Further examples
Calculations of PFTs and ICFTs have been done with R package DoE.base (Grömping 2016), while MAFTs have been calculated with separate R functions.
Metrics for the 5-level Latin squares of Fontana et al. (2016)
Table 1: The 5-level Latin squares of Fontana et al. (2016), swapped MAFT has levels 1 and 2 of last column swapped
d1 |
ICFTc |
63 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
|
ICFTe |
63 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
|
MAFTorig. |
12 |
0 |
16 |
32 |
0 |
0 |
0 |
0 |
0 |
0 |
4 |
0 |
0 |
|
MAFTswapped |
0 |
24 |
12 |
4 |
8 |
8 |
4 |
0 |
4 |
0 |
0 |
0 |
0 |
d2 |
ICFTc |
63 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
|
ICFTe |
63 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
|
MAFTorig. |
60 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
4 |
0 |
|
MAFTswapped |
48 |
0 |
0 |
0 |
0 |
0 |
0 |
8 |
0 |
8 |
0 |
0 |
0 |
The 24 non-isomorphic 36 run 33 designs
These designs were obtained from Pieter Eendebak, who created them with the method published in Schoen, Eendebak and Nguyen (2010).
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 1 and 2.
a3 |
0 |
0 |
1 |
ICFTc |
7 |
0 |
1 |
ICFTe |
7 |
0 |
1 |
MAFT |
6 |
2 |
0 |
|
a3 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
6 |
0 |
1 |
0 |
1 |
0 |
ICFTe |
6 |
0 |
1 |
0 |
1 |
0 |
MAFT |
4 |
2 |
0 |
2 |
0 |
0 |
|
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 3 and 5.
a3 |
0 |
0 |
0 |
1 |
ICFTc |
7 |
0 |
0 |
1 |
ICFTe |
6 |
0 |
2 |
0 |
MAFT |
4 |
4 |
0 |
0 |
|
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
4 |
0 |
1 |
2 |
0 |
1 |
0 |
ICFTe |
0 |
6 |
1 |
0 |
0 |
1 |
0 |
MAFT |
0 |
6 |
0 |
0 |
2 |
0 |
0 |
|
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 20 and 4.
a3 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
6 |
1 |
0 |
1 |
0 |
ICFTe |
6 |
1 |
0 |
1 |
0 |
MAFT |
6 |
0 |
2 |
0 |
0 |
|
a3 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
6 |
0 |
0 |
1 |
1 |
0 |
ICFTe |
5 |
0 |
2 |
0 |
1 |
0 |
MAFT |
2 |
4 |
0 |
2 |
0 |
0 |
|
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 12 and 6.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
4 |
0 |
2 |
1 |
0 |
1 |
0 |
ICFTe |
0 |
6 |
0 |
1 |
0 |
1 |
0 |
MAFT |
0 |
6 |
0 |
0 |
2 |
0 |
0 |
|
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
4 |
0 |
0 |
2 |
1 |
0 |
0 |
1 |
0 |
ICFTe |
0 |
4 |
2 |
0 |
0 |
0 |
2 |
0 |
0 |
MAFT |
0 |
4 |
0 |
0 |
0 |
4 |
0 |
0 |
0 |
|
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 7 and 13.
a3 |
0 |
0 |
0 |
1 |
ICFTc |
6 |
0 |
2 |
0 |
ICFTe |
0 |
8 |
0 |
0 |
MAFT |
0 |
8 |
0 |
0 |
|
a3 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
6 |
0 |
1 |
0 |
1 |
0 |
ICFTe |
6 |
0 |
1 |
0 |
1 |
0 |
MAFT |
4 |
2 |
0 |
2 |
0 |
0 |
|
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 11 and 9.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
0 |
ICFTe |
0 |
4 |
1 |
0 |
2 |
0 |
1 |
0 |
MAFT |
0 |
4 |
0 |
0 |
2 |
2 |
0 |
0 |
|
a3 |
0 |
0 |
0 |
1 |
ICFTc |
7 |
0 |
0 |
1 |
ICFTe |
4 |
0 |
4 |
0 |
MAFT |
0 |
8 |
0 |
0 |
|
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 16 and 19.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
6 |
0 |
0 |
0 |
1 |
1 |
0 |
ICFTe |
0 |
4 |
0 |
4 |
0 |
0 |
0 |
MAFT |
0 |
0 |
8 |
0 |
0 |
0 |
0 |
|
a3 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
5 |
0 |
1 |
2 |
0 |
ICFTe |
5 |
0 |
1 |
2 |
0 |
MAFT |
4 |
2 |
0 |
2 |
0 |
|
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 21 and 8.
a3 |
0 |
0 |
1 |
ICFTc |
7 |
0 |
1 |
ICFTe |
7 |
0 |
1 |
MAFT |
6 |
2 |
0 |
|
a3 |
0 |
0 |
0 |
1 |
ICFTc |
7 |
0 |
0 |
1 |
ICFTe |
4 |
0 |
4 |
0 |
MAFT |
0 |
8 |
0 |
0 |
|
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 10 and 14.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
4 |
0 |
1 |
2 |
0 |
1 |
0 |
ICFTe |
0 |
6 |
1 |
0 |
0 |
1 |
0 |
MAFT |
0 |
6 |
0 |
0 |
2 |
0 |
0 |
|
a3 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
4 |
0 |
2 |
0 |
2 |
0 |
ICFTe |
0 |
4 |
0 |
4 |
0 |
0 |
MAFT |
0 |
4 |
0 |
4 |
0 |
0 |
|
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 18 and 15.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
4 |
0 |
1 |
2 |
0 |
1 |
0 |
ICFTe |
0 |
6 |
1 |
0 |
0 |
1 |
0 |
MAFT |
0 |
6 |
0 |
0 |
2 |
0 |
0 |
|
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
6 |
0 |
0 |
0 |
1 |
1 |
0 |
ICFTe |
2 |
3 |
0 |
3 |
0 |
0 |
0 |
MAFT |
2 |
0 |
6 |
0 |
0 |
0 |
0 |
|
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 17 and 22.
a3 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
4 |
0 |
2 |
2 |
0 |
ICFTe |
0 |
6 |
0 |
2 |
0 |
MAFT |
0 |
6 |
0 |
2 |
0 |
|
a3 |
0 |
0 |
0 |
1 |
ICFTc |
7 |
0 |
0 |
1 |
ICFTe |
6 |
0 |
2 |
0 |
MAFT |
4 |
4 |
0 |
0 |
|
Table 2: Metrics for non-isomorphic 36 run 33 designs, designs 23 and 24.
a3 |
0 |
0 |
0 |
1 |
ICFTc |
6 |
0 |
2 |
0 |
ICFTe |
0 |
8 |
0 |
0 |
MAFT |
0 |
8 |
0 |
0 |
|
a3 |
0 |
0 |
1 |
ICFTc |
7 |
0 |
1 |
ICFTe |
7 |
0 |
1 |
MAFT |
6 |
2 |
0 |
|
Coding invariant cross product matrix for columns 13 to 15 of Taguchi L36
The design was reordered such that the first column changes slowest, the last fastest.
Table 3: Coding invariant cross product matrix for columns 13 to 15 of Taguchi L36 (design 20 of the 24 non-isomorphic ones)
A |
8 |
8 |
8 |
-4 |
-4 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
-1 |
-1 |
-1 |
B |
8 |
8 |
8 |
-4 |
-4 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
-1 |
-1 |
-1 |
C |
8 |
8 |
8 |
-4 |
-4 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
-1 |
-1 |
-1 |
D |
-4 |
-4 |
-4 |
8 |
2 |
2 |
2 |
2 |
-4 |
-4 |
-4 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
-4 |
-4 |
-4 |
2 |
-1 |
-1 |
-1 |
2 |
-1 |
-1 |
-1 |
-1 |
E |
-4 |
-4 |
-4 |
2 |
8 |
-4 |
-4 |
-4 |
2 |
2 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
-1 |
-4 |
-4 |
-4 |
2 |
2 |
-1 |
-1 |
-1 |
F |
2 |
2 |
2 |
2 |
-4 |
8 |
8 |
8 |
2 |
2 |
2 |
-4 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
G |
2 |
2 |
2 |
2 |
-4 |
8 |
8 |
8 |
2 |
2 |
2 |
-4 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
H |
2 |
2 |
2 |
2 |
-4 |
8 |
8 |
8 |
2 |
2 |
2 |
-4 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
J |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
K |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
L |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
M |
2 |
2 |
2 |
2 |
2 |
-4 |
-4 |
-4 |
-4 |
-4 |
-4 |
8 |
-1 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
-4 |
-4 |
-4 |
N |
-4 |
-4 |
-4 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
8 |
-4 |
-4 |
-4 |
2 |
2 |
2 |
2 |
-4 |
-4 |
-4 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
-1 |
-1 |
-1 |
O |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
2 |
-4 |
8 |
8 |
8 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
P |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
2 |
-4 |
8 |
8 |
8 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
Q |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
2 |
-4 |
8 |
8 |
8 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
R |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
S |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
T |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
U |
-1 |
-1 |
-1 |
-1 |
2 |
-4 |
-4 |
-4 |
-1 |
-1 |
-1 |
2 |
2 |
-4 |
-4 |
-4 |
-4 |
-4 |
-4 |
8 |
2 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
V |
2 |
2 |
2 |
-1 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
-4 |
2 |
2 |
2 |
W |
2 |
2 |
2 |
-1 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
-4 |
2 |
2 |
2 |
X |
2 |
2 |
2 |
-1 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
-4 |
2 |
2 |
2 |
Y |
-1 |
-1 |
-1 |
2 |
-1 |
-1 |
-1 |
-1 |
-4 |
-4 |
-4 |
2 |
2 |
2 |
2 |
2 |
-4 |
-4 |
-4 |
2 |
-4 |
-4 |
-4 |
8 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
Z |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
8 |
8 |
8 |
-4 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
a |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
8 |
8 |
8 |
-4 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
b |
2 |
2 |
2 |
-4 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
8 |
8 |
8 |
-4 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
c |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
-4 |
-4 |
-4 |
-1 |
-1 |
-1 |
2 |
-1 |
-1 |
-1 |
-1 |
-4 |
-4 |
-4 |
8 |
2 |
2 |
2 |
2 |
2 |
-4 |
-4 |
-4 |
d |
2 |
2 |
2 |
-1 |
-4 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
-4 |
2 |
2 |
2 |
e |
2 |
2 |
2 |
-1 |
-4 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
-4 |
2 |
2 |
2 |
f |
2 |
2 |
2 |
-1 |
-4 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
2 |
2 |
2 |
2 |
8 |
8 |
8 |
-4 |
-4 |
2 |
2 |
2 |
g |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
-1 |
-4 |
-4 |
-4 |
2 |
-1 |
-1 |
-1 |
2 |
-4 |
-4 |
-4 |
2 |
-4 |
-4 |
-4 |
8 |
2 |
2 |
2 |
2 |
h |
2 |
2 |
2 |
-1 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-4 |
-4 |
-4 |
2 |
2 |
2 |
2 |
2 |
-4 |
-4 |
-4 |
2 |
8 |
-4 |
-4 |
-4 |
j |
-1 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
-1 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
-4 |
8 |
8 |
8 |
k |
-1 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
-1 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
-4 |
8 |
8 |
8 |
l |
-1 |
-1 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
-1 |
2 |
2 |
2 |
-1 |
-1 |
-1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
-4 |
2 |
2 |
2 |
2 |
-4 |
8 |
8 |
8 |
The 12 non-isomorphic GMA 36 run 63 designs
These designs have been obtained from the Website by Eendebak and Schoen (2010). All these designs are regular in all three senses of Grömping and Bailey (2016), which can be seen from the facts that the ARFTs from these designs consist of ones only, which implies R2 regularity and CC regularity, and that there are only three factors so that CC regularity implies geometric regularity.
Table 4: Metrics for non-isomorphic 36 run 63 designs, designs 1 to 4.
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
Table 4: Metrics for non-isomorphic 36 run 63 designs, designs 5 to 8.
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
Table 4: Metrics for non-isomorphic 36 run 63 designs, designs 9 to 12.
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
a3 |
0 |
1 |
ICFTc |
124 |
1 |
ICFTe |
124 |
1 |
|
The 10 non-isomorphic GMA 32 run 43 designs
These designs have been obtained from the Website by Eendebak and Schoen (2010).
Table 5: Metrics for non-isomorphic 32 run 43 designs, designs 1 to 4.
a3 |
0 |
0 |
1 |
ICFTc |
26 |
0 |
1 |
ICFTe |
8 |
19 |
0 |
|
a3 |
0 |
0 |
1 |
ICFTc |
26 |
0 |
1 |
ICFTe |
14 |
13 |
0 |
|
a3 |
0 |
0 |
1 |
ICFTc |
26 |
0 |
1 |
ICFTe |
12 |
15 |
0 |
|
a3 |
0 |
0 |
1 |
ICFTc |
26 |
0 |
1 |
ICFTe |
16 |
11 |
0 |
|
Table 5: Metrics for non-isomorphic 32 run 43 designs, designs 5 to 8.
a3 |
0 |
0 |
1 |
ICFTc |
26 |
0 |
1 |
ICFTe |
18 |
9 |
0 |
|
a3 |
0 |
0 |
1 |
ICFTc |
26 |
0 |
1 |
ICFTe |
14 |
13 |
0 |
|
a3 |
0 |
0 |
1 |
ICFTc |
26 |
0 |
1 |
ICFTe |
18 |
9 |
0 |
|
a3 |
0 |
0 |
1 |
ICFTc |
26 |
0 |
1 |
ICFTe |
18 |
9 |
0 |
|
Table 5: Metrics for non-isomorphic 32 run 43 designs, designs 9 to 12.
a3 |
0 |
0 |
1 |
ICFTc |
26 |
0 |
1 |
ICFTe |
20 |
7 |
0 |
|
a3 |
0 |
0 |
1 |
ICFTc |
26 |
0 |
1 |
ICFTe |
14 |
13 |
0 |
|
|
|
The following table also shows the SCFTs for these designs; these were proposed in Grömping (in press) for detecting non-isomorphism, using these designs as an example: all of them can be distinguished by SCFTs. SCFTs were also used by Grömping and Bailey for regularity assessment. Only the first design is CC regular (and geometrically regular) but not R2 regular (average R2 is 1/3).
Table 6: SCFTs for the 32 run 43 designs
1 |
6 |
0 |
0 |
0 |
0 |
0 |
3 |
2 |
3 |
3 |
0 |
0 |
0 |
3 |
0 |
3 |
4 |
0 |
0 |
4 |
0 |
0 |
1 |
4 |
2 |
3 |
0 |
3 |
0 |
1 |
0 |
5 |
1 |
4 |
1 |
2 |
1 |
0 |
0 |
6 |
3 |
0 |
0 |
6 |
0 |
0 |
0 |
7 |
2 |
2 |
0 |
5 |
0 |
0 |
0 |
8 |
1 |
4 |
0 |
4 |
0 |
0 |
0 |
9 |
0 |
3 |
6 |
0 |
0 |
0 |
0 |
10 |
3 |
0 |
0 |
6 |
0 |
0 |
0 |
The 20 non-isomorphic GMA 32 run 49 designs
These designs have been obtained from the Website by Eendebak and Schoen (2010).
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 1.
a3 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2184 |
0 |
80 |
4 |
0 |
ICFTe |
744 |
1520 |
0 |
4 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 2.
a3 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2184 |
0 |
80 |
4 |
0 |
ICFTe |
744 |
1520 |
0 |
4 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 3.
a3 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2184 |
0 |
80 |
4 |
0 |
ICFTe |
744 |
1520 |
0 |
4 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 4.
a3 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2184 |
0 |
80 |
4 |
0 |
ICFTe |
744 |
1520 |
0 |
4 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 5.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2180 |
0 |
0 |
0 |
4 |
78 |
4 |
2 |
0 |
ICFTe |
856 |
1178 |
120 |
104 |
4 |
0 |
4 |
2 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 6.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2180 |
0 |
0 |
0 |
4 |
78 |
4 |
2 |
0 |
ICFTe |
856 |
1178 |
120 |
104 |
4 |
0 |
4 |
2 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 7.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2180 |
0 |
0 |
0 |
4 |
78 |
4 |
2 |
0 |
ICFTe |
856 |
1178 |
120 |
104 |
4 |
0 |
4 |
2 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 8.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2176 |
4 |
0 |
0 |
0 |
0 |
4 |
0 |
74 |
4 |
4 |
2 |
0 |
ICFTe |
1056 |
4 |
570 |
16 |
180 |
416 |
0 |
20 |
0 |
4 |
0 |
2 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 9.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2169 |
5 |
0 |
0 |
0 |
0 |
5 |
5 |
0 |
73 |
5 |
1 |
5 |
0 |
ICFTe |
1096 |
5 |
475 |
20 |
210 |
442 |
5 |
0 |
5 |
0 |
5 |
0 |
5 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 10.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2163 |
9 |
0 |
0 |
0 |
0 |
3 |
9 |
0 |
71 |
9 |
1 |
3 |
0 |
ICFTe |
1118 |
9 |
437 |
36 |
180 |
468 |
3 |
0 |
5 |
0 |
9 |
0 |
3 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 11.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2145 |
4 |
4 |
0 |
7 |
0 |
0 |
4 |
0 |
0 |
0 |
1 |
4 |
0 |
7 |
0 |
4 |
4 |
4 |
67 |
4 |
7 |
1 |
1 |
0 |
ICFTe |
1170 |
4 |
4 |
12 |
7 |
361 |
24 |
24 |
210 |
364 |
22 |
1 |
4 |
36 |
0 |
5 |
4 |
0 |
4 |
0 |
4 |
7 |
0 |
1 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 12.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2114 |
4 |
4 |
4 |
2 |
4 |
4 |
0 |
7 |
0 |
0 |
0 |
4 |
0 |
4 |
0 |
0 |
4 |
1 |
0 |
8 |
2 |
13 |
4 |
0 |
1 |
0 |
4 |
2 |
4 |
64 |
1 |
7 |
1 |
1 |
0 |
ICFTe |
1207 |
4 |
4 |
4 |
2 |
4 |
4 |
24 |
7 |
342 |
28 |
90 |
4 |
364 |
4 |
12 |
66 |
4 |
1 |
54 |
4 |
2 |
0 |
4 |
5 |
1 |
8 |
4 |
2 |
0 |
0 |
1 |
7 |
0 |
1 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 13.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2150 |
2 |
0 |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
8 |
2 |
11 |
0 |
5 |
0 |
2 |
4 |
66 |
5 |
5 |
1 |
1 |
0 |
ICFTe |
1221 |
2 |
12 |
5 |
342 |
28 |
150 |
338 |
12 |
66 |
1 |
54 |
4 |
2 |
0 |
5 |
5 |
8 |
2 |
0 |
0 |
5 |
5 |
0 |
1 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 14.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2166 |
8 |
0 |
0 |
0 |
0 |
2 |
8 |
0 |
70 |
8 |
4 |
2 |
0 |
ICFTe |
1142 |
8 |
418 |
32 |
90 |
546 |
2 |
0 |
20 |
0 |
8 |
0 |
2 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 15.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2176 |
0 |
0 |
8 |
76 |
8 |
0 |
ICFTe |
904 |
1140 |
208 |
8 |
0 |
8 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 16.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2172 |
4 |
0 |
0 |
0 |
0 |
4 |
4 |
0 |
72 |
4 |
4 |
4 |
0 |
ICFTe |
1168 |
4 |
304 |
16 |
120 |
624 |
4 |
0 |
20 |
0 |
4 |
0 |
4 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 17.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2172 |
4 |
0 |
0 |
0 |
0 |
0 |
4 |
0 |
4 |
0 |
72 |
4 |
4 |
4 |
0 |
ICFTe |
1196 |
4 |
342 |
16 |
120 |
416 |
88 |
4 |
54 |
0 |
20 |
0 |
4 |
0 |
4 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 18.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2166 |
0 |
8 |
0 |
0 |
0 |
0 |
0 |
2 |
0 |
8 |
0 |
70 |
8 |
4 |
2 |
0 |
ICFTe |
1174 |
24 |
8 |
380 |
16 |
120 |
416 |
44 |
2 |
54 |
0 |
20 |
0 |
8 |
0 |
2 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 19.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2168 |
0 |
0 |
16 |
68 |
16 |
0 |
ICFTe |
1016 |
1064 |
156 |
16 |
0 |
16 |
0 |
|
Table 7: Metrics for non-isomorphic 32 run 49 designs, design 20.
a3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
ICFTc |
2160 |
12 |
0 |
0 |
0 |
0 |
12 |
0 |
68 |
12 |
4 |
0 |
ICFTe |
1144 |
12 |
380 |
48 |
210 |
442 |
0 |
20 |
0 |
12 |
0 |
0 |
|
The next table shows the SCFTs for the designs; apart from two groups with identical patterns, the designs can all be distinguished by SCFTs. One of the identical groups consists of the first four designs, which are CC regular but not R2 regular (some average R2 values are “1”, but most are 1/3); geometric regularity has not been assessed.
Table 8: SCFTs for the 32 run 49 designs
1 |
480 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
276 |
2 |
480 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
276 |
3 |
480 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
276 |
4 |
480 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
276 |
5 |
432 |
0 |
0 |
0 |
0 |
0 |
0 |
96 |
0 |
0 |
0 |
0 |
0 |
228 |
6 |
432 |
0 |
0 |
0 |
0 |
0 |
0 |
96 |
0 |
0 |
0 |
0 |
0 |
228 |
7 |
432 |
0 |
0 |
0 |
0 |
0 |
0 |
96 |
0 |
0 |
0 |
0 |
0 |
228 |
8 |
324 |
0 |
0 |
0 |
8 |
0 |
0 |
296 |
0 |
0 |
0 |
0 |
8 |
120 |
9 |
313 |
0 |
0 |
0 |
10 |
0 |
0 |
314 |
0 |
0 |
0 |
0 |
10 |
109 |
10 |
297 |
0 |
0 |
0 |
18 |
0 |
0 |
330 |
0 |
0 |
0 |
0 |
18 |
93 |
11 |
265 |
0 |
4 |
8 |
42 |
0 |
4 |
324 |
8 |
0 |
0 |
4 |
18 |
79 |
12 |
242 |
2 |
2 |
8 |
68 |
4 |
12 |
305 |
8 |
8 |
4 |
2 |
24 |
67 |
13 |
252 |
2 |
2 |
0 |
66 |
0 |
12 |
319 |
0 |
8 |
0 |
2 |
18 |
75 |
14 |
284 |
0 |
0 |
0 |
16 |
0 |
0 |
360 |
0 |
0 |
0 |
0 |
16 |
80 |
15 |
416 |
0 |
0 |
0 |
0 |
0 |
0 |
128 |
0 |
0 |
0 |
0 |
0 |
212 |
16 |
276 |
0 |
0 |
0 |
8 |
0 |
0 |
392 |
0 |
0 |
0 |
0 |
8 |
72 |
17 |
266 |
0 |
0 |
0 |
48 |
0 |
0 |
344 |
0 |
0 |
0 |
0 |
24 |
74 |
18 |
268 |
0 |
0 |
0 |
48 |
0 |
0 |
336 |
0 |
0 |
0 |
0 |
32 |
72 |
19 |
372 |
0 |
0 |
0 |
32 |
0 |
0 |
168 |
0 |
0 |
0 |
0 |
0 |
184 |
20 |
278 |
0 |
0 |
0 |
24 |
0 |
0 |
356 |
0 |
0 |
0 |
0 |
24 |
74 |
References
Bailey, R.A. (1982). The decomposition of treatment degrees of freedom in quantitative factorial experiments. JRSS B 44, 63-70.
Cheng, S.-W. and Ye, K.Q. (2004). Geometric isomorphism and minimum aberration for factorial designs with quantitative factors. The Annals of Statistics 32, 2168-2185.
Eendebak, P. T. and Schoen, E. D., (2010). Orthogonal Arrays Website. http://www.pietereendebak.nl/oapackage/series.html. Last accessed February 27, 2017.
Fontana, R., Rapallo, F. and Rogantin, M.P. (2016). Aberration in qualitative multilevel designs. Journal of Statistical Planning and Inference 174, 1-10.
Grömping, U. (2016a). R Package DoE.base for Factorial Designs. Report 1/2016, Reports in Mathematics, Physics and Chemistry, Department II, Beuth University of Applied Sciences Berlin.
Grömping, U. (2016b). Interaction Contributions as Coding Invariant Single Degree of Freedom Contributions to Generalized Word Counts. Report 2/2016, Reports in Mathematics, Physics and Chemistry, Department II, Beuth University of Applied Sciences Berlin.
Grömping, U. (in press). Frequency tables for the coding invariant quality assessment of factorial designs. IISE Transactions.
Grömping, U. and Bailey, R.A. (2016). Regular fractions of factorial arrays. In: Kunert, J., Müller, C.H., Atkinson, A.C. (Eds.), MODA11—Advances in Model-Oriented Design and Analysis. Springer, pp. 143–151.
Grömping, U. and Xu, H. (2014). Generalized resolution for orthogonal arrays. The Annals of Statistics 42, 918-939.
Hedayat, S., Sloane, N.J. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications. Springer, New York.
Katsaounis, T.I., Dean, A.M. and Jones, B. (2013). On equivalence of fractional factorial designs based on singular value decomposition. Journal of Statistical Planning and Inference 11, 1950-1953.
Kobilinski, A., Monod, H. and Bailey, R.A. (in press). Automatic generation of generalised regular factorial designs. Computational Statistics and Data Analysis.
Kolda, T.G. and Bader, B.W. (2009). Tensor Decompositions and Applications. SIAM Review 51, 455-500.
NIST/SEMATECH (2016). e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/ handbook/, 21 August 2016.
Schoen, E. (2009). All orthogonal arrays with 18 runs. Quality and Reliability Engineering International 25 (3), 467-480.
Schoen, E. D., Eendebak, P. T. and Nguyen, M. V. M. (2010). Complete enumeration of pure-level and mixed-level orthogonal arrays. Journal of Combinatorial Designs 18, 123–140. doi:10.1002/jcd.20236.
Xu, H., Cheng, S.-W. and Wu, C.F.J. (2004). Optimal projective three-level designs for factor screening and interaction detection. Technometrics 46, 280–292.
Xu, H. and Wu, C.F.J. (2001). Generalized minimum aberration for asymmetrical fractional factorial designs [corrected republication of MR1863969]. The Annals of Statistics 29, 1066–1077.