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Abstract 

Regression analysis is one of the most-used statistical methods. Often part of the research question is 
the identification of the most important regressors or an importance ranking of the regressors. Most 
regression models are not specifically suited for answering the variable importance question, so that 
many different proposals have been made. This article reviews in detail the various variable 
importance metrics for the linear model, particularly emphasizing variance decomposition metrics. All 
linear model metrics are illustrated by an example analysis. For non-linear parametric models, several 
principles from linear models have been adapted, and machine-learning methods have their own set of 
variable importance methods. These are also briefly covered. Although there are many variable 
importance metrics, there is still no convincing theoretical basis for them, and they all have a heuristic 
touch. Nevertheless, some metrics are considered useful for a crude assessment in the absence of a 
good subject matter theory. 

INTRODUCTION 
Regression analysis in its general form – investigating the influence of a set of regressors (X-variables) 
on a response variable of interest (the Y-variable) – is one of the most important topics in applied 
statistics. There are many types of regression models, differing in the types of response variable that 
can be investigated and in the strength of parametric assumptions made. Regardless of the type of 
model, applied researchers often request an assessment of the relative importance of the different 
regressors for the response variable. Most types of regression models are not designed for directly 
answering this question. Intuitively, many researchers first think of the sizes of (standardized) 
coefficients or test statistics for determining variable importance; however, such simple metrics have 
substantial limitations for assessing variable importance. Consequently, the assessment of variable 
importance requires additional considerations and has been the subject of controversial discussions. 
Also, since it has been addressed from researchers in many different fields, some metrics have been 
reinvented various times (e.g. Fabbris1, Genizi2 and Johnson3 all proposed the same metric), which 
does shed lide on them from different angles. 

The paper is written in terms of the univariate regression situation, i.e. a single response variable (left-
hand side variable) Y is modeled depending on a set of explanatory variables, which are also called 
independent variables, predictor variables, or – throughout the paper – regressors. Throughout the 
parametric part of the paper, it is assumed that each model effect has one df only, and that all effects 
are on the same level of hierarchy (i.e., the model does not include interactions which would have to 
be excluded whenever any of their parent effects are excluded); for some variable importance metrics 
– particularly game-theory-based variance decomposition metrics – it is easily possible to remove this 
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assumption, i.e., to incorporate explanatory variables with more than one degree of freedom or 
interaction effects, which introduce a hierarchy among the effects. The implementation is reasonably 
straightforward; these situations are not covered, however, in order to avoid additional notational 
complexity. 

The next section covers simple methods for linear regression models, namely raw regression 
coefficients, t-tests, raw correlations, standardized regression coefficients, semipartial correlations, a 
simple method proposed originally by Hoffman4 and advocated by Pratt5, and sequential 
decomposition of R2. The key controversies regarding variable importance assessment are already 
present for the simple metrics, and are also discussed in the next section. The section “General 
concepts and fields of application” gives an overview of types of model, types of question, and fields 
of application for variable importance assessment. A discussion of common requirements for variable 
importance metrics for the – best-researched – linear model sheds light on common ground and 
conflicts regarding the nature of variable importance. Subsequently, the most detailed 
section “Methods based on variance decomposition” discusses the most widely used advanced metrics 
for variable importance in linear regression, and the subsequent section exemplifies all variable 
importance methods for the linear model. The shorter sections “Variable importance for parametric 
non-linear models” and “Variable importance in machine learning methods” give an overview of 
further methods, mainly focusing on the hierarchical partitioning approach by Chevan and Sutherland6 
and information-based variable importance for the parametrics case and on random forest variable 
importance for machine learning. All sections provide hints on where the methods are implemented in 
the open source R statistical software7. The final section discusses the state of the field and future 
directions.  

SIMPLE METRICS FOR MEASURING RELATIVE IMPORTANCE IN LINEAR 
REGRESSION MODELS 
In this section, we assume a linear regression model of the form 

Yi = β0 + Xi1β1 +…+ Xipβp + εi (1) 

with independent error terms εi of expectation 0 and constant positive variance σ2. The marginal 
correlation between Yi and Xij is denoted as ρj, the semipartial (or part) correlation as ρj.other, and the 
variances of the Xij as σj

2; the estimates for β, ρ and σ parameters are denoted by the letters b, r and s, 
respectively. The following simple metrics are frequently discussed for ranking the variables Xj in 
terms of importance for Y:  

(i) the absolute values or squares of the raw coefficients bj; 
(ii) the absolute values or squares of t-values tj or the p-values pj from t-tests of the null 

hypotheses βj=0, j=1,…,p; 
(iii) the absolute values or squares of the raw correlations rj; the squared version is identical to R2 

values from univariate models; 
(iv) the absolute values or squares of the semipartial correlations rj.other (also called part 

correlations); the squared version is identical to the reduction in R2 when removing the 
regressor Xj from the full model with all p regressors, or – in other words – the squared 
correlation of Y with the residuals from regressing Xj on all other variables (what does Xj 
contribute to Y over and above the other regressors); 

(v) the absolute values or squares of the standardized coefficients bj,st = bj sj / sy; 
(vi) the products bj,st rj, as proposed by Hoffman4 and advocated by Pratt5, 
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(vii) the sequential increase in R2 (equivalent to the sequential increase in the model sum of 
squares, known as Type I SS), when entering each regressor to the model in a pre-specified 
order. 

All these metrics can be obtained from standard regression and/or correlation output. If squares are 
chosen in metrics (iii) to (v), the metrics (iii) to (vii) sum to the multiple R2 from the regression model 
in case of p uncorrelated regressors. For correlated regressors, this remains true only for metric (vi) – 
which is one of the main reasons why Hoffman proposed it – and for metric (vii). Many users of 
relative importance methods in linear models find it desirable to be able to decompose R2; however, 
they typically expect decomposition into non-negative portions, whereas metric (vi) can and does yield 
negative contributions in relevant cases. Therefore, metric (vi) has been rejected by many authors – 
including Ward8, Darlington9, Bring10 and the present author. Pratt5 attempted a justification of 
metric (vi) based on a set of axioms that are satisfied by this metric alone; Thomas, Hughes and 
Zumbo11 also advocated the method. Today’s advocates of metric (vi) agree that the cases with one or 
more negative products should be treated as abnormal, and relative importance conclusions should not 
be drawn without deep-diving the root cause of the negative shares. Metric (vii) is the other metric that 
is able to decompose R2 in case of correlated regressors; however, this metric is likewise unacceptable 
because of its dependence on the order of regressors, except for very rare cases for which the 
regressors may come with a natural order. Note that the built-in R function anova delivers this order-
dependent sequential decomposition of the model variance. For correlated regressors, it is thus usually 
preferable to use the function Anova from R package car (Fox and Weisberg12), which allocates to 
each regressor a variance share in the spirit of metric (iv); this share is not order-dependent, but 
consequently does not decompose the overall model sum of squares, except for the case of 
uncorrelated regressors. 

Metrics (i) to (v) have also been controversially discussed. Of course, as the raw coefficients bj and the 
t-values tj are most easily available, the reason for suggesting different metrics must be dissatisfaction 
with their properties. The raw coefficient bi reflects the influence on the response of a unit change in 
the ith regressor, given fixed values of the other regressors. The most important disadvantage of the 
raw coefficients is that they are not scale invariant: for example, the coefficient of a regressor “height” 
can be dramatically increased by changing the unit from cm to m. On the other hand, Achen13 – who 
devoted Chapter 6 of his book on “interpreting and using regression” to “the importance of a variable” 
– considered the raw beta coefficients as the appropriate metric for assessing theoretical importance if 
there is a natural scale. Darlington9 presented a similar line of reasoning for the standardized 
coefficient. Bring10, on the other hand, used geometric reasoning to criticize the use of standardized 
coefficients for situations with correlated variables. The present author sides with Bring10, as it seems 
that the division by the regressor variance in the standardized coefficient introduces an artificial 
element that is neither appropriate when asking the question of “theoretical importance” as considered 
in Achen13 and nor adequately reflects the influence on response variability. Metric (ii) (ranking 
according to t-values or p-values) is equivalent to metric (iv). These were discussed by both 
Darlington9 (as metric (iv), called “usefulness”) and Bring10 (as the t-test). Both these authors 
acknowledged the merits of these metrics in particular for prediction. Darlington9 also discussed 
metric (iii), the raw correlation (called “validity”), and acknowledged its benefit particularly in its 
ignorance about which other variables are in the model. t-values, p-values and semipartial correlations 
consider each variable conditional on all other variables in the model, while raw correlations, on the 
contrary, consider each variable on its own (marginal perspective). Budescu14 and Johnson and 
Lebreton15 emphasized that reasonable metrics for assessing variable importance have to incorporate 
both perspectives: conditional and marginal. These two antipoles occur again for more complex 
metrics, e.g. in the comparison between the computer-intensive variance decomposition metrics 
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PMVD and LMG (see Section “Methods based on variance decomposition”) or conditional and 
CART-based random forests (see Section “Variable importance in machine learning methods”).  

GENERAL CONCEPTS AND FIELDS OF APPLICATION 

Diversity of concepts for variable importance 
Besides the above-mentioned theoretical importance – also called causal importance by other authors, 
Achen13 proposed two further types of importance in the context of linear models:  

• level importance – in a given situation for the current mean of all regressors, what is the 
average influence on the level of the response – answered by bj ⋅ mean(Xj)  

• and dispersion importance – for which he proposed the standardized coefficient bj,st as the 
appropriate answer and simultaneously criticized the omnipresence of this answer in spite of 
the fact that he considers dispersion importance (in this sense) as not usually of interest.  

A recent example for an application of level importance can be found in Holgersson, Norman and 
Tavassoli16, who seem to have rediscovered the method; strangely, they justified their preference of 
this method over the more common variance decomposition methods by its simplicity –in the author’s 
point of view, the decision between level importance and variance decomposition should be taken 
based on the nature of the research question. 

Achen’s13 understanding of dispersion importance is different from that of many other authors who 
consider variance decomposition methods as the appropriate tool for assessing dispersion importance. 
Several metrics for variance decomposition in the linear model will be investigated more closely in the 
next section – among them the game-theory-based metrics LMG and PMVD, which are based on 
averaging metric (vii) over all orderings of regressors.  

Outside the linear model, there are also proposals for the assessment of variable importance. This 
article covers the following approaches: Extending Theil and Chung17, Chevan and Sutherland6 
proposed to assess variable importance in the generalized linear model by hierarchical partitioning, 
which generalizes the principle of averaging over orderings of regressors. Machine-learning methods 
have special ways of assessing variable importance; this article specifically discusses random forest 
variable importance.  

Outside the scope of this article, there are several related approaches: Silber, Rosenbaum and Ross18 
presented an approach for comparing the relative importance of two sets of variables in general 
regression models; their approach was implemented by Firth19 in the R package relimp. For log-linear 
Poisson models, Ortmann20 took an approach similar to Achen’s13 level importance and suggested a 
computer-intensive game-theoretic approach for calculating it; Land and Gefeller21 already proposed a 
similar approach for risk partitioning in epidemiology. Other authors partitioned risk differently, e.g. 
Eide and Gefeller22. A further approach to variable importance comes from a causal inference 
perspective (van der Laan23, Ritter et al.24). Gevrey, Dimopoulos and Lek25 discussed methods for 
variable importance assessment in neural networks; their work is instrumental for the neural network 
implementation of the variable importance function varImp of R package caret by Kuhn26. All these 
latter approaches are not covered in this article. Furthermore, many authors use variable importance 
measures for variable selection. Contrary to this perspective, this article considers the variable 
importance for a given set of variables and a given model only. 

All variable importance approaches discussed in this article relate to a (relatively) simple overall 
regression model that refrains from detailing causal structures; if one is willing/able to work with more 
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detailed models like structural equation models, these rather coarse variable importance approaches 
are no longer suitable. This is already emphasized by Pedhazur27 (Section 7 of the monograph). 

Requirements for relative importance metrics 
Several authors have formulated requirements for relative importance metrics, some of which are 
widely agreed in the scientific community, while others are controversial. A somewhat arbitrary 
collection of common criteria is described and discussed below, and Table 1 details which of the 
metrics for assessing variable importance in the linear model satisfies which of the requirements; the 
table includes the simple metrics from the previous section as well as the variance decomposition 
metrics from the following section.  

(a) Anonymity: the relative importance is not affected by the labels / positions of the regressors.  
Game theorists explicitly voice this need (e.g. Ortmann28). Although the criterion is seldom 
mentioned in statistical literature, it is usually taken for granted. Note, however, that the 
simple metric (vii) (sequential variance decomposition) violates this criterion in case of 
correlated regressors. 

(b) Relative importance does not depend on anything but the first two moments of the joint 
distribution of the variables.   
This requirement is voiced e.g. by Pratt5 (axiom A1). Like the previous one, it is implicitly 
respected by all methods for the linear model, because linear models and all relevant quantities 
can be estimated from the mean vector and the variance-covariance matrix (plus the 
information on the number of observations for the degrees of freedom of sampling 
distributions). The only exception is the simple metric (vii), because it additionally depends on 
the order of regressors. 

(c) Relative importance is not changed by linear transformations on individual variables (e.g. 
Pratt5, axiom A2). This scale invariance requirement is respected by most metrics – only the 
raw beta coefficient does not respect this requirement. 

(d) The addition of a pure noise variable, independent of y and x1... xp, to a subset of variables 
does not affect the importance of the subset relative to the other variables. 
This requirement – also brought forward by Pratt5 (axiom A5) – is again implicitly respected 
by all methods. 

(e) Relative importance should balance out conditional and marginal considerations. This 
requirement was brought forward by Budescu14 and later also by Johnson and Lebreton15, who 
implied that the contribution of Xj when alone in the model (called direct effect), the 
contribution of Xj in addition to all other regressors (called total effect) and the contributions 
of Xj considering different subsets of further regressors should all be reflected in an 
appropriate relative importance metric.  

(f) Proper decomposition: the model variance is decomposed, that is, the sum of all shares is the 
model variance (or R2, depending on normalization).  
This is the defining requirement for variance decomposition metrics that will be discussed in 
the next section. 

(g) Orthogonal compatibility: The decomposition respects orthogonal subgroups, i.e. for each 
orthogonal subgroup of regressors, the assigned shares sum to the unique overall model 
variance (or R2) for that subgroup. 
This requirement for variance decomposition metrics was explicitly stated by Genizi2. All the 
variance decomposition metrics satisfy it. 

(h) Non-negativity: all allocated shares are always non-negative.  
This requirement for variance decomposition metrics is backed by many authors, as is 
apparent from the discussions regarding the Pratt decomposition, which has been almost 



6 
 

ridiculed because of its failure to always yield non-negative shares. All other variance 
decomposition metrics discussed in this article satisfy this requirement. 

(i) Exclusion: the share allocated to a regressor Xj with βj = 0 should be 0.  
This requirement was introduced by Feldman29, who proposed the PMVD decomposition 
which is the only known method to satisfy both requirements (h) and (i). The Pratt 
decomposition and the simple metrics that involve estimated coefficients also satisfy this 
requirement.  
This requirement is particularly convincing for advocates of a conditional approach to variable 
importance: a variable should be allocated an importance of zero, if it has zero impact, given 
all other variables. This aspect is discussed in detail later. 

(j) Inclusion: a regressor Xj with βj ≠ 0 should receive a nonzero share.  
This requirement is satisfied by all variance decomposition metrics, except for the Pratt metric 
for which it could be violated in constellations for which the marginal correlation is zero in 
spite of a non-zero coefficient. The simple squared correlation can also violate this 
requirement under special circumstances. 

(k) If m+n equicorrelated variables with equal impact on the response y are combined into two 
sum variables x1 (sum of m variables) and x2 (sum of n variables), the relative importance of 
these two should be like m to n.  
This requirement – introduced by Pratt5 (axiom A3) – is exclusively satisfied by the Pratt 
decomposition. No other metrics attempt to satisfy it.  

(l) The nonsingular linear transformation of a subset (x1... xq) into the subset (x’1, x’q) does not 
affect its importance relative to the other variables.  
Again, the requirement – introduced by Pratt5 (axiom A6) – is exclusively satisfied by the 
Pratt decomposition. No other metrics attempt to satisfy it.  

The last two requirements are satisfied by the Pratt decomposition only. In the author’s view, 
requirement (k) becomes plausible only, if the correlation between regressors is zero. In that case, all 
decompositions fulfill it. Otherwise, the covariances of X1 and X2 with Y still have the relation m/n; 
however, the covariance between X1 and X2 is non-negligible and does – of course – have an impact on 
the allocation of shares. Requirement (l) sounds reasonable at first glance; however, a non-singular 
linear transformation for a group of variables that is not an orthogonal subgroup does not only affect 
the group of variables itself but also its covariance structure with the other variables and thus should 
not reasonably be expected to deliver an unchanged overall share of that group of variables.  

 

TABLE 1 ABOUT HERE 

 

Fields of application 
In 1989, Kruskal and Majors35 reported a literature survey in which they sampled articles from many 
different fields, e.g. chemistry, economy, banking, social science and medicine, genetics, psychology, 
legal studies, political science, history. This list covers many but not all of the fields where there is 
still active use and development of methods for variable importance. Ecology sees a particularly 
widespread use of methods for variable importance, e.g. MacNally36,37, MacNally and Walsh38, or 
Gevrey, Dimopoulos and Lek25. Management and organizational research is another field with 
substantial attention to variable importance, e.g. Soofi, Retzer and Yasai-Ardekani39, Johnson and 
Lebreton15, Lebreton, Ployhart and Ladd40 or Nimon and Oswald41. Recently, relative importance of 
variables has also received substantial attention in sensory analysis (Bi and Chung42, Bi43). Closely 
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related, market research has long been an area where variable importance analysis is extensively 
studied – often under the heading “(key) driver analysis”. For example, Lipovetsky and Conklin44 
proposed the so-called “Shapley value regression” which decomposes R2 into LMG shares (see next 
section) and modifies coefficient estimates accordingly (the adjustment of coefficients was 
fundamentally criticized by Grömping and Landau45). Note that market research uses two different 
applications of the game-theoretic Shapley value, one of which is about partitioning risk / market share 
rather than the classical variable importance in regression. Epidemiologists also use methods for 
partitioning risk among several potential risk factors (called exposures in their context), rather than the 
classical variable importance methods (see also the section “Diversity of concepts for variable 
importance”). 

METHODS BASED ON VARIANCE DECOMPOSITION 
This section discusses six methods that decompose the model variance or – equivalently – the 
coefficient of determination R2 in linear regression analysis: The first part of this section presents the 
computer-intensive methods LMG (Lindeman, Merenda and Gold32, Kruskal33), dominance analysis 
(Budescu14) as an extension thereof, and PMVD (Feldman29) as a modification for satisfying the 
exclusion requirement. Subsequently, the less computationally demanding decompositions by 
Gibson30, Green, Carroll and DeSabro46, Fabbris1, Genizi2, Johnson3 and Zuber and Strimmer31 are 
discussed. As these six proposals contain several reinventions of the same approach, they add only 
three further decompositions to the portfolio. The Hoffman/Pratt method, which was already presented 
as simple metric (vi), is excluded from the discussion of variance decomposition methods, because it 
can and does yield negative shares in practically relevant situations. Likewise, the sequential variance 
decomposition (simple metric (vii)) is excluded because of its order dependence. 

The model variance of model (1) can be written as  

 T

1 1
β β σ

= =
= ∑ ∑β Σ β

p p
XX j k jk

j k
, (2) 

where  

• βT = (β1…βp) does not include the intercept parameter,  
• ΣXX is the true unknown p x p covariance matrix of the regressors with elements σjk and can be 

written as ( ) ( )σ σΡj jj XX j jjdiag diag   

• with ΡXX (capital Rho) the theoretical correlation matrix.  

Summed with the error variance σ2, (2) yields the total variance var(Y); R2 is the proportion of (2) in 
the total variance. In the following, for simplicity, the data for model (1) are assumed to be centered, 
i.e. the response vector Y and the nxp predictor matrix X have column means 0, so that the empirical 
covariance matrices can be written as SXX = XTX/(n−1) and SXY = XTY/(n−1), respectively. As this 
centering does not affect R2 or the model variance, this simplification does not reduce generality of the 

considerations. The estimated model variance Tˆ ˆXXβ S β  is consistent for  

 1 2 1σ− −=Σ Σ Σ Ρ Ρ ΡYX XX XY YX XX XY , (3) 

with ΡYX and ΡXY the unknown correlation vectors (row or columns, respectively) of the response Y 
with the regressors. In presenting the simple metrics, the elements of the empirical analogs b, SXX, RXX, 
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RYX and sy
2 of these theoretical quantities have been used; as the empirical analogs are consistent 

estimators for the theoretical quantities, use of these two sets of symbols is exchangeable.  

Variance decomposition in linear models with correlated regressors is still a topic for research and 
discussion, because (2) has a natural unique decomposition into summands for uncorrelated regressors 
only (i.e. if σjk=0 for j≠k). Whenever predictors are correlated, the customary sequential variance 
decomposition (Type I SS, simple metric (vii)) depends on the order of the variables, whereas the 
customary unique “each variable last” variance allocation (Type II or Type III SS, equivalent to simple 
metric (iv)) yields allocations that do not sum to the overall model variance.  

LMG, dominance analysis and PMVD:  
computer-intensive methods related to game theory 
There is a common agreement that proper decomposition into non-negative shares is required, and that 
order dependence is usually unacceptable. LMG and PMVD were introduced as an unweighted (LMG: 
Lindeman, Merenda and Gold32; Kruskal33,34) or weighted (PMVD: Feldman29) average of sequential 
explained variances over all possible orderings of regressors. Dominance analysis (Budescu14; Azen 
and Budescu47, Budescu and Azen48) is a more detailed variant of LMG and is presented in the second 
part of this section.  

LMG and PMVD 
In the following formulae, evar and svar denote the explained variance and sequentially added 
variance, respectively:  

 evar(S) = var(Y) − var(Y|Xj, j ∈ S) (4) 

and svar(M |S) = evar(M∪S) − evar(S), (5) 

where S and M denote disjoint sets of predictors. 

LMG and PMVD can be directly written in terms of these expressions. For notational simplicity, their 
formulae are given below for the first predictor – as predictor labels are exchangeable, this is no loss 
of generality. With S1(π) the set of predecessors of predictor 1 in permutation π, three representations 
of LMG are useful: 

1
π

{2,..., }

1

0 2

1LMG(1) svar({1} | (π))
!

1 ( )!( ( ) 1)!svar({1} | )
!

11 svar({1} | )

⊆

−

= ⊆
=

=

= − −

 −  =     

∑

∑

∑ ∑

permutation

S p

p

i S { ,...,p},
n(S) i

S
p

n S p n S S
p

p
S

ip

 (6) 

The top formula represents LMG as an unweighted average over all orderings of the 
sequential contribution of predictor 1, the middle formula is computationally more efficient, since it 
combines orderings with the same set of predecessors S into one summand, and the bottom formula by 
Christensen49 shows that LMG is the unweighted average over average contributions to models of 
different sizes.  

PMVD is also an average over orderings of the sequential contributions of predictor 1, however a 
weighted one: 
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1
π permutation

PMVD(1) (π)svar({1} | (π))= ∑ p S .  (7) 

The weights are p(π) = L(π)/ π (π)∑ L , with 

( ) ( ) ( )( )
1 11 1

1 1 1
1 1

(π) svar { ,..., } |{ ,..., } evar {1,..., } evar { ,..., }π π π π π π
− −− −

+
= =

= = −∏ ∏
p p

i p i i
i i

L p . (8) 

These weights strongly favor orderings π for which the early factors have a large contribution. They 
have been constructed such that the exclusion requirement holds, i.e., a regressor with zero coefficient 
gets the weight zero (Feldman29). Note that computation of PMVD should be based on a different 
representation, which makes use of the underlying game-theoretic proportional value and its potential; 
however, even exploiting this efficiency improvement, the computational burden for PMVD is higher 
than that for LMG because the number of summands cannot be reduced by considering subsets rather 
than orderings.  

Both LMG and PMVD are related to game theory: Stufken50 explained the connection of LMG to the 
game-theoretic Shapley value (Shapley51), whereas Feldman52 worked out the connection of PMVD to 
the proportional value (Ortmann28). In both cases, the regressors are considered as the players in a 
cooperative game, the explained variance achievable by a set of regressors (a coalition) is the worth 
attached to that coalition, and the overall explained variance achievable by all regressors together as 
the worth of the grand coalition or the total gain that is to be distributed fairly among all 
players=regressors. The Shapley value and the proportional value operate on two different sets of 
axioms. These also lead to two different sets of properties for LMG and PMVD; however, so far 
nobody has worked out the consequences of these from a statistical point of view. Both metrics 
decompose R2 or – equivalently – the explained variance into non-negative shares. PMVD has been 
designed to fulfill the exclusion criterion, while LMG does not fulfill that criterion. From a conditional 
perspective, exclusion is a natural requirement: a coefficient 0 in the model with all regressors 
indicates an importance of zero, given all other regressors in the model. However, Grömping53 argued 
that exclusion is not necessarily a useful requirement in case of correlated regressors, since under 
some causal structures the coefficient 0 for the regressor does by no means indicate an unimportant 
variable. Therefore, under ignorance about causal structures, exclusion is not a reasonable requirement 
at least if the importance question has been asked from a theoretical / causal point of view. Even 
though both LMG and PMVD incorporate all variable orderings, LMG is closer to the marginal 
perspective, while PMVD is closer to the conditional one, so that the conflict between these two 
perspectives remains relevant.  

LMG and PMVD are implemented in the R-package relaimpo (Grömping54); the offer of PMVD is 
restricted to non-US users, however, since PMVD is patented in the US. 

Dominance analysis  
Dominance analysis allocates the LMG overall share to each regressor. However, it does not stop 
there: in addition, the difference to the univariate R2 of each regressor is called the “joint contribution” 
of the variable. Besides allocating these two overall metrics for each regressor, dominance analysis 
compares each pair of variables, distinguishing between complete dominance and general dominance: 
variable A generally dominates variable B, if its LMG allocated variance (see formula (6) below) is 
larger than that of variable B. Even if variable A generally dominates variable B, for a certain set S of 
other variables in the model, the additional contribution of variable B may be larger than that of 
variable A. If variable A completely dominates variable B, A has a larger contribution than B 
regardless which other variables are present in the model. While the concept of complete dominance is 
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interesting, it makes the pattern of situations to be looked at quite complex and confusing; as 
dominance analysis remains a coarse method that does not model e.g. a causal structure, it might be 
better to invest effort into refining the model rather than into putting more detail into an inherently 
crude analysis of relative importance. The author therefore does not advocate the most detailed form 
of dominance analysis. However, the joint contributions (see also Chevan and Sutherland6 for 
generalized linear models) are a useful supplement to the LMG variance decomposition. Note that – 
contrary to the allocated variance shares – some of the joint contributions may become negative. 
Commonality analysis (see e.g. Ray-Mukherjee et al.55 for a recent account of this old method) is 
somewhat similar to dominance analysis, but does not even attempt to obtain p shares for p regressors; 
rather, it decomposes R2 into 2p–1 shares; for the same reason for which the more detailed aspects of 
dominance analysis are considered of limited use, commonality analysis is not further detailed here. 
The R-package yhat (Nimon and Oswald41) provides dominance analysis as well as commonality 
analysis; dominance analysis can also be obtained as a special case of R-package hier.part (Walsh 
and MacNally56; safe to use for up to 9 regressors only). Azen57 provided SAS macros for dominance 
analysis. In his PhD thesis, Fickel58 (in German) developed another deep-dive of the contributions to 
the overall variable importance of a regressor. Unfortunately, his notation was overly complicated, 
which presumably prevented his work from being published. An unpublished English language 
version of his interesting contribution is available from a preprint server59.  

Gibson decomposition / CAR scores, Green et al. decomposition and Fabbris / Genizi / Johnson 
decomposition  
In this section, additionally to the already established column centering, columns of the X matrix and 
the Y vector are standardized, i.e. have empirical variance 1. Again, this reduction does not affect R2 
or any relative assessments of model sums of squares, so that the simplification does not reduce 
generality of the considerations. For these normalized data, the empirical correlation matrices are RXX 
= XTX/(n–1) and RXY = XTY/(n–1). Like discussed in connection with formulae (2) and (3), empirical 
quantities and their theoretical counterparts can be used interchangeably, having in mind that the 
empirical expressions are consistent estimators for the theoretical quantities. 

Gibson30, Green, Carroll and DeSarbo46, Fabbris1, Genizi2, Johnson3 and Zuber and Strimmer31 all 
introduced methods that are computationally less demanding than LMG and PMVD and decompose R2 
into non-negative summands. As the section title suggests, these six proposals reduce to three different 
ones: it will be shown here that the proposals by Gibson30 and Zuber and Strimmer31 coincide; the 
coincidence between the proposals by Fabbris1, Genizi2 and Johnson3 was e.g. pointed out by Nimon 
and Oswald41. All three methods are based on two different representations of the same optimum 
orthogonalization of the X matrix: an orthogonalized matrix Z may be either obtained from singular 
value decomposition as introduced by Johnson60 or from standardization by the inverse of the unique 
symmetric square root of the correlation matrix. Assuming full column rank of the normalized matrix 
X, the orthogonalization from singular value decomposition starts from X = UDVT with an nxp matrix 
U with orthonormal columns, an orthogonal pxp matrix V, and a diagonal pxp matrix D. Johnson60 
proved that Z=UVT gives the set of p orthonormal vectors which is closest to the columns of X. His 
orthogonalization was used by Green et al.46, Fabbris1 and Johnson3. Gibson30, Genizi2 and Zuber and 
Strimmer31 used the same orthogonalization in a different representation: they derived the optimum Z 
as XRXX

−1/2, where the power ½ denotes the unique symmetric square root of a matrix. The equality 
can be seen as follows: RXX =XTX = VDUTUDVT = VD2VT, so that RXX

−1/2 = VD−1VT. Thus, 
Z = X VD−1VT = UDVTVD−1VT = UVT.  

The early Gibson30 proposal – introduced with the hope to bring a resolution to the controversy 
between Hoffman4,61 and Ward8 – coincides with squared CAR scores by Zuber and Strimmer31: both 
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approaches simply use the squared coefficients cj
2, j=1,…,p from regressing the normalized response 

vector Y on orthogonalized Z columns (see above) as surrogates for the corresponding normalized X 
values. These coincide with the explained variances and the R2 values because of the standardization 
assumptions that have been made in this section. Instead of actually conducting these regressions, 
Zuber and Strimmer31 showed that the cj

2 can be obtained by squaring the components of  

 RXX
−½RXY. (9) 

In case of relevant correlations among the X variables, the Z variables can be far from being good 
representatives for the corresponding X variables – the principle has been visualized by Thomas et 
al.62 for two dimensions (their Figure 1). Green et al.46 therefore proposed to modify the cj

2 values 
from Gibson30 by relating the Z variables back to the X variables. They proposed to add two further 
steps:  

• Calculate the squared coefficients from regressing the Z columns on the X columns, and 
obtain the proportions of the j-th original variable in the sum of squared coefficients for each 
Z column.  

• Obtain the R2 contribution of the j-th original variable as a weighted sum of squared 
coefficients cj

2 from the Gibson approach with the proportions from the previous bullet as the 
weights. 

Their proposal was criticized e.g. by Fabbris1, who was among the first to note that it is not advisable 
to use the squared coefficients from regressing the Z columns on the X columns in case of correlated 
X columns. As the proposals by Fabbris1, Genizi2 and Johnson3 coincide (see Nimon and Oswald41), 
their simplest representation by Johnson3 is used for explaining the improvement on the Green et al. 
proposal: it simply regresses X on Z instead of Z on X. All other post processing steps for the cj

2 
remain the same. Alternatively to the weighted sum approach, the Fabbris / Genizi / Johnson 
decomposition can also be written as 

 ((RXX
½ ° (1p

T⊗(RXX
−½RXY)))1p)T, (10) 

where ° denotes the element wise product, ⊗ the Kronecker product, and 1p a column vector of p ones. 
The representation (10) was derived from the Zuber and Strimmer31 paper.  

Among the three different methods of this section, the present author considers the 
Fabbris / Genizi / Johnson method most convincing. Johnson3 justified his proposal as an 
approximation to LMG and noticed that it often yields results quite similar to LMG. Thomas et al.62 
proved that it even algebraically coincides with LMG for the two regressor case. In spite of this, and 
conceding that the two are often close, they criticized the Fabbris / Genizi / Johnson metric as 
theoretically flawed and thus recommended that it should no longer be used. While the present author 
considers the use of LMG / dominance analysis as preferable, if feasible, Thomas et al.’s62 
fundamental condemnation of the Fabbris / Genizi / Johnson metric appears to be rooted in their 
assumption that Johnson3 suffered under a naïve oversight when proposing his relative weights. The 
example in the next section will shed further light on the three approaches of this section in 
comparison to LMG / dominance analysis and PMVD. 

Most methods discussed in this section are implemented in R package relaimpo (Grömping54; metrics 
“genizi” and “car” added in 2010): The Gibson30 proposal – equivalent to squared CAR scores – is 
implemented under the name “car”, using underlying work by Zuber and Strimmer31 (package care), 
while the Fabbris / Genizi / Johnson approach is implemented under the name “genizi”. To the 
author’s knowledge, the Green et al.46 approach is not available in R software. The R package care by 
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Zuber and Strimmer31 provides regularization methods for situations with many variables. The R 
package relaimpo does not attempt to cover the many variables situation – nevertheless, all 
implemented metrics can in principle be applied to a regular covariance matrix that can e.g. be 
obtained by the regularization methods provided in R package corpor (Schäfer et al.63) in large 
variable situations (but LMG and PMVD will fail for resource reasons with many variables). Given 
that the Fabbris / Genizi / Johnson method has been advocated as an approximation to LMG, this 
might be the method of choice, if LMG is not feasible for resource reasons. Usage of that method is 
also recommended by Bi43 in his review of relative importance methods from the sensory perspective. 

EXAMPLE FOR THE VARIABLE IMPORTANCE METRICS IN THE LINEAR 
MODEL  
In this section, all metrics discussed so far are exemplified, applying them to a historic socio-
demographic data set of 182 provinces from Switzerland (Office of Population Research at Princeton 
University64) that was also used in Grömping65. The response variable, a Fertility index, is investigated 
dependent on five regressors: the percentage of males living on agricultural jobs, the percentage of 
draftees who obtained the best mark in an army exam, the percentage of draftees with more than the 
minimum level of education, the percentage of catholics in the province, and the percentage of live 
born infants who lived less than a year. A small portion of this dataset (47 provinces) ships with the R 
software. As the data set is used as an example only, it has neither been attempted to build a good 
model nor have small inconsistencies between the small built-in data set on 47 provinces and the 
larger data set been investigated.  
 
Table 2 and Figure 1 show results from a linear model analysis of these data; all variables have been 
included linearly only, contrary to Grömping65, where Agriculture and Catholic were allowed a 
quadratic term. This decision has been made in order to easily compare all metrics, including the 
simple ones for which grouped consideration of several regressors is not easily possible (e.g. squared 
standardized b’s). The R2 of the model with only linear effects is more than ten percent points lower 
than that of the model that adds squared terms for Agriculture and Catholic, and – not surprisingly – 
leads to much lower (overall) shares for those two regressors. The analysis exemplifies the severity of 
the order dependence of metric (vii) (Sequential SS); as this is completely unreasonable, the metric is 
excluded from the further discussions. All other metrics agree on “Education” being the most 
important predictor, and most metrics place “Examination” second, however with vastly varying 
numeric allocations. Most metrics also place “Infant.Mortality” last. Numerically, among the variance 
decomposition metrics, PMVD and Pratt are quite close and allocate a large share to Education and a 
much smaller share to Examination, LMG and Fabbris / Genizi / Johnson are quite close and allocate a 
larger share to Examination, mainly by reducing the Education share, Gibson / CAR scores are in 
between these two and might be considered a compromise of the two perspectives, and the Green 
method is somewhat off (and has, in the author’s opinion, been justly criticized by Johnson as being 
flawed). 
 

TABLE 2 ABOUT HERE 
FIGURE 1 ABOUT HERE 

VARIABLE IMPORTANCE FOR PARAMETRIC NON-LINEAR MODELS 
Theil and Chung17 argued that the idea of averaging over orderings need not be limited to the linear 
model and R2 or the variance, but can be extended to other scenarios. As an example, they proposed to 
apply the idea to information as a criterion, which they considered suitable for averaging because of its 
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additivity. Chevan and Sutherland6 followed suit in extending the averaging over orderings to general 
goodness of fit measures in arbitrary multiple regression models. They introduced the term 
“hierarchical partitioning” for their proposal. Put simply, they proposed to choose an arbitrary 
goodness-of-fit metric G for the full model vs. the null model – for example R2 or difference of 
deviances – and to allocate to the j-th regressor the unweighted average over orderings of the order-
dependent contributions of the variable to G, analogously to formula (6). These allocations are then 
considered the “independent contributions” Ij of the j-th variable. The sum of all independent 
contributions is the overall goodness of fit of the full model. Additionally, the goodness of fit of the 
model with only the j-th variable vs. the null model is defined as the variable’s overall contribution Rj, 
and the difference Jj = Rj – Ij is called the “joint contribution” of the j-th variable. In addition to the 
above, Chevan and Sutherland6 proposed to deep dive the joint contributions in order to understand the 
interplay between variables. Thus, hierarchical partitioning is similar to the afore-mentioned 
dominance analysis, but generally applicable to all models which offer any goodness of fit metric. 
LMG is a special case of hierarchical partitioning for linear models, with goodness of fit measure R2. 
For generalized linear models, the R package hier.part (Walsh and MacNally56) implements the 
hierarchical partitioning approach, however without full detail on the joint contributions; note that the 
package can be relied upon to work correctly for up to 9 regressors only (and does not work at all for 
more than 12 regressors).  

Retzer, Soofi, and Soyer66 proposed to define importance in terms of the “information provided by a 
predictor for reducing the uncertainty about predicting the outcomes of the response variable”. As 
information is a concept present in all statistical models, they suggested this approach as a unifying 
bracket for all types of regression situations and presented some example analyses in these terms. 
Apparently, however, this concept has not yet found its way into statistical practice. The author is not 
aware of any publicly available implementation in statistical software. 

VARIABLE IMPORTANCE IN MACHINE LEARNING METHODS 
In addition to the parametric regression methods, there are some variable importance methods for 
machine learning tools. In machine learning, the reason for the development of a “variable 
importance” feature was only indirectly the interest in variable importance itself; the more important 
reason was the motivation to take a look into the “black box” behind the methods – as the methods do 
not usually provide an explicit model equation, variable importance is a way to at least provide some 
idea about what drives the model. Here, we will briefly discuss variable importance for random 
regression forests (Breiman67; Strobl et al.68), as these can be understood as variance decomposition 
methods in a broader sense and have been investigated in connection with linear model variable 
importance by Grömping65 in some detail. To the author’s knowledge, forests and trees are the 
machine learning methods for which variable importance is best-researched. Nevertheless, some 
approaches have been considered for other methods, e.g. for neural networks (Gevrey et al.25, as 
implemented in the R package caret by Kuhn26). Package caret implements a large number of variable 
importance methods – not all of them reasonable, e.g. absolute values of t-statistics for linear models – 
but many of them useful.  

Random forests (and other machine learning tools) can be applied to all kinds of regression 
applications, among them categorical or survival response data. Different data types ask for different 
measures for entropy or variability; for example, the Gini impurity is often used for categorical 
responses. For quantitative responses, an MSE criterion is used to measure the forest’s inaccuracy. 
Random regression forests are based on regression trees, in which the splitting process is guided by 
minimization of within node variance (CART trees, Breiman et al.69) or by significance tests 
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(conditional inference trees, Hothorn et al.70, Hothorn, Hornik and Zeileis71). In a random regression 
forest, a large number of trees is built from a random selection of a small number mtry of variables and 
a random selection from the observations – the number mtry is a tuning parameter. The forest’s 
prediction is the average prediction from individual trees. Each individual tree predicts a step function, 
an average over many trees can approximate almost any functional form and can automatically 
account for interactions between regressors. Of course, there is no closed form expression for the 
prediction equation. The most widely used variable importance metric for regression forests is 
permutation-based MSE reduction (see e.g. Strobl et al.68), called “permutation importance” in the 
following. This criterion was also investigated by Grömping65 in comparison to the linear model 
variance decomposition methods LMG and PMVD. The relevant methods are implemented in the R 
packages randomForest (Liaw and Wiener72) and party (function cforest, Strobl et al.68), where 
the former implements the CART-based forests (RF-CART), the latter forests based on conditional 
inference trees (RF-CI). 

Permutation importance is constructed from the random forest MSE as follows: In each tree, the out-
of-bag observations, i.e. the observations not used for creating the tree, can be used for assessing the 
MSE from this particular tree. The overall performance of the forest can be obtained by an appropriate 
combination of the MSE estimates from individual trees. The contribution of a particular variable is 
determined by randomly permuting the observations for that variable and assessing the difference 
between the prediction performance with the actual and the permuted variable values.  

Grömping65 found similarities between the variable importances in random regression forests and the 
variance decomposition methods LMG and PMVD: The classical RF-CART (Breiman67) yields 
variable importances that are more similar to LMG allocations, while the RF-CI advocated by Strobl et 
al.68 yields variable importances that are more similar to PMVD allocations. As was mentioned before, 
Budescu14 and Johnson and Lebreton15 emphasized the need for reasonable variable importance 
methods to integrate the conditional and the marginal approach. Like PMVD (and also the Pratt 
decomposition), the variable importances from RF-CI are much closer to the conditional perspective, 
while RF-CART yields importances that are closer to the more marginal perspective of LMG. The 
simulation study in Grömping65 showed that estimation of the more conditional variable importances – 
be it PMVD, Pratt or the conditional random forest – yields much more variable results than 
estimation of the more marginal variable importances (LMG, CART-based random forests). Besides 
the intended purpose – for example, importance for prediction purposes may be of a more conditional 
nature, while importance for explanatory or causal purposes may require a higher impact of the 
marginal perspective – interpretation of variable importance results should also account for the 
variability of the result. Software for LMG and PMVD offers a variability assessment via the 
bootstrap; in forests, variable importances are usually not bootstrapped. 

THE FUTURE OF THE FIELD 
Variable importance is still actively researched. It is safe to predict that there will never be an agreed 
unique allocation of importances in case of correlated regressors. There may not even be a unique 
accepted definition of what variable importance is about. Nevertheless, interest in variable importance 
is large in many fields, as e.g. evidenced by the investigation conducted by Kruskal and Majors35 and 
by many papers from various fields since.  

Recently, Wang, Duverger and Bansal73 attempted to combine dominance analysis with a Bayesian 
perspective in order to provide it with a theoretical basis. Likewise, the Pratt decomposition is 
revisited again and again by some authors who are fascinated by Pratt’s axioms. This shows a need for 
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a fundamental answer to the variable importance question that the current rather heuristic best 
practices – like dominance analysis, LMG, PMVD, perhaps also the Fabbris / Genizi / Johnson method 
– have not been able to provide. In the author’s view, the Pratt axioms are not a solution, but the fact 
that they are periodically revisited clearly indicates the understandable wish for a satisfactory 
theoretical foundation. Stufken50 proposed that the game-theoretic background of LMG might provide 
a route to a better understanding of the properties of variable importance metrics. PMVD (Feldman52) 
also has a game-theoretic background as the proportional value. However, so far nobody has been able 
to substantially advance the understanding of variance decomposition methods based on game theory.  

Variable importance methods have repeatedly been criticized for being atheoretical or unimportant, 
e.g. by Ehrenberg74, who punned “The unimportance of relative importance”. Certainly, crude relative 
importance methods like the ones discussed in this review will not suffice to deeply understand a 
subject matter. Exactly this is the reason why the author is wary about the more detailed aspects of 
dominance analysis or Chevan and Sutherland’s6 proposal. As Chevan and Sutherland justly stated – 
“Poorly specified models will not be improved by hierarchical partitioning or by any other partitioning 
method. Inadequate theory is the result of poor theorizing […] Statistical techniques do not build 
theory – theoreticians do.” Nevertheless, the use of variable importance assessments, even from crude 
models, can provide ideas to the researcher, and, again citing Chevan and Sutherland6 “need not of 
necessity lead to poorly specified models”.  

Usage in crude models has also been the reason for which Grömping53 argued that the exclusion axiom 
brought forward by Feldman29 is inadequate – at least for explanatory purposes – in case of correlated 
regressors: if the model does not make assumptions about a causal structure among the variables, even 
a coefficient 0 in the model with all other regressors is compatible with a relevant causal contribution 
of the regressor. This is a specific aspect of the controversy between the marginal and the conditional 
perspective on relative importance that was met both for the simple metrics (e.g. raw correlation vs. t-
test), variance decomposition metrics (LMG vs. PMVD) and for forest based metrics (CART forests 
vs. conditional forests). As pointed out in Grömping65, a related conflict also occurs in variable 
importance for variable selection: identification of a small number of variables sufficient for good 
prediction of the response variable is best served by a conditional perspective, while identification of 
important variables for explanatory purposes / interpretation is served better by the marginal 
perspective. 

As long as no fundamental solution to the variable importance problem has been found, the author’s 
recommendation is to use the existing best practices: For variance (or generally goodness of fit) 
decomposition based importance assessment, LMG enhanced with joint contributions or dominance 
analysis / hierarchical partitioning without too much detail, in case of many variables the 
Fabbris / Genizi / Johnson decomposition as a surrogate for these can be considered best practices. For 
more conditionally-inclined researchers, PMVD – or in case of non-negative shares the Pratt metric – 
can provide an alternative in the linear model. The example suggested that the Gibson / CAR scores 
might provide a compromise between the marginal and the conditional perspective, even though the 
theoretical concept of simply relying on an orthogonalization of correlated X variables does not appear 
particularly convincing. The machine-learning based variable importances are also viable alternatives. 
With the availability of modern computers and implementation of the advanced and computer-
intensive methods into statistical software (at least, many are available in the open source R 
software26,31,54,56,68,72), calculation simplicity has become much less of an issue. Nevertheless, for large 
problems, computing power is still a concern. Furthermore – depending on the software they are using 
–, less statistically inclined users will still rely on simple metrics that are immediately available from 
the output of their software. It would therefore be desirable for commercial software packages to pick 
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up on the developments in variable importance and not restrict themselves to simplistic metrics like t-
statistics or standardized coefficients. While it is understandable that software producers hesitate to 
implement approaches before they have reached some agreement within the scientific community, in 
the case of variable importance, heuristics and ambiguity are likely to persist for a long time, if not for 
ever. Therefore, implementation of some recommended methods in the near future would be more 
than welcome in order to enable more users to choose a method by suitability rather than availability. 
In spite of this appeal for implementation of variable importance metrics, Generally, it is also 
recommended to maintain awareness of the limitations regarding the insights that can be gained from 
variable importance considerations in correlated regressor situations.  
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Table 1: Requirements and metrics 
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Section1)  A A A A A A C C B B 
Anonymity (a) X X X X X  X X X X 
First two moments only (b) X X X X X 2) X X X X 
Invariant to linear transformations on 
individual variables 

(c)  X X X X X X X X X 

Pure noise does not change anything (d) X X X X X X X X X X 
Balance conditional and marginal (e)     X3)  X3) X3) X3) X3) 
Proper decomposition  (f)     X X X X X X 
Proper decomposition for each 
orthogonal subgroup 

(g)     X X X X X X 

Non-negative shares (h)      X X X X X 
Exclusion (i) X X  X X     X 
Inclusion (j) X X  X   X X X X 
Pratt m/n (k)     X      
Pratt non-singular multivariate linear 
transform 

(l)     X      

1) A: Section “Simple metrics for measuring relative importance in linear regression models” 
B: Section “LMG, dominance analysis and PMVD:  
computer-intensive methods related to game theory” 
C: Section “Gibson decomposition / CAR scores, Green et al. decomposition and Fabbris / 
Genizi / Johnson decomposition” 

2) Criterion b) cannot be satisfied if anonymity is violated. 
3) These criteria do incorporate conditional and marginal elements. However, they may still lean 

towards one or the other extreme. 
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Table 2: Variable importance metrics for a fertility index in 1888 Swiss socio-demographic data  

Relative importance in %  
normalized to sum 100%  

for all metrics* 
(R2: 50.2 %%) Ag

ri
cu

ltu
re

 

Ex
am

in
at
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n 

Ed
uc

at
io

n 

C
at

ho
lic

 

In
fa

nt
 m

or
ta

lit
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b's (not normalized) 0.1254 −0.2667 −0.4859 0.0335 0.2109 
Joint contribution (not normalized) 2.7 21.4 18.6 5.8 −0.1 

Squared semipartial correlations 16.2 9.6 61.9 9.8 2.5 
Squared raw correlations 5.8 41.4 42.3 10.2 0.3 
Squared standardized b’s 7.1 13.5 72.7 5.6 1.1 

      
Sequential SS, from left to right 11.5 72.5 12.4 3.1 0.6 
Sequential SS, from right to left 3.6 2.6 73.8 19.6 0.5 

Pratt 6.9 25.3 59.2 8.1 0.6 
CAR scores / Gibson 6.3 34.2 51.1 7.8 0.6 

Green et. al. 2.0 44.3 47.5 5.3 0.6 
Fabbris / Genizi / Johnson 6.5 36.1 47.7 9.0 0.8 

LMG 6.1 38.7 45.9 8.5 0.8 
PMVD 4.8 23.5 64.0 7.1 0.6 

*Normalization to 100% is not recommended for data analysis, but has been chosen here for better 
comparability of the metrics.  
Calculations have been conducted with R package relaimpo; the Green et al. method has been 
implemented using modified code from Bi and Chung42 for Johnson’s method.  
Data and code are available as supplementary material. 
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Figure 1: Visualization of the normalized metrics from Table 2 

The metrics are ordered by increasing allocation to Examination. 
Blue stands for metrics that fulfill the Exclusion criterion, 
yellow/orange stands for the more marginally-inclined metrics. 
Green stands for metrics in-between or un-typified,  
grey for the sequential allocations.  
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