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Abstract 

Quality assessment of factorial designs, particularly mixed level factorial designs, is a non-trivial task. 

Existing methods for orthogonal arrays include generalized minimum aberration, a modification 

thereof that was proposed by Wu and Zhang for mixed two- and four-level arrays, and minimum 

projection aberration. For supersaturated designs, E(s2) or χ2 based criteria are widely used. Based on 

recent insights by Grömping and Xu regarding the interpretation of the projected aR values used in 

minimum projection aberration, this paper proposes three new types of frequency tables for assessing 

the quality of level-balanced factorial designs. These are coding invariant, which is particularly 

important for designs with qualitative factors. The proposed tables are used in the same way as those 

used in minimum projection aberration and behave more favorably when used for mixed level arrays. 

Furthermore, they are much more manageable than the above-mentioned approach by Wu and Zhang. 

The paper justifies the proposed tables based on their statistical information content, makes 

recommendations for their use and compares them with each other and with existing criteria. As a 

byproduct, it is shown that generalized minimum aberration refines the established expected χ2 

criterion for level-balanced supersaturated designs. 

Key words: Design of Experiments, Squared Canonical Correlation Frequency Tables, Average R2 

Frequency Tables, Generalized Resolution, Ranking Factorial Designs 

1. Introduction 

Experimental design is an important tool for gaining as much information as possible from a limited 

number of experimental runs. Orthogonal arrays (OAs) are widely used for screening experiments and 

for experiments with qualitative factors with a view to more detailed modeling of factorial effects; 

screening experiments are sometimes even done using arrays with non-orthogonal columns, e.g. in the 

so-called supersaturated designs (see e.g. Georgiou 2014). This paper discusses quality metrics for 

level-balanced arrays (BAs) and the experimental designs based on them. Before going into the 
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specifics, some terminology is provided: arrays are Nxn matrices of symbols. The n columns 

correspond to design factors, the N rows to experimental runs. A subset of k columns is called a k-

factor projection or k-factor set. The symbols that occur in a column are called levels. Arrays with the 

same number of levels in all columns are called fixed or pure level or symmetric arrays. If different 

columns may have different numbers of levels, an array is called mixed level or asymmetric. All 

arrays considered in this paper are level-balanced, i.e., each column contains each of its symbols the 

same number of times. In addition, for OAs, each pair of columns contains each pair of levels the 

same number of times. An array is said to be of strength t, if each k-factor set, k≤t contains each k-

tuple of levels the same number of times. In the statistical literature for OAs, strength t is often 

denoted as resolution R=t+1 (see e.g. Hedayat, Sloane and Stufken p. 280 for the equivalence). 

Obviously, OAs per definition have at least strength t=2 (R=3), while BAs have at least strength t=1; 

we extend the usual equivalence of R=t+1 from R≥3 to R=2, by defining R=2 through t=1.  

In the screening phase of the experimental process, the number of experimental runs is usually 

required to be small, while attempting to accommodate relatively many factors, and there will not be 

detailed knowledge on a model for which to optimize a design. Rather, the design should be model-

robust. Given the reasonable and frequently-made assumption that lower order effects are more likely 

than higher order effects to be active, the typical screening design is requested to be able to estimate at 

least the factors’ main effects with as little bias risk as possible from low order interactions. In cases 

with particularly strong requirements on run economy relative to the number of factors, one might 

even consider strength 1 (R=2) arrays as suitable for the screening task. For quantitative factors, it is 

common to consider two levels per factor in the screening phase. For qualitative factors, the 

experimental purpose often dictates the numbers of factor levels for some of the factors, which may 

lead to a need for the use of mixed level arrays. As the construction of parsimonious mixed level 

arrays is by no means straightforward for the practitioner, some collections of OAs for such situations 

are available in literature, web and software, e.g. Taguchi (1987), Hedayat, Sloane and Stufken 

(1999), Kuhfeld (2009), Eendebak and Schoen (2013), Grömping (2016). Catalogues for 

supersaturated designs are also available, e.g., by Gupta et al. (2008). Recently, with new algorithms 

for checking isomorphism of arrays, some authors have discussed the creation of complete catalogues 

of non-isomorphic arrays, both for pure level and mixed level cases (e.g. Stufken and Tang 2007, 
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Evangelaras, Koukouvinos and Lappas 2007, 2011, Schoen 2009, Schoen, Eendebak and Nguyen 

2010). Of course, such catalogues are useful only if there are criteria for choosing designs from them.  

Quality criteria commonly used for OAs include generalized minimum aberration (GMA) which is 

based on the generalized word length pattern (GWLP) by Xu and Wu (2001) and minimum projection 

aberration which is based on projection frequency tables (PFTs; Xu, Cheng and Wu 2004). While 

both these criteria have been applied to mixed level arrays (see e.g. Schoen 2009, Xu, Phoa and Wong 

2009), their validity for that situation has been conceptually questioned as early as 1993 by Wu and 

Zhang (henceforth WZ). For supersaturated designs, E(s2), ave(χ2), E(χ2) or E(fNOD) criteria are 

frequently used (Booth and Cox 1962, Yamada and Matsui 2002, Ai, Fang and He 2007, Fang, Lin 

and Liu 2003); criteria based on the maximum contributors to those averages / expectations are also in 

use. This paper aims at providing tractable quality criteria for BAs that fairly treat mixed level arrays. 

The recent work by Grömping and Xu (2014) will be useful in obtaining three new and conceptually 

convincing ways to replace conventional criteria by refined versions that take care of mixed level BAs 

in a coding invariant way and such that WZ’s concerns are also addressed. The coding invariance is 

particularly desirable for qualitative factors, which often occur in mixed level arrays. One of the 

proposed criteria will also prove useful for distinguishing pure level arrays with identical GWLP, i.e. 

can be used as an easy means for establishing non-equivalence of arrays. The criteria can be used for 

deciding between several arrays from smaller selections for concrete experiments, but also for ranking 

larger catalogues of arrays. For the latter application, computing effort is an issue; however, since the 

criteria concentrate on R-factor sets only, the effort remains manageable; of course, very large 

catalogues will nevertheless pose a challenge, which can, however, be expected to reduce with 

technical development. The methods proposed here, as implemented in the R package DoE.base 

(Grömping 2016), have already been used for the creation of design matrices for specific screening 

experiments with only little confounding among 2-factor interactions, as was e.g. reported in Vasilev 

et al. (2014). 

Section 2 presents the existing quality criteria. Section 3 deep-dives the projected aR values that 

underlie GMA and the PFTs: it sheds light on their statistical implications regarding bias and 

(im)precision, points out their relation to the criteria for supersaturated designs, and explains why 

tabulation of raw projected aR values can be improved upon in case of mixed level arrays. Section 4 
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presents the new criteria and gives recommendations for their use in ranking and non-equivalence 

detection of arrays. Section 5 provides several examples for their performance. The paper closes with 

a discussion.  

The following notation will be used: the letter s stands for the number of factor levels. A BA of 

resolution R = strength R−1 in N runs with n factors will be denoted as BA(N, s1, …, sn, R−1), with s1, 

…, sn, possibly but not necessarily distinct, or as BA(N, s1
n1…sk

nk, R−1) with s1, …, sk, possibly but 

not necessarily distinct and n1+…+nk=n (whichever is more suitable for the purpose at hand). For 

OAs, “BA” will be replaced by “OA” in this notation. The unsquared letter R always refers to the 

resolution of an array, while R2 denotes the coefficient of determination. k-factor sets are denoted by 

an index set {u1,…,uk}, or by the union {c}∪C, where c denotes a single factor, C a set of k–1 

additional factors. R-factor sets are of particular interest for this paper.  

2. Basic definitions and results 

This section restates the most important definitions and results from the literature in concise form.  

2.1. Resolution, GWLP and GMA 

The GWLP with entries A0, A1, A2, A3, A4,…, An contains the numbers of generalized words of lengths 

0, 1, 2, 3, 4, …, n and generalizes the word length pattern (WLP), which is known from symmetric 

regular fractional factorial arrays that can be specified via generators: there, each generator implies a 

“word”, and combinations of generators imply further words. The WLP for regular 2-level arrays is a 

special case of the GWLP, whereas one word in the WLP for regular symmetric s-level arrays, as e.g. 

for the 3-level arrays listed in Chen, Sun and Wu (1993), corresponds to s–1 generalized words in the 

GWLP. The GWLP is reasonably defined for general, not necessarily symmetric or regular, arrays. 

The resolution of the array is the number R for which AR > 0, but Ak = 0 for all k with 0 < k < R. The 

GMA criterion ranks arrays by minimizing the GWLP entries from left to right, which automatically 

maximizes the resolution; clearly, GMA is equivalent to MA for regular symmetric arrays with 

arbitrary numbers of levels. According to Xu and Wu (2001), who introduced the GWLP, Ak measures 

the overall confounding between all k-factor interactions and the general mean (see also the formal 

definition below).  



  

5 
 

Formally, the GWLP of a BA(N, s1,…,sn, R−1) is most easily defined using the model matrix M = 

(M0, v, M2, …, Mn) of the full model up to the n factor interaction: M0 is a column of “+1”s, M1 the 

matrix of the n main effects model matrices Xi (N×(si−1)) in orthogonal coding, with all main effects 

columns normalized to mean 0 and squared length N; for 2 ≤ k ≤ n, Mk is the matrix of all ( )n
k  k-

factor interaction model matrices, i.e. Mk = (X1…k, …, Xn−k+1…n), with Xu1…uk the N×((su1−1)⋅…⋅( 

suk−1)) model matrix of the interaction among factors {u1,…,uk} obtained as element-wise products of 

one column from each of the k main effects model matrices (see e.g. Table 5 below). The coding of 

matrix M1 (orthogonal, squared column length normalized to N) will be called “normalized 

orthogonal coding” in the following. The elements A0,A1,A2,A3,…, An of the GWLP can be calculated 

as the sums of squared column averages of the respective portions of M, i.e. Ak=1TMkMk
T1/N2. These 

sums can be split into contributions from the separate k-factor sets, i.e.  
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the ak(u1,…,uk) are called projected ak values and are the basis of minimum projection aberration, as 

presented in the next section; they contain the number of generalized words of length k that the k-

factor set contributes, and measure the overall confounding of the set’s k-factor interaction with the 

general mean. Section 3 will discuss in detail in how far the projected aR values (with R the 

resolution) measure confounding between each main effect and the R–1 factor interaction among the 

respective other factors in the set. The most important cases for screening experiments are those of 

R=3 and R=2, i.e., resolution III arrays or (supersaturated) resolution II arrays are most often used for 

screening experiments; for these, the GWLP reduces to (A2, )A3, A4, …, An, and projected a3 or a2 

values are of interest. Notationally, the resolution R is kept general, however. 

2.2. Minimum projection aberration 

For resolution R arrays, the minimum projection aberration criterion looks at the projected aR values 

aR(u1,…,uR) of the different R-factor sets and ranks array d2 as better than array d1, if d2 has fewer R-

factor projections with high projected aR values. This criterion can be assessed using the so-called 

projection frequency tables (PFTs), as defined below:  
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Table 1: The five GMA OA(16, 2342, 2) and array d3 from WZ (obtained from a listing of all 17 non-

isomorphic OA(16, 2342, 2) which was provided by Eric Schoen) 

 1 (d3) 2 (d1) 3 4 (d2) 5 6 

1 1 2 2 3 3 2 1 1 2 4 1 2 2 4 3 2 2 1 4 1 1 2 2 2 1 1 2 2 1 2

2 1 1 2 1 2 2 1 2 3 1 2 1 2 3 1 1 2 2 1 2 1 2 1 4 4 1 1 1 3 4

3 1 1 1 4 4 2 2 1 1 3 2 2 2 3 2 1 1 1 1 1 2 1 1 2 4 2 2 1 3 2

4 2 2 1 1 3 1 1 1 4 3 2 2 1 1 3 1 1 1 4 4 1 2 2 1 2 1 1 1 1 1

5 2 1 2 2 4 1 1 2 4 4 1 1 1 3 3 1 2 2 2 1 2 1 2 4 2 1 2 2 3 3

6 1 2 2 2 2 1 2 1 2 2 1 1 2 1 2 1 1 1 2 2 2 2 1 4 1 2 2 1 4 1

7 2 1 1 3 2 2 2 2 1 4 2 1 2 2 3 2 1 2 1 3 2 2 1 3 2 1 2 2 2 1

8 1 1 1 1 1 1 2 1 3 4 2 2 1 4 1 2 2 1 3 2 2 1 1 1 3 2 1 2 1 3

9 1 1 2 4 3 1 2 2 3 3 1 1 1 1 1 1 2 2 3 4 2 2 2 1 4 1 1 1 2 2

10 2 2 2 4 1 1 1 1 1 1 1 2 1 2 2 1 1 1 3 3 2 1 2 3 1 1 2 2 4 4

11 2 2 2 1 4 1 1 2 1 2 2 1 1 4 2 2 1 2 4 2 1 2 1 3 3 2 2 1 1 4

12 1 2 1 2 1 2 1 2 2 3 2 1 1 2 4 2 1 2 3 1 2 2 2 2 3 1 1 1 4 3

13 2 1 1 2 3 1 2 2 2 1 2 2 2 1 4 2 2 1 1 4 1 1 1 2 2 2 2 1 2 3

14 2 2 1 4 2 2 2 1 4 1 1 2 1 3 4 2 1 2 2 4 1 1 2 3 4 2 1 2 3 1

15 1 2 1 3 4 2 1 1 3 2 1 1 2 4 4 2 2 1 2 3 1 1 1 1 1 2 1 2 2 4

16 2 1 2 3 1 2 2 2 4 2 1 2 2 2 1 1 2 2 4 3 1 1 2 4 3 2 1 2 4 2

 

Definition 1 (Case k=R in Xu, Cheng and Wu 2004) 

(i) For a BA(N, s1,…,sn, R−1), the projection frequency table PFTk (k ≥ R) is defined as the 

frequency table of the ( )n
k  values ak(u1,…,uk),  {u1,u2,…,uk} ⊆ {1,…,n}. 

(ii) Minimum projection aberration ranks arrays according to their PFTR, by minimizing the 

frequency of the largest 1 2( , ,..., )R Ra u u u , in case of ties the frequency of the second largest 

1 2( , ,..., )R Ra u u u , and so forth. In case of identical PFTR, a version of minimum projection 

aberration continues considering the PFTR+1 etc. 
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Example 1: Table 1 shows six OA(16, 2342, 2), three of which are isomorphic to those investigated by 

Wu and Zhang (1993); these are the ones labeled with d1 to d3. Array d3 is the only non-GMA array in 

the table. Table 2 shows the GWLP and PFT3 for the arrays from Table 1. According to GMA, array 1 

(d3) is worst, the other five arrays are equivalent. PFT3 further distinguishes array 3 from the other 

GMA arrays: it has only 3 instead of 4 triples with a projected a3 value of “1” and is therefore 

considered better. Among the three Wu and Zhang arrays, d1 and d2 are equivalent, while d3 is worse. 

Table 2: GWLP and PFT3 for the arrays of Table 1 

 GWLP PFT3 

 Rank A3 A4 A5 Rank 0 0.5 1

1 (d3) 6 5 1 1 6 5 0 5

2 (d1) 1 4 3 0 2 6 0 4

3 1 4 3 0 1 5 2 3

4 (d2) 1 4 3 0 2 6 0 4

5 1 4 3 0 2 6 0 4

6 1 4 3 0 2 6 0 4

2.3. Wu and Zhang (1993) 

WZ proposed to treat different types of projections in mixed level arrays differently. Their solution is 

very specific to the arrays they studied: arrays with factors at four and two levels, and at most two 

factors at four levels. While their approach is interesting, it is messy to generalize it to general mixed 

level arrays or even arrays with more 4-level factors, and the author does not know of any such work 

(for other generalizations, see below). The key idea is to distinguish between k-factor sets of only 2-

level factors (i.e. zero 4-level factors), k-factor sets with one 4-level factor, and k-factor sets with two 

4-level factors. Accordingly, WZ partitioned the overall number of words of length k into components 

Ak = Ak0 + Ak1 + Ak2, where the second index indicates the number of 4-level factors in the k-factor set. 

WZ proceeded by defining “Type 0 minimum aberration” as minimum aberration based on Ak0, 

resolving ties in Ak0 by using Ak1 (and so forth). (Their second concept, “Type 1 minimum aberration”, 

will not be pursued here.)  
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Example 1 continued: The six OA(16, 2342, 2) of Table 1 have the WZ patterns shown in Table 3. 

Thus, according to the Type 0 MA criterion, d1 is best (equivalent to 3 and 5), followed by d3 and d2 

(equivalent to 6) in that order. This ranking invoked a skeptical remark of Wu and Zhang regarding 

the universal usefulness of their criterion: they did not like the ranking of d2 behind d3.  

Table 3: The Wu and Zhang patterns for the arrays of Table 1 

 Rank A30 A31 A32 A40 A41 A42 A52 

1 (d3) 4 0 2 3 0 0 1 1 

2 (d1) 1 0 1 3 0 1 2 0 

3 1 0 1 3 0 1 2 0 

4 (d2) 5 1 0 3 0 0 3 0 

5 1 0 1 3 0 1 2 0 

6 5 1 0 3 0 0 3 0 

 

WZ restricted attention to a very specific class of arrays, for which the 4-level factor(s) can be 

constructed from the first two or four base factors of a regular fractional factorial 2-level array; all 

their arrays are therefore regular. Array 3 of Example 1 is not of that nature, but nevertheless shows 

the same WZ pattern as the best WZ array. For the 16 run cases, it has been investigated whether there 

are better arrays according to the WZ criterion within the larger set of all the non-isomorphic arrays 

with the respective numbers of factors and levels. (Attention was restricted to the 16 run arrays, 

because there is an easily manageable number of them, whereas the 32 runs arrays have not even been 

enumerated by Schoen et al. 2010.) The supplementary materials provide all the criterion values for 

all non-isomorphic OA(16, 412a, 2) and OA(16, 422a, 2). It was found that the WZ Type 0 MA arrays 

remain best in the overall set of arrays according to the WZ criterion (verified for up to A4j values 

only). However, their performance regarding the new criteria is generally lacking – in many cases 

they are close to the worst arrays. This is not surprising because regular arrays have repeatedly been 

found to have undesirable projection properties, e.g. by Cheng and Wu (2001) or Xu and Deng 

(2005). 
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An obvious generalization of WZ’s method for arrays with two numbers of levels of any sort, e.g. 

with 2- and 3-level factors, is to look at exactly the same concept, with the second index providing the 

number of factors with more levels in the set. For example, an OA(18, 21 37, 2) would have A32 and 

A33, A43 and A44 and so forth. In this way, it is possible to handle any arrays with only two different 

numbers of levels. However, if both numbers of levels occur with higher frequency, the situation 

becomes more complex. For example, for an OA(36, 25 36, 2), there are A30, A31, A32, A33, A40, A41, A42, 

A43, A44, and so forth. In such cases, WZ’s approach of primarily ranking w.r.t. one particular type of 

words and using the other types of words for resolving ties only becomes more and more problematic. 

This has also been noted by WZ, who discussed in the end of their paper to also take second best 

arrays into consideration or to take weighted sums of the Aij. Generalization of the WZ approach for 

arrays with more than two different numbers of levels becomes even more cumbersome than outlined 

above, because the definition and ranking of the types of numbers of words to look at has to be 

tackled. Section 5 contains an example with three different numbers of levels, for which a third 

subscript to the “A”s has been introduced and an order of the word types has been arbitrarily fixed; 

this underlines the complexity involved in WZ’s approach. 

2.4. Established criteria for supersaturated designs 

The earliest quality criterion for supersaturated designs in 2-level factors was the E(s2) criterion 

(Booth and Cox 1962), which is known to be refined by GMA (see e.g. Xu 2015). For mixed level 

supersaturated designs, two criteria related to χ2 values are in use: for a pair (u,v) of factors in su and 

sv levels, respectively, dependency within that pair can measured by  

 
22

2

in case of 1 1 1 1level balance

( , )χ • • • •

= = = =

⎛ ⎞⎛ ⎞
= − = −⎜ ⎟⎜ ⎟
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∑∑ ∑∑
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n n n n s s Nu v n n
N N N s s

, (2) 

with nij the frequency of the level combination i and j and the usual dot notation for sums (n••=N). 

Yamada and Matsui (2002) and Ai, Fang and He (2007) equivalently proposed minimization of the 

sum, average or expectation of the χ2(u,v), called ave(χ2) criterion in the sequel, whereas Fang, Lin 

and Liu (2003) proposed minimization of E(fNOD), where fNOD(u,v) = N χ2(u,v)/(susv). Booth and Cox 
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(1962) and later authors also proposed to minimize the worst contribution to their criteria, which is 

procedurally comparable to minimum projection aberration for 2-factor projections. 

3. The case for new projection based metrics for mixed level arrays 

Projection frequency tables tabulate the projected aR values for all R-factor sets. Xu, Cheng and Wu 

(2004) introduced PFTs for pure 3-level arrays only. For mixed level arrays, the projected aR values 

correspond to R-factor sets of different patterns of numbers of factor levels. This issue was raised by 

WZ for mixed 2-level and 4-level arrays, and by Grömping (2011, 2013) in general. The following 

two sections shed light on the nature of the projected aR values, regarding how they can be 

decomposed into statistically meaningful components, how they relate to (2), and how these insights 

give rise to new tabulations for mixed level arrays.  

3.1. Projected aR values: decomposition  

The following two lemmata state two results from Grömping and Xu (2014) that are important for this 

paper; all proofs of Grömping and Xu (2014) generalize to R=2; the results are therefore stated for 

BAs. Before formally stating them, they are briefly given in words: according to Lemma 1, each R-

factor set in a resolution R array contributes to AR the sum of the R2 values from explaining the sc−1 

main effects columns (in orthogonal coding) of an arbitrary singled out factor in sc levels by a full 

model in the other R−1 factors; alternatively, according to Lemma 2, the contribution can be thought 

of as the sum of squared canonical correlations (SCCs) between the main effects model matrix for one 

of the factors (in arbitrary coding) and the full model matrix for the other R−1 factors. Note that 

orthogonal coding encompasses orthogonality to the intercept column, i.e. the classical dummy 

coding, although yielding main effects model columns with zero pair wise scalar products, is not 

considered to be orthogonal coding. Furthermore, note that the individual R2 values depend on the 

particular choice of orthogonal coding, while their sum or average is independent of that choice, and 

that canonical correlations are generally coding invariant.  

Lemma 1 (Grömping and Xu 2014).  

Consider a BA(N, s1…sn, R−1) and an R factor set {c} ∪ C ⊆ {1,…,n}. Denote by Xc the N × (sc−1) 

main effects model matrix in orthogonal coding for the factor c. Then, the projected aR value 
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aR({c} ∪ C) is the sum of the R2 values from the sc−1 linear models that explain the columns of Xc 

using a full model of the factors in C. 

Lemma 2 (Grömping and Xu 2014).  

Consider a BA(N, s1…sn, R−1) and an R factor set {c} ∪ C ⊆ {1,…,n}. Denote by Xc the N × (sc−1) 

main effects model matrix in arbitrary coding for the factor c, by FC the model matrix of a full model 

of the factors in C. Then, the projected aR value aR({c} ∪ C) is the sum of the SCCs between Xc and 

FC. 

Note that, under normalized orthogonal coding, all columns of the full model matrix in the lemmata 

can be omitted, except for the R−1 factor interaction matrix XC for the factors in C. Lemma 2 makes 

use of canonical correlation analysis (CCA) (Hotelling 1936). Details on CCA can e.g. be found in 

Härdle and Simar (2003). In brief, CCA partitions the linear relation between an Nxp matrix S and an 

Nxq matrix T into uncorrelated pairs of linear combinations (ui=Sai, vi=Tbi), i=1,…,min(p,q), such 

that (u1, v1) maximizes the correlation among all possible linear combinations, and the subsequent 

pairs (uj, vj) maximize the remaining correlation among all pairs that are uncorrelated to previous 

pairs. The i-th canonical correlation is the correlation of the pair (ui, vi). The canonical correlations are 

invariant to nonsingular affine transformations of the matrices S and T, which implies that the SCCs 

provide a coding invariant way of partitioning the projected aR values into sc–1 contributions. In fact, 

they partition the overall R2 obtained from modeling a factor’s main effects df based on R−1 other 

factors in the most concentrated way that is obtainable from an orthogonal factor coding. Note that the 

SCCs of Lemma 2 are closely related to the canonical efficiencies introduced by James and Wilkinson 

(1971), which are used in the literature on incomplete block designs. 

As the projected aR values are very important for all that follows, their calculation for a resolution III 

3 factor array (Table 4) according to the definition and the lemmata is pointed out in detail below: 

Table 4: An OA(8, 2241, 2) (transposed) 

A 1 1 1 1 2 2 2 2 

B 1 1 2 2 1 1 2 2 

C 1 3 2 4 4 2 3 1 
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Table 5: The full model matrix for the array of Table 4 

3 13 31 2 1 2 1 2 2 3

14 156 10 134 5 8 9 11 121 2 3 7 16
BC ABCC ACC C AC AC BC BCA B AB ABC ABC

1 1 1 2 2 3 1 3 1 2 2 3 1 3 2 2 3 1 3 2 2 3 1 3
1 1 1 0 8 3 1 3 1 0 8 3 1 3 0 8 3 1 3 0 8 3 1 3
1 1 1 2 2 3 1 3 1 2 2 3 1 3 2 2 3 1 3 2 2 3 1 3
1 1 1 0 0 3 1 0 0 3 0 0 3 0 0 3
1 1 1 0 0 3 1 0 0 3 0 0 3 0 0 3
1 1

− − − − − − − −
− − − − − −
− − − − − − − −
− − − −

− − − −
−1 2 2 3 1 3 1 2 2 3 1 3 2 2 3 1 3 2 2 3 1 3

1 1 1 0 8 3 1 3 1 0 8 3 1 3 0 8 3 1 3 0 8 3 1 3
1 1 1 2 2 3 1 3 1 2 2 3 1 3 2 2 3 1 3 2 2 3 1 3
8 0 0 0 0 0 0 0 0 0 0 0 0 32 32 3 4 3 12

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− − − − − − −⎜ ⎟
⎜ ⎟− − − −
⎜ ⎟− − − − − − − − − − − −⎜ ⎟⎜ ⎟− − −⎝ ⎠
 

Table 6: Ways to obtain A3=1 for the array of Table 4  

The LHS columns are the responses for a regression model or the S variables for CCA, the RHS 

columns are the explanatory columns for a regression model or the T variables for CCA; columns in 

parentheses can be omitted in case of normalized orthogonal contrasts, like in Table 5 

Applying the definition of A3 

 
Sum of squared column averages of M3  

(i.e. ½ + 1/6 + 1/3) 

Model matrix columns  

14 to 16 

Applying R2 sums or sums of SCCs  

LHS  LHS columns (S) RHS columns (T) Metric 

A 

(2 levels) 
2 

(1, 3 to 6,)  

11 to 13 

single R2 value (1) or 

single SCC (1) 

B 

(2 levels) 
3 

(1, 2, 4 to 6,)  

8 to 10 

single R2 value (1) or 

single SCC (1) 

C 

(4 levels) 
4 to 6 

(1 to 3,)  

7 

sum of three R2 values (1/2, 1/6 and 1/3) or 

sum of three SCCs (1, 0, 0) 

 

Table 5 shows the full model matrix for the following normalized orthogonal coding for the main 

effects: factors A and B are coded in -1/+1 coding (1 coded with -1), factor C in normalized Helmert 

coding. All columns of the matrix have squared length N=8, and the main effects model matrix 
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columns are orthogonal to each other, implying uncorrelated estimation of main effect coefficients in 

the absence of 2-factor interactions. The bottom row shows the column sums of the model matrix. 

Table 6 shows the different ways in which the number of generalized words of length 3 

(A3 = a3(1,2,3) = 1) can then be obtained, referencing the model matrix column numbers provided in 

Table 5.  

3.2. Statistical interpretations and connections to other criteria  

We now consider the R-factor set {c}∪C and denote by Xc the main effects model matrix of factor c 

in sc levels, by FC = (FC lower Ç XC) the full model matrix of the factors in C, by XC the part of FC that 

relates to the R−1 factor interaction, and by aR({c}∪C) the projected aR value when emphasizing that 

factor c is singled out for the main effects role. Furthermore, we assume that all factors are coded in 

normalized orthogonal coding. The orthogonality assumption ensures that confounding between FC 

and Xc reduces to confounding between XC and Xc, which is unavoidable in case of resolution R; the 

normalization assumption allows convenient technical simplifications, which are exploited below. In 

addition, we denote by Ri
2 the R2 from regressing the ith column xci of Xc on FC, which is equivalent 

to regressing on XC because of resolution and coding. Then, the projected aR value of the factor set is 

the sum of these Ri
2s. Furthermore, with an argument similar to the proof in the appendix of 

Grömping and Xu (2014), Ri
2= xci

TXCXC
Txci/N2, and Xc

TXCXC
TXc/N2 is the diagonal matrix of the Ri

2s; 

the trace of this matrix thus coincides with the projected aR value aR({c}∪C); as a preparatory remark, 

this trace is exactly the squared Frobenius norm of Xc
TXC/N, i.e.  aR({c}∪C) = ||Xc

TXC/N||F2. In the 

model  

Y = β0 + Xcβc + FCβC all + ε = β0 + Xcβc + FC lowerβC lower + XCβC + ε, (3) 

Xc
TXCβC/N is the bias vector of the main effect coefficients for factor c, if the interaction portion XC is 

omitted from the model. The above-mentioned squared Frobenius norm ||Xc
TXC/N||F2 and thus the 

projected aR value provides an upper bound for the squared Euclidean norm of this bias vector: 

||Xc
TXCβC/N||22 ≤ ||Xc

TXC/N||F2 ||βC||22. An exact upper bound for a specific coding would require 

application of the squared Euclidean induced norm, which is given by the largest eigen value of 

Xc
TXCXC

TXc/N2, i.e. the largest individual Ri
2, and is thus coding dependent. A coding invariant 

Euclidean norm based bound is given by the largest SCC, which is the largest individual Ri
2 in case 
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the most extreme orthogonal coding is chosen. Those exact upper bounds are individual summands of 

the conservative Frobenius norm based bounds. For a more realistic assessment of the typical bias risk 

for factor c’s coefficients from the projection {c}∪C, the average R2 or average SCC, i.e. 

aR({c}∪C)/(sc–1), appears reasonable. This average for the typical bias and the largest SCC for worst 

case consideration supplement each other for obtaining an overall assessment of the bias risk from 

omitting XC. Note that, within a mixed level projection, singling out different factors for the role of c 

yields different average values: for example, in a resolution III 3-factor set with two 2-level factors 

and one 4-level factor, for the 2-level factors, a sum of “1” is also an average of “1” and implies that 

the factors are completely aliased in the set, whereas a sum of “1” for a 4-level factor is an average of 

1/3 and means less severe aliasing for that factor. Regardless of fixed or mixed level projections, 

singling out different factors may also yield different maximum SCCs. 

The Ri
2 values can also be used to indicate variance inflation of the ith coefficient estimator bi for βci 

by including XC in model (3): 1/(1−Ri
2) = VIFi is the variance inflation factor. Thus, large Ri

2 values 

are harmful not only in terms of bias risk from omitting an active R−1 factor interaction but also in 

terms of losing precision for estimating βci when including the R−1 factor interaction of the factors in 

C. Again, the most extreme and coding invariant case is characterized by the largest SCC between Xc 

and XC; if this is “1”, there is a rank defect, and at least one coefficient is not estimable in model (3). 

The quantity 

{ }( ) 1
C

1
1

−
⎛ ⎞∪

−⎜ ⎟⎜ ⎟−⎝ ⎠

R

c

a c
s

 (4) 

is the harmonic mean of the VIFi for estimation of the βci, i=1,…,sc−1 in model (3). Note that the 

harmonic mean is the only one of the popular means that can include infinity values into an average 

without becoming infinite itself; it only becomes infinite if all averaged values are infinite, which in 

the present application allows to distinguish between complete aliasing of all main effects df and 

complete aliasing of some but not all main effects df. Thus, (4) is a reasonable measure for the 

average loss of precision for factor c main effects coefficients from confounding in model (3). 

For R=2, the projected a2(u,v) value equals an Nth of χ2(u,v) as defined in (2) (for the proof, see the 

supplementary material). Consequently, minimization of A2 is equivalent to minimizing the ave(χ2) 
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criterion, and GMA can be used as a refinement in case of ties. This insight underlines the qualitative 

character of GMA. For R>2, aR(c,C) within the R-factor set {c}∪C can still be seen as an Nth of the 

χ2(c,C) value, where the latter is obtained from a two-dimensional contingency table of factor c vs. 

the C C jj
s s

∈
= ∏  level cross-product factor for all factors in C. Furthermore, the average R2 value for 

a factor with smin = min(su, sv) levels in a resolution II pair u,v coincides with the square of Cramér’s 

V, which is χ2(u,v)/(N(smin–1)). The analogous result holds for factor c with sc ≤ sC. Thus, the average 

R2 value can also be interpreted as a well-known measure of qualitative association. 

As mentioned before, the projected aR values uniquely determine the average R2 value for any factor 

with sc levels, but can come with different decompositions into SCCs. The statistical meaning of the 

latter is worth a detailed example. The supplementary materials provide a further resolution III 

example in addition to the resolution II example given below. 

Example 2: There are two types of GMA BA(8, 42, 1) with A2 = a2(1,2) = 1. An instance of each is 

shown in Table 7. Of course, both average R2 values are 1/3 for both arrays, while the SCCs differ: in 

the concentrated case, the one generalized word of length 3 can be concentrated on a single df for 

each factor in the main effect role ({c}∪C either {1}∪{2} or {2}∪{1}): here, the contrast of levels 

1,2 vs. 3,4 for factor A is completely confounded with that same contrast for factor B; thus, in both 

cases, there is one SCC of “1” and two zeroes (implying in total two ones and four zeroes, when 

simply combining both variants). In the more even array, the one generalized word of length 3 is as 

evenly distributed over the df as possible for a BA: in both decompositions, there are two SCCs 0.5 

and one 0. Contrary to the concentrated array, the array with the more even distribution of SCCs 

partially confounds two contrasts of each factor, and there is no coding for which it would be possible 

to concentrate the entire confounding on one df; consequently, when used for an experimental design 

in the two factors, the more even array allows estimation of all main effect coefficients, whereas for 

the concentrated array one of the main effect coefficients is not estimable. As was mentioned before, 

in model (3) an SCC of “1” in the {c}∪C decomposition implies a rank defect; this is undesirable for 

any resolution, but particularly detrimental for resolution II arrays, for which a rank defect in model 

(3) implies a pair of factors for which main effects coefficients are not estimable even if only these 

two factors are active.  
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Table 7: Two GMA BA(8, 42, 1) and their SCCs  

The table lists the levels of factor B that occur with each level of factor A. 

 even concentrated 

 A 1 2 3 4 A 1 2 3 4 

 B 2,4 1,3 3,4 1,2 B 1,2 1,2 3,4 3,4 

 SCCs: two times 0, four times 0.5 SCCs: four times 0, two times 1 

 

3.3. Coding invariant mixed level friendly refinements of PFTs 

PFTs simply tabulate the aR({u1,…,uR}) for all R-factor sets. The previous section pointed out several 

properties of the projected aR values, if decomposed into Ri
2 or SCCs considering the set 

{u1,…,uR}={c}∪C. The various interpretations for the average R2 or average SCC show that division 

by the df leads to a natural metric that does more justice to mixed level arrays than the simple 

aR({c}∪C). The conceptually cleanest approach to handle the factor specific aR({c}∪C) / (sc − 1) 

within a projection is to refrain from aggregating over the different choices for c in {c}∪C: average 

R2 frequency tables (ARFTs) tabulate the aR({c}∪C)/(sc – 1) values for each choice of c, i.e. a total of 

( )nR R  average R2 values are tabulated. If a single value per projection is insisted upon, it is possible to 

average the average R2 values over the different singled out c, which leads to projection average R2 

tables (PARFTs). One version of such PARFTs will be formally defined in Section 4, while two 

others are only touched upon. 

The previous section also pointed out the relation of SCCs to estimability and bias risk, and in 

particular the severe consequences of SCCs “1”. The SCCs are the single entities that allow coding 

invariant assessment of individual df confounding for main effects. Therefore, SCC frequency tables 

(SCFTs) are the third proposed quality criterion, which should be brought into play in case of 

comparable performance regarding ARFT (or PARFT). One might also think of tabulating individual 

df R2 values, possibly in relation also to only a selection of individual df also for the right-hand side of 

the model; this would be the route of choice, would one want to decompose the bk values considered 

by Tsai and Gilmour (2010), or any other criterion relating to only a part of the s–1 df of an s-level 
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factor’s main effect. As such quantities would necessarily be coding dependent for s > 2, one would 

have to decide on a coding and apply this tabulation for an array / coding combination; it might also 

be possible to apply a different weight to different df of a factor, e.g., linear, quadratic or cubic. This 

is, however, beyond the scope of this paper. The three new types of tables and the quality criteria 

based on them are defined and exemplified in Section 4.   

4. The new criteria  

The following definitions will be demonstrated with the worked example of the 8 run array of 

Table 4, before applying them all to the arrays from Table 1 and to further examples.  

4.1. Average R2 frequency tables (ARFTs) 

In this section, the unit of tabulation is the factor-projection combination. 

Definition 2:  

(i) For a BA(N, s1,…,sn, R−1), the average R2 frequency table (ARFTR) is the frequency table of 

the ( )nR R  values ( ) ( )1,..., 1
iR R ua u u s − , {u1,…,uR} ⊆ {1,…,n}, i=1,…,R. 

(ii) Minimum average R2 aberration ranks arrays according to their ARFTR, in complete analogy 

to minimum projection aberration. 

For the worked example, n=R=3, a3(1,2,3)=1, s1=s2=2, s3=4, so that ARFT3 from the only projection is 

a table of the three values 1/1, 1/1 and 1/3, i.e.  

Average R2  1/3 1 

frequency  1 2 

The interpretation of this table is straightforward: For two factor-projection combinations the average 

R2 of the main effects model matrix columns is “1”, i.e. main effects of the respective factors in the 

only 3-factor projection are completely aliased; for one factor-projection combination, the average R2 

is 1/3, i.e. the respective factor (the 4-level factor) is partially aliased in the only 3-factor projection.  

Grömping and Xu (2014) defined generalized resolution (GR) as a generalized version of Deng and 

Tang’s (1999) definition. In terms of average R2 values, their definition can be written as 

2
worst1 aveGR R R= + − , i.e. the next larger resolution is reduced by the square root of the worst case 
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average R2 value. Consequently, GR can be obtained from ARFTR by subtracting the square root of 

the largest ARFTR value from R+1. In the worked example, GR is thus 3+1–1=3.  

4.2. Projection average R2 frequency tables (PARFTs) 

In this section, the unit of tabulation is the projection again, like for PFT. Now, a decision for a 

weighting approach is needed in order to aggregate the several average R2 values into one number for 

each projection. It appears natural to obtain an unweighted average of the factor wise average R2 

values for each R-factor projection. PARFTR tabulates these averages: 

Definition 4:  

(i) For a BA(N, s1,…,sn, R−1), the projection average R2 frequency table (PARFTR) is the 

frequency table of the ( )n
R  values ( )1

1

1 1,...,
1

R
R R

ui i

a u u
R s= −∑ , {u1,…,uR} ⊆ {1,…,n}. 

(ii) The respective minimum projection average R2 aberration ranks arrays according to their 

PARFTR in complete analogy to minimum projection aberration. 

For the worked example, n=R=3, so that there is only one projection. The multiplier for a3(1,2,3)=1 is 

the average of the inverse factor df’s 1/(sui−1) (i.e., (1+1+1/3)/3=7/9). Thus, the array of Table 4 has a 

PARFT3 with the frequency “1” for the only value “7/9”. For only 2-level factors, PARFT would use 

unmodified projected aR values, for only 4-level factors, PARFT would divide the projected aR value 

by 3, and for triples with one 2-level and two 4-level factor, the multiplier would be 5/9.  

It would also be possible to average all individual df R2 values within each projection, without prior 

averaging per factor (while the individual df R2 values are coding dependent, their average is not). 

This would imply weighting 1( ,..., )R Ra u u  with 
1

( ... )
Ru uR s s+ + ; these weights would be only 

driven by the overall number of df in a projection, while PARFTR from the definition also focuses on 

the distribution of the df over the factors. For many practically relevant situations, a df-based 

weighting behaves almost the same as the PARFTR from the definition; there are big differences in 

case of a few factors with many levels, where the behavior of PARFTR from the definition seems 

more adequate. A further and even more extreme approach weights each projection proportionally to 
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the inverse product of level numbers; the result would be closely related to the E(fNOD) criterion for 

supersaturated designs. These alternative weightings have not been pursued. 

4.3. Squared canonical correlation frequency tables (SCFTs) 

PARFTR aggregated several entries of ARFTR into one projection wise entry, SCFT does the opposite: 

ARFTR did not differentiate between situations for which the average “1/3” is the result from e.g. 

three main effects columns each of which has an R2 value of 1/3 or from one column with an R2 of 1 

and two columns with an R2 of 0. This does matter for the SCFTs considered in this section: Instead 

of the factor – projection combination considered by ARFTs, SCFTs consider the df – projection 

combination as the unit of tabulation. As motivated in Section 3, a more even distribution of SCCs is 

more favorable for screening experiments than a more concentrated one, see Table 7. As mentioned 

before, the SCCs provide the R2 values for individual df that one obtains with the worst case 

orthogonal coding, where “worst case” means that the sum aR({c}∪C) of individual R2 values is 

distributed over individual main effects df of factor c as unequally as possible.  

Definition 3:  

(i) For a BA(N, s1,…,sn, R−1), the squared canonical correlation frequency table (SCFTR) is the 

frequency table of the ( ) ( )
1

11 1
n

i
i

ns R
=

−− −∑  SCCs between the main effects model matrix Fc for a 

factor c ∈ {u1,…,uR} ⊆ {1,…,n} and the model matrix XC of the full model in the factors of 

C = {u1,…,uR} \{c}. 

(ii) Minimum SCC aberration ranks arrays according to their SCFTR, in complete analogy to 

minimum projection aberration. 

For the worked example, the single SCC from each 2-level factor’s main effects column in the role of 

Xc is 1 (has to be equal to the R2), and the canonical correlations with the 4-level factor main effects 

matrix in the role of Xc are a 1 and two zeroes, as was discussed in the beginning of this section. The 

table thus shows three ones and two zeroes: 

SCC  0 1 

frequency 2 3 
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In Section 4.1, we saw that ARFTR is related to the generalized resolution GR. SCFTR is related to a 

different type of generalized resolution, GRind: Grömping and Xu (2014) introduced GRind as the 

stricter version of generalized resolution that reacts to the most severe aliasing in individual main 

effects df. Thus, ind max1= + −GR R CC  with CCmax denoting the largest canonical correlation 

occurring in any R-factor projection. GRind can thus be obtained from SCFTR by subtracting the square 

root of the largest value from R+1, i.e. in the same way in which GR can be obtained from ARFTR. 

SCFTR has a relation to array regularity; the concentrated array of Table 7 is a regular array in the 

following sense: with appropriate coding, all its df are either completely aliased or independent. It can 

be shown that all regular arrays in this sense have SCFTR with values “0” and “1” only (completely 

aliased df are reflected by SCCs of “1”, independent effects by SCCs of “0”). Grömping and Bailey 

(2016) introduced three new regularity definitions, two of which were derived from SCFT and ARFT. 

As was already mentioned, regular arrays often have undesirable projection properties, which is also 

seen here, as – for a given number of words of length R – the “0”-“1” type SCFTR are necessarily 

worst; resolution II arrays should even be strictly non-regular in the sense of avoiding any ones 

among the SCCs, which can be guaranteed by keeping the stricter version of generalized resolution, 

GRind, larger than 2. Catalogued supersaturated arrays usually fulfill strict non-regularity; on the other 

hand, unfortunately, for setups where regular arrays are possible, catalogued OAs are often regular 

(e.g. many of the arrays in the Kuhfeld 2009 catalogue).  

4.4. Usage recommendations 

A simple use case for projection based criteria is their finer gridding as compared to the GWLP, 

which makes them useful for quickly ruling out equivalence between many designs whose criteria 

differ. With the methods given in Xu and Wu (2001), the GWLP can be determined with good 

computational efficiency. For cases with identical GWLP, further criteria can be used for ruling out 

equivalence, leaving only very few arrays to be checked with computationally very demanding 

equivalence searches. The examples in the next section will show that there is no single criterion that 

outperforms the others for all sets of arrays. SCFT is finer than the others, in that it allows differences 

even for fixed level arrays where all the other criteria coincide with PFTs; for mixed level arrays, 

PARFT and ARFT also deviate from PFTs because of different handling of the different projection 
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types. Within a set of only regular arrays, SCFT is a weak discriminator, because it can only produce 

0/1 patterns.  

Another important application is the quality assessment of arrays, which is needed both for selecting 

an array for particular experimental situations and for ranking catalogues of arrays. Generally, it is 

most desirable to rank arrays according to their behavior w.r.t. the most severe confounding, i.e. w.r.t. 

confounding from R-factor projections in resolution R arrays. That was already the rationale of the 

proposal to look at PFTs, and the mixed level approaches follow the same logic. ARFTs, PARFTs and 

SCFTs are more suitable for mixed level arrays than PFTs and less complicated than WZ for complex 

array structures (see e.g. Example 3); also, WZ is not always perceived as appropriate with its 

stepwise approach (e.g. Wu and Zhang’s own criticism of the ranking of d2 and d3 in Example 1). As 

was mentioned before, the author prefers ARFT over PARFT due to its clean concept that does not 

require arbitrary weight decisions within projections. The following artificial example explains 

another advantage of ARFT over PARFT: suppose a six factor array of three 2-level and three 4-level 

factors, for which a3(1,2,3) = a3(4,5,6) = 1, while all other projected a3 values are zero. With ARFT, 

each average R2 enters the assessment at face value, which implies three average R2 values of 1 (for 

the 2-level factors) and three average R2 values of 1/3 (for the 4-level factors). To the contrary, 

PARFT depends on the distribution of the factors over the two sets: if the first three factors are 2-

level, PARFT contains a “1” from the first set and a “1/3” from the second set. If there is one 4-level 

factor among the first three factors, PARFT contains a “7/9” for the first set and a “5/9” for the second 

set. The author considers the behavior of ARFT as more desirable, not least because it reveals that 

there are completely confounded main effects in the array.  

As SCFT concentrates on the detail within each factor and assumes a worst case factor 

parameterization, it is considered as a secondary criterion, after using ARFT (or, if preferred in spite 

of Section 3.2 in conjunction with the above reasoning, PARFT) as the primary one. The examples of 

the next section will demonstrate the criteria in action in various smaller sets of arrays, and in one 

very large group of arrays.  

If ARFTR and SCFTR cannot distinguish between arrays, higher dimensions can be considered. As the 

new criteria are not reasonably defined for higher dimensions, GWLP and PFT have to be used in 

most cases; in some situations, an array has factor sets of higher resolution than R. For these, it also 
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makes sense to consider their ARFT and SCFT (e.g., Table 3 of Grömping and Bailey 2016). Another 

reasonable approach is to use AR or even GMA as the primary criterion and to only resolve ties from 

this ranking with ARFT and SCFT, and possibly higher dimensional PFT.  

5. Examples 

Example 1 demonstrates the calculation of the new criteria in detail, comparing them also to the 

previously calculated ones; it shows that the ARFT criterion is superior to the WZ criterion in ranking 

the arrays considered by Wu and Zhang (1993), while PARFT gives the ranking obtained by Wu and 

Zhang. Example 2 illustrated the benefit of considering SCFT for two resolution II arrays that are 

identical w.r.t. all other criteria; a resolution III and a resolution IV example of the same nature, for 

which SCFT provides a ranking of designs that are otherwise of the same quality can be found in the 

supplemental materials. Example 3 illustrates a complex application for the WZ criterion to regular 

mixed level arrays; as all arrays are regular, SCFT does not discriminate among them, while WZ, 

ARFT and PARFT do. Example 4 shows a set of non-regular mixed level arrays for which PFT shows 

a very diverse pattern of projected a3 values, which yields the same ranking that would be obtained by 

the recommended strategy. The final Example 5 shows the power of SCFT for detecting non-

equivalence of arrays. 

Table 8: The new criteria for the six non-isomorphic OA(16, 2342, 2) of Table 1 

 WZ3 

R
an

k 
 

PFT3 

R
an

k 
 

ARFT3  

SCFT3   PARFT3  

 
A30 A31 A32 0 1/2 1 0 1/6 1/3 1/2 1

R
an

k 0 1/2 1 

R
an

k  0 7/18 5/9 7/9 1
R

an
k 

PARFT 

weight
1 7/9 5/9 

                    

1 (d3) 0 2 3 4 5 0 5 6 15 0 8 0 7 6 39 0 15 6  5 0 3 2 0 4 

2 (d1) 0 1 3 1 6 0 4 2 18 0 7 0 5 2 42 0 12 4  6 0 3 1 0 2 

3 0 1 3 1 5 2 3 1 15 2 6 4 3 1 35 14 5 1  5 2 3 0 0 1 

4 (d2) 1 0 3 5 6 0 4 2 18 0 6 0 6 4 42 0 12 4  6 0 3 0 1 5 

5 0 1 3 1 6 0 4 2 18 0 7 0 5 2 38 8 8 2  6 0 3 1 0 2 

6 1 0 3 5 6 0 4 2 18 0 6 0 6 4 38 8 8 2  6 0 3 0 1 5 
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Example 1 revisited: Table 8 shows all criteria regarding 3-factor projections of the six arrays from 

Table 1, including those already presented in Tables 2 and 3. Before interpreting the criteria, we will 

consider the calculation of the new criteria from WZ3 and PFT3 and technical relations among the 

criteria: First of all, the sum of the WZ3 entries is (of course) A3 (5 for array 1, 4 for the other arrays). 

For PFT3, the sum of the products between frequencies and values is A3, the same is true for a third of 

the sum of the products between frequencies and values for SCFT3. The sum of the frequencies 

themselves is ( )53 303 = for ARFT3, ( )49 542 = for SCFT3 and ( )5 103 =  for PARFT3 (like for PFT3). 

For most arrays in the table, a projection has either 0 or 1 words of length 3. ARFT3 and PARFT3 can 

be worked out from WZ3, as each type of projection has a specific composition in terms of numbers of 

levels and a specific PARFT weight: For (2,4,4) projections, the PARFT weight is the average of 1, 

1/3 and 1/3, i.e. 5/9. Thus, in PARFT3, the “1” values from such projections become “5/9”; 

analogously, the “1” values from (2,2,4) projections become “7/9”. The remaining projections (up to 

the overall total of 10) contribute the “0” entries. For array 3, there are two projections with projected 

a3 values “½”. These are from (2,2,4) triples (not obvious from the table, found out by inspection), i.e. 

the “0.5” has to be multiplied with the PARFT weight “7/9”, which yields the PARFT3 value “7/18” 

with frequency 2 for array 3. For obtaining ARFT3 from WZ3 and PFT3, note that any 2-level factor in 

the projection simply contributes the number of words of the projection as average R2, while any 4-

level factor contributes a third of that number. Consequently, apart from the zeroes, there are the 

ARFT values “1” and “1/3” for most arrays, and the additional “1/2” and “1/6” for array 3. Let us 

conclude this technical portion with the detailed derivation of ARFT3 for array 3: A32=3 comes from 

three (2,4,4) projections with one word each and translates into the entry “3” for the average R2 “1” 

from the single 2-level factor and the entry “6” for the average R2 “1/3” from the two 4-level factors 

in these projections; A31=1 comes from two (2,2,4) projections with projected a3 values of “1/2” and 

translates into the entry “4” for the value “1/2” from the two 2-level factors and the entry “2” for the 

value “1/6” from the single 4-level factor in these projections. The further tables in this section will 

still report enough detail for such cross-comparisons, but the detail will not be spelled out at such 

length. 

Turning to interpretation of Table 8, all criteria agree that the best array is array 3, like it was with 
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PFT3 and WZ (for WZ tied with arrays 2 and 5): the array has the fewest factor-projection 

combinations with complete aliasing (average R2 of 1), it has only 5 df-projection combinations with 

SCC 1, and the worst projection average R2 for this array is smallest. All criteria also single out 

array 1 (=d3), which is worst under PFT3, ARFT3 and SCFT3, but not worst for PARFT3 and WZ3. The 

four arrays that were equivalent under PFT3 are divided into groups of two by the other criteria: 

ARFT, PARFT and WZ agree in the group division and in the ranking between the two groups (d1 

before d2), SCFT creates a different grouping and ranks both d1 and d2 together (and as worse than the 

other two). When following the recommended ranking approach (ARFT and then SCFT or GMA, 

then ARFT (or PARFT or even WZ), and then SCFT), a reasonable unique ranking is achieved (ranks 

6,3,1,5,2,4 from top to bottom in Table 8). 

Table 9: Five minimum A3 OA(64, 244381, 2) as projections from a regular OA(64, 2541084, 2)  

(A3ij refers to words of length 3 from projections with i 4-level and j 8-level factors; 

PFT3: seven ones,  49 zeroes) 

 WZ3 

ra
nk

 

ARFT3 

ra
nk

 

PARFT3 

ra
nk

  

A 3
00

 

A 3
10

 

A 3
01

 

A 3
20

 

A 3
11

 

A 3
30

 

A 3
21

 

0 .1
43

 

.3
33

 

1 0 .2
70

 

.3
33

 

.4
92

 

.5
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.3
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1 0 0 0 0 4 0 3 2 147 7 10 4 2 49 3 0 4 0 0 2 

2 0 0 1 1 2 0 3 5 147 6 10 5 5 49 3 0 2 1 1 5 

3 0 0 0 0 3 1 3 1 147 6 12 3 1 49 3 1 3 0 0 1 

4 0 0 0 0 4 0 3 2 147 7 10 4 2 49 3 0 4 0 0 2 

5 0 0 0 1 3 0 3 4 147 6 11 4 4 49 3 0 3 1 0 4 
 
Example 3: This example illustrates a complex application of the WZ criterion: we consider the five 

OA(64, 244381, 2) that can be obtained as projections of the OA(64, 2541084, 2) of Kuhfeld (2009) and 

have the minimum number of length 3 words, which is A3=7. All five arrays are regular, and all have 

the same PFT3 with seven ones and 49 zeroes. They also have the same SCFT3 with 21 ones and 

399 zeroes. The WZ3, ARFT3 and PARFT3 patterns are different, however (see Table 9). The 

projection types for the Wu and Zhang assessment have been ordered as (2,2,2), (2,2,4), (2,2,8), 
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(2,4,4), (2,4,8), (4,4,4), (4,4,8) from most to least serious (a ranking that only considers the overall 

number of df in a projection would deviate from this order). Note the increased complexity from 

having more 4-level factors and an additional 8-level factor in the array. According to the pattern of 

length 3 words of different types, array 3 is best, followed by tied arrays 1 and 4. Array 2 is worst. 

ARFT3 and PARFT3 arrive at the same ranking as WZ3 for this example, while PFT3 and SCFT3 

consider all arrays as equally good, as was mentioned before. 

Table 10: PFT3 for the 14 non-isomorphic OA(24, 2114161, 2) 

ID Rank 

Rank with 

PFT4 

 0 1/9 1/3 4/9 5/9 2/3 1 

projection 

types 

(2,2,2) 

(2,2,6)

(2,2,2) 

(2,2,4)

(2,2,6) (2,2,2) (2,2,6) (2,2,6) (2,4,6)

(2,2,4) 

PARFT 

weights 

1 

0.7333

1 

0.7778

0.7333

 

1 

 

0.7333 

 

0.7333 

 

0.5111

0.7778

1 13 13  140 90 28 0 0 16 12 

2 1 1  152 73 28 4 2 16 11 

3 1 3  152 73 28 4 2 16 11 

4 13 13  140 90 28 0 0 16 12 

5 1 3  152 73 28 4 2 16 11 

6 1 1  152 73 28 4 2 16 11 

7 12 12  136 90 36 0 0 12 12 

8 5 6  156 73 20 4 2 20 11 

9 5 7  156 73 20 4 2 20 11 

10 5 10  156 73 20 4 2 20 11 

11 5 7  156 73 20 4 2 20 11 

12 5 7  156 73 20 4 2 20 11 

13 5 11  156 73 20 4 2 20 11 

14 5 5  156 73 20 4 2 20 11 

 
Example 4. This example investigates the 14 non-isomorphic OA(24, 2114161, 2) from Eendebak and 

Schoen (2013). All 14 arrays have the same GWLP and WZ3 patterns: (A3,…,A13)=(42, 103, 245.33, 
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333.33, 484, 436.33, 218.67, 141.33,  34, 9, 0), (A300, A310, A301, A311) = (4,7,20,11), where A3ij refers to 

words of length 3 from projections with i 4-level and j 6-level factors. PFT3 (see Table 10) shows a 

much more spread-out pattern for these arrays than for the ones considered in the previous examples, 

and ARFT3 and PARFT3 (not shown) are even more spread out, because particular values of PFT3 

imply different average R2 for different factors in a projection (ARFT3) or have different weights 

according to different projection types (PARFT3). However, neither ARFT nor PARFT nor SCFT 

refine the ranking or distinguish more arrays for this example. Some additional refinement can be 

achieved by including PFT4 (see Table 10); there remain some tied arrays, however.  

Table 11: Number of classes distinguished for OA(32,4a,2), a=3,4,6,7,8,9 
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3 44 12 12 40 40 12 40 12 12 40 40 40 

4 32983 51 211 11324 11339 287 11748 287 287 11733 11748 11748 

5 108339            

6 31779 171 2705 26038 26482 12242 28017 4037 12242 26546 26875 28017 

7 6564 114 869 5332 5400 3056 5747 1218 3056 5375 5429 5747 

8 283 7 76 211 212 192 241 76 270 211 212 241 

9 20 1 12 15 15 15 15 12 15 15 15 15 

 
Example 5: The final example illustrates the use of SCFT for ruling out design equivalence, even in 

large sets of fixed level arrays. PFTs have been previously used for this purpose. Table 11 shows the 

numbers of classes distinguished by various metric combinations for the tractable series of non-

isomorphic OA(32,4a,2). For these symmetric arrays, ARFT and PARFT are equivalent to PFT. 

Clearly, SCFT3 is the key contributor to discriminating the arrays of Table 11. 

6. Discussion 

This paper introduced three new metrics for assessing the quality of BAs. It has been argued that the 

projection frequency tables introduced previously (Xu, Cheng and Wu 2004) should be refined for 
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ranking mixed level arrays, in order to better reflect statistical implications from confounding in terms 

of bias and imprecision of estimates. The primary metric for comparing R-factor projections of 

resolution R arrays should be ARFTR, the average R2 table over all factors in R-factor projections. 

This table has an entry for each factor in each of its R-factor projections and thus avoids the need to 

obtain an overall assessment of a mixed-level projection. The SCC frequency table, SCFTR, considers 

the distribution of R2 values from regressing individual main effect df on full models in R−1 other 

factors, given the factor is coded in the worst possible orthogonal way in terms of concentrating all 

the confounding on a few df. For regular arrays, SCFTR has the values “0” and “1” only, implying 

complete or no confounding for all main effects df in worst case coding. For R=2, strict non-regularity 

(no “1” SCCs) is crucial for estimability of main effect coefficients in at least all pairs of factors. The 

third metric that was introduced here, PARFTR, averages the R ARFTR contributions for each 

projection before tabulation; as PARFTR may seem a natural alternative or even preferable to some 

readers, this metric has been included here, although the author prefers ARFTR because of its greater 

conceptual clarity. It has been recommended to rank arrays by ARFTR and resolve ties by SCFTR, 

possibly preceding the entire process by a ranking in terms of AR or even GMA. 

Wu and Zhang (1993) previously proposed separate consideration of numbers of words from different 

types of projections and introduced the criterion “type 0 MA”. They treated arrays with two- and four-

level factors, for at most two four-level factors, and they provided a few optimal arrays under their 

criterion. Example 3 (Table 9) showed that a generalized version of WZ’s approach gets intricate with 

more different levels and more factors per level. Thus, it is not surprising that the WZ type 0 MA 

approach has not entered statistical practice in any breadth. Average R2 frequency tables (ARFTs) 

share the advantages of the Wu and Zhang method without carrying its burden of complexity, and ties 

from ranking by ARFTR can potentially be resolved by SCFTR.  

SCFTR also yields an additional possibility for assessing array equivalence: equivalent arrays must 

have the same SCFTR; Table 11 shows that SCFTR is able to discriminate large sets of non-isomorphic 

arrays into very many equivalence classes, which substantially reduces the burden of isomorphism 

checking. However, there are also cases for which all SCFTs are the same, while other criteria 

discriminate between arrays; this particularly happens in sets for which many or all arrays are regular.  



  

28 
 

Section 3.3 briefly touched upon the work of Tsai and Gilmour (2010), who discussed a QB criterion 

that they considered a bridge between alphabetic optimality and aberration criteria; they showed that 

aberration criteria can be obtained as the limits of QB for certain sequences of prior probabilities 

assigned to effects being active in an assumed maximal model. It might be of interest to investigate, 

whether this idea can be brought to bear for the aberration-related frequency tables of this paper. 
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