880	Inf	0.00	47.0	0.3810	
GSOA_HT	116	0.0116	0.244	0.0286	0.0190	0.00	47.0	0.3975	

GSOA_ST is best for all criteria except maximum absolute correlation (but still acceptable).

Ye designs have optimal correlation properties, including further ones not captured in any of the metrics.

Ulrike Grömping

Dimension by weight tables for designs (weights go up to $9 \cdot 6 = 54$)

Design	Dimension	1	2	3	4	 Sum
YeRandom	2D		0.00	1.88	7.81	 2268
	3D			0.00	6.56	 328104
	4D	•			6.00	 31013766
YeOpt	2D		0.00	1.88	7.25	 2268
	3D			0.00	6.56	 328104
	4D				6.00	 31013766
(G)SOA_ST	2D		0	0	0	 2268
	3D			0	0	 328104
	4D				10	 31013766
(G)SOA_HT	2D		0	0	45	 2268
	3D			0	0	 328104
	4D				2	 31013766

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

Simulation settings

Borehole function (deterministic, 8 meaningful inputs on very different scales, 9th irrelevant input)

For emulator model:

log water flow modeled via kriging using function ${\rm km}$ from R package DiceKriging:

optimizer BFGS

design

Ulrike Grömping

- up to 200 iterations with a nugget of 10^{-8}
- two alternative strategies of handling the huge differences between parameter ranges:
 - \blacksquare working on original scale with $\rm km's\ parscale\ argument$
 - working on $[0, 1]^m$, adjusting the inputs in the borehole function
- Gauss or Matern covariance structure

For each design under each of the four settings:

100 emulator models based on random allocations of variables to the

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

References

28

Results: Root MSE and MAE for [0,1] coding

Ulrike Grömping

Criteria for assessing space filling

Results: Root MSE and MAE for original coding with parscale (better)

Ulrike Grömping

Criteria for assessing space filling

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

- Ye designs better than GSOA_ST, especially for [0,1] coding
- GSOA_HT often worse than SOA_HT
- Random Ye design slightly better than the one with optimized maximin

- 2 Stratification pattern with refinement
- **3** Further metrics for space-filling
- 4 Simulation exercise
- 5 Conclusions

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

Conclusions

GSOA_ST is best in terms of the metrics, but outperformed by the Ye designs [0,1] coding

The good performance of the Ye designs is not sufficiently explained by the metrics considered - is the strong correlation performance key?

Such questions deserve more attention, with a view to guiding practitioners.

Difficulties: Prediction performance strongly depends on

- the benchmarking problem considered
- the modelling strategy (even relative performance within the same benchmarking problem)

It is not trivial to design meaningful comparison settings.

But it should be done!

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

- 2 Stratification pattern with refinement
- **3** Further metrics for space-filling
- 4 Simulation exercise
- 5 Conclusions

6 References

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

References

- Grömping, U. (2024). A new kid on the block: The stratification pattern for space-filling, with dimension by weight tables. *Quality and Reliability Engineering International* online early.
- Hickernell F.J. (1998). A generalized discrepancy and quadrature error bound. *Mathematics of Computation* **67**, 299-322.
- Johnson, M. E., Moore, L. M., and Ylvisaker, D. (1990), "Minimax and Maximin Distance Designs," *JSPI* **26**, 131-148.
- Joseph, V. R., Gul, E., and Ba, S. (2015) Maximum Projection Designs for Computer Experiments. *Biometrika* **102**, 371-380.
- Morris, M. D. and Mitchell, T. J. (1995). Exploratory designs for computational experiments. *JSPI* **43**, 381-402.
- Shi, C. and Xu, H. (2023). A Projection Space-Filling Criterion and Related Optimality Results. *JASA* (online early).
- Sun, F., Wang, Y. and Xu, H. (2019). Uniform projection designs. The Annals of Statistics 47, 641-661.
- Surjanovic, S. and Bingham, D. (2013). Borehole function. http://www.sfu.ca/~ssurjano/borehole.html.
- Tian, Y. and Xu, H. (2022). A minimum aberration-type criterion for selecting space-filling designs. *Biometrika* **109**, 489-501.
- Wang, Y., Sun, F. and Xu, H. (2022). On Design Orthogonality, Maximin Distance, and Projection Uniformity for Computer Experiments. *JASA* **117**, 375-385.
- Ye, K. Q. (1998), "Orthogonal Column Latin Hypercubes and Their Application in Computer Experiments," JASA **93**, 1430–1439.

Introduction

Stratification pattern with refinement

Further metrics for space-filling

Simulation exercise

Conclusions

