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Abstract 

A graph-based algorithm is proposed for creating regular fractional factorial designs with 2-

level factors such that a pre-specified set of 2-factor interactions is clear of aliasing with any 

main effects or two-factor interactions (clear design). The “clear interactions graphs” used in the 

algorithm are unique for each design and different in nature from the well-known Taguchi linear 

graphs. Based on published catalogs of 2-level fractional factorials, enhanced by these graphs, 

a search algorithm finds an appropriate clear design or declares its non-existence. The approach 

is applied to creation of a catalog of minimum aberration clear compromise plans, which is also 

of interest in its own right. Supplementary materials are available for this article. Go to the 

publisher’s online edition of IIE Transactions for additional considerations on run times and 

implementation of the algorithm for larger designs. 
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1. Introduction 

In designed industrial experiments, 2-level fractional factorial plans play an important role, since 

they are both parsimonious in the number of runs and – if designed well – allow estimation of 

effects of interest. In regular 2-level fractional factorial designs, a small number of runs is 

achieved by starting from a full factorial in a few, say m−k,  factors and assigning k additional 

factors to interaction columns in this design. This generates complete confounding: The 2m 

effects of the full model with a constant, i.e. the main effects and all interactions up to order m, 
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can only be estimated as 2m−k sums of 2k effects each. Consequently, each effect is completely 

confounded with 2k−1 other effects. It is often true that interaction effects of more than two 

factors can be neglected, so that it is not considered problematic if an interaction among three or 

more factors is confounded with an effect of interest. Thus, it is customary to call effects “clear”, 

if they are not confounded with main effects or 2-factor interactions (2fis) (cf. e.g. Wu and Chen 

1992).  

There are many ways of assigning m factors to 2m–k runs. The k factors to be added to the full 

factorial in m–k factors generate 2k–1 words (groups of factors whose interaction is completely 

aliased with the overall mean). The length of the shortest word is called the resolution of the 

design and is denoted as a roman numeral: Resolution V designs do not confound any main 

effects or 2fis with each other; in resolution IV designs, 2fis can be confounded with each other; 

resolution III designs even confound main effects with 2fis. Designs of the same resolution are 

compared using the minimum aberration (MA) criterion, which makes sure that the number of 

shortest words is minimal (and successively so for the next shortest words in case of ties). For 

more detail on these concepts, readers are referred to Mee (2009). 

In this article, like in much of the related literature, it is assumed that interactions of order 

higher than two are negligible. Under this assumption, resolution V designs are generally 

considered adequate, if 2fis are to be estimated. However, they are often not affordable (16 runs 

for 5 factors, 32 runs for 6 factors, 64 runs for 7 or 8 factors, 128 runs for 9 to 11 factors, 256 

runs for 12 to 17 factors, 512 runs for 18 to 23 factors, 1024 runs for 24 to 33 factors etc.). As an 

aside, note that there are non-regular fractional factorial plans that allow orthogonal estimation of 

all main effects and two-factor interactions for up to 15 factors in 128 runs or up to 19 factors in 

256 runs (cf. e.g. Mee 2009, Chapter 8.2). These are not covered here.  
Various authors (e.g. Addelman 1962, Wu and Chen 1992, Ke and Tang 2003, Wu and Wu 

2002, Ke, Tang and Wu 2005) have discussed the possibility of devising resolution IV designs 

such that a pre-specified set of 2fis – called the requirement set in the sequel – can be 
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estimated. While it is often assumed that some 2fis are negligible (e.g. Addelman 1962, Wu and 

Chen 1992, many articles on D-optimal design), this article will make no such assumption. 

Instead, the requirement set will always contain all main effects and those 2fis which are of 

special interest, without any assumption regarding which 2fis are active. For example, in a 

robustness experiment with the purpose to find settings of so-called control factors such that the 

so-called noise factors have as little impact as possible, interactions between control and noise 

factors may be of special interest, i.e. the requirement set might consist of all main effects and 

these 2fis, without necessarily assuming negligibility of other 2fis. All effects from the 

requirement set are estimable, if they are “clear”, i.e. if they are not confounded with any main 

effect or 2fi, and a design that keeps a requirement set clear is called a clear design in the 

sequel. Clear designs can be of resolution IV, because 2fis from outside the requirement set 

need not be clear.  

For the above robustness example, now specifically for two noise factors and seven control 

factors, assume that one experimenter devises an experiment under the assumption that all 

interactions except those between noise and control factors are negligible, while another 

experimenter refuses to make that assumption. Both experimenters will end up with a 32 run 

experiment; the one with the negligibility assumption can use the MA design, while the other 

experimenter has to deteriorate aberration in order to keep the requirement set clear. This 

example experiment will be revisited in Section 3. It is one of the fortunate cases for which the 

requirement set can be kept clear without increasing the number of runs. In many situations 

clear designs require more runs than analogous designs with negligibility assumptions for the 

2fis outside the requirement set. A detailed comparison of the approaches with and without 

negligibility assumptions can be found in Grömping (2010a). 

This article provides a new “clear interactions graph” (CIG) and an algorithm that uses CIGs 

to find clear designs. Based on a complete catalog of designs, which also lists the unique CIG 

for each design, the algorithm is guaranteed to find the best clear design for the requirement set 
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or to confirm non-existence of such a design. A preliminary version of the algorithm has been 

provided in Grömping (2010b). 

Section 2 gives a concise overview of cataloging 2-level fractional factorial designs and 

introduces clear compromise plans. In Section 3, Taguchi (1988) linear graphs are briefly 

sketched, and the CIGs are introduced. Section 4 proposes the simple algorithm for finding clear 

designs based on design catalogs, CIGs, and a subgraph isomorphism search algorithm, while 

Section 5 presents a catalog of minimum aberration clear compromise designs that has been 

derived using the algorithm of Section 4. Section 6 concludes the article with final remarks. 

Chapter 2 of the online supplement provides a case study of implementing the algorithm for 

256 run designs (which is borderline feasible at the moment because of resource reasons, cf. 

also Section 4.3). MA clear compromise plans are tabulated in the appendix. 

2. Two-level fractional factorials 

2.1. Regular 2-level fractional factorial designs  

The starting point for a regular 2-level fractional factorial design for m factors is a full factorial in 

2m-k runs for m-k factors, the levels for which are denoted as “-1” and “+1”. The model matrix of 

the saturated model for the full factorial is usually denoted in the so-called “Yates order”, which 

is the obvious continuation of the order 1 2 12 3 13 23 123 …, if 1, 2, 3 … are the m-k base 

factors of the full factorial. This matrix is called the “Yates matrix” in the following. Its columns 

consist of “-1” and “+1” entries, such that columns for interaction effects are obtained as 

products of the respective main effect columns, with base factor 1 a sequence of 2m-k-1 times the 

pairs -1,+1, base factor 2 a sequence of 2m-k-2 times the quadruples -1,-1,+1,+1, base factor 3 a 

sequence of 2m-k-3 times the octuple -1,-1,-1,-1,+1,+1,+1,+1, and so forth. Orthogonality of each 

pair of effects is easily verified by checking that their scalar product is 0.  

A 2m-k run regular fractional factorial design in m factors can be uniquely defined by providing 

the Yates matrix column numbers for the k additional (generated) factors. Substantial research 
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has been conducted in order to list non-isomorphic regular fractional factorials, where two 

designs are considered isomorphic, if they can be obtained from each other by switching rows or 

columns or levels within columns (cf. e.g. Chen, Sun and Wu 1993, Xu 2009, Ryan and 

Bulutoglu 2010, Shrivastava and Ding 2010). The non-isomorphic regular fractional factorials for 

m factors in 2m-k runs are usually denoted as m-k.idno with an index number “idno” denoting the 

different non-isomorphic versions, and lower “idno” expressing better performance on some 

overall quality criterion, usually the MA criterion. Table 1 in the appendix provides the designs 

used in this article in terms of Yates matrix column numbers. For readers used to generator 

notation, generators can be directly inferred from the binary representation of the Yates matrix 

column numbers, by using the positions of “1”s from the right to indicate which factors interact. 

For example, the number 12 has the binary representation 1100, i.e. the third and fourth 

positions from the right are ones; hence column 12 in the Yates order contains the interaction 

CD of the third and fourth factor. 

Another overall quality criterion for resolution IV designs is MaxC2, i.e. maximization of the 

number of clear 2fis. For designs with few runs, MA and MaxC2 often coincide (cf. also Wu and 

Wu 2002). For larger designs, however, there are various situations for which MaxC2 designs 

are much worse than MA designs in terms of aberration (cf. e.g. Block and Mee 2005). It has 

been argued that the MA criterion is a good surrogate for model robustness criteria (e.g. Cheng, 

Steinberg and Sun 1999). The author agrees with this view. Non-MA MaxC2 designs sacrifice 

some of the model robustness by creating stronger aliasing among the remaining 2fis. 

Therefore, it is recommended to use MA as the general quality criterion, and to consider clear 

2fis on an as-needed basis only, i.e. to only require certain specific 2fis to be clear, if there is a 

particular interest in their estimation. This is exactly the purpose of the CIG-based algorithm 

presented here. 
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2.2. Clear compromise plans 

For compromise plans, the m experimental factors are divided into the two groups G1 and G2 

with m1 and m2 factors respectively, m1 + m2 = m. For example, in a robustness experiment, G1 

might contain control factors and G2 noise factors or vice versa. Four classes of compromise 

plans have been defined, the requirement sets of which contain all 2fis in  

Class 1: G1xG1,  

Class 2: G1xG1 and G2xG2,  

Class 3: G1xG1 and G1xG2 or 

Class 4: G1xG2.  

The first three classes were introduced by Addelman (1962), the fourth by Sun (1993). 

Addelman considered estimability of the specified effects under the assumption that all 2fis 

outside the requirement set are negligible. This approach is not pursued here. Here, interest is in 

clear compromise plans which have also been investigated by Ke, Tang and Wu (2005).  

Ke et al. proved that there are no clear resolution IV compromise plans of class 2. For the 

other three classes, they provided lower bounds for the number of runs for a given m1, as well as 

upper bounds for m1 for a given number of runs. Furthermore, they provided a small catalog of 

clear compromise plans in 32 and 64 runs for class 3 that can also be used for classes 1 and 4 

and can in some cases be adapted to special needs by moving a factor from group G2 to group 

G1 or simply by omitting factors (their tables 1 and 2). They supplemented this catalog with a 

few additional class 4 clear compromise plans (their table 4). Their catalogs do not make any 

claims w.r.t. quality criteria of the resulting clear compromise plans. Designs that can be 

obtained from their catalog directly or by moving or deleting the last factor(s) of a group are 

shown in bold italics in Tables 2-4 of the appendix. It can be seen that almost all their directly 

cataloged designs are MA, while designs obtained by moving or deleting columns can often be 

improved upon.  
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3. Clear interactions graphs 

Before introducing the new clear interactions graphs, Taguchi linear graphs are briefly 

summarized: these well-known graphs (cf. e.g. Taguchi 1988 for an extensive but incomplete 

listing) indicate maximum estimable models for each design. Each main effect is a vertex of the 

graph; each edge represents a 2fi that is estimable, if all 2fis not in the graph as well as all 

higher order interactions are assumed negligible; the graph includes a maximum possible 

number of effects, i.e. no further edge can be added without deleting an existing edge. There are 

several – potentially many – linear graphs for any particular design (for example, according to 

Wu and Chen 1992 there are 1676 non-isomorphic linear graphs for the 32 run MA design in 

10 factors), corresponding to differently structured requirement sets. Wu and Chen (1992) 

mentioned the possibility to show edges that represent clear 2fis by a special line type. Figure 1 

shows one possible linear graph for the design 9-4.1. As factors 9 and 5 have edges with all 

other factors, they could be used for accommodating the two noise factors from the introductory 

robustness example, if one is prepared to assume negligibility of all 2fis not shown by an edge in 

the graph. 

 

Figure 1: One of many linear graphs for design 9-4.1. Dashed lines denote clear 2fis;  
all 2fis without edges (e.g. factors 6 and 7) are assumed negligible. 

Vertices are labeled with factor numbers (cf. Table 1 in the appendix  
for corresponding Yates matrix column numbers). 

 

For clear designs, negligibility assumptions for main effects or 2fis are not permitted. This 

implies that the alias structure with respect to 2fis can be reflected by just one unique graph for 

each design, the “clear interactions graph” (CIG) as proposed in this article. Again, the factors 
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themselves are the vertices in the graph. The edges are defined by the clear 2fis, i.e. two 

vertices are connected by an edge, if and only if the 2fi of the respective two factors is clear. 

Thus, any resolution V design has a complete CIG, i.e. each pair of vertices is connected by an 

edge, whereas the CIGs of resolution III or IV designs may or may not have edges. Note that the 

CIG itself does not reveal whether a design is resolution III or IV; usually, resolution III designs 

should not be considered in CIG applications. It will therefore be assumed throughout this article, 

that only resolution IV or higher designs are considered.  

Figure 2 shows two examples of CIGs: The graph for the MA resolution IV design 9-4.1 in 

32 runs and 9 factors indicates that all interactions of the 9th factor with any other factor are clear 

(the dashed lines in the linear graph for the same design in Figure 1). In the CIG for the second 

best (in terms of MA) design 9-4.2 all interactions of both the 9th and the 5th factor with each 

other and all other factors are clear. This implies that the overall MA design 9.4.1 cannot 

accommodate a clear class 3 or class 4 compromise plan with m1=2, i.e. cannot accommodate 

the robustness example from the introduction; the MA design for that purpose is design 9-4.2, 

assigning the two noise factors to its factors 5 and 9.  

                           

Figure 2: Clear interactions graphs for designs 9-4.1 (left) and 9-4.2 (right)  
Vertices are labeled with factor numbers (cf. Table 1 in the appendix  

for corresponding Yates matrix column numbers). 
 

Besides providing a unique CIG for each cataloged design, it is also possible to provide a CIG 

for an experiment’s requirement set. An intended experiment can be accommodated in a 

particular design, if its CIG is contained in the design’s CIG, i.e. if there is a mapping of the 

requirement set graph vertices to the design graph vertices such that all edges in the 



  

9 

requirement set CIG are also present in the design’s CIG. This comparison can be made by a 

subgraph isomorphism algorithm, which is the reason why the problem has been cast into graph 

form in the first place.  

As an aside, note that recent work on cataloging fractional factorial designs makes use of 

bipartite graphs with design rows and design columns (Ryan and Bulotoglu 2010) or factors and 

defining relations (Shrivastava and Ding 2010) as vertices; a design’s structure is characterized 

by edges in these graphs, which connect pairs of two different type vertices only (e.g. a row and 

a column); graph isomorphism algorithms are then used for eliminating isomorphic designs. The 

idea implemented in this article is similar in that it uses algorithms designed for graphs for 

investigating the structure of experimental designs; however, the graphs are very different, and 

checks are for subgraph isomorphism rather than graph isomorphism. 

4. The proposed algorithm for finding clear designs 

As was already mentioned, for any given candidate design, the algorithm employs a subgraph 

isomorphism search for accommodating the CIG for the requirement set in the design’s CIG, if 

possible. The subgraph isomorphism problem is known to be NP complete. Hence, it is very 

important to keep the number of candidate designs as small as possible, particularly for larger 

problems, where “large” relates to the number of structurally different ways the CIG factors could 

be allocated to the design factors. Efficient use of the algorithm for finding best (e.g. MA) clear 

designs requires that a complete catalog of designs, ordered from best to worst, is available. 

The task of finding the best (resolution IV) design with the required 2fis clear  is then solved by 

looping through the cataloged (resolution IV) designs from best to worst, and checking for each 

design whether the requirement set CIG is contained in the design’s CIG. As a result from the 

algorithm, the experimenter gains the best cataloged solution design or the definite answer that 

the request cannot be fulfilled within the permitted search designs. In other words, the algorithm 

is guaranteed to find the best design among the cataloged designs or declares non-existence 
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(within the catalog) of a clear design for the requested requirement set. In the latter case, the 

experimenter has to increase the number of runs. 

It is crucial to have the CIGs stored within the catalog; as each unique CIG can be represented 

by a two-row matrix with a column for each edge, storing CIGs can be easily accomplished at 

least for typical application sizes. This opens the possibility to store or easily obtain simple 

derived design properties like the number of clear 2fis, which can be used for a priori exclusion 

of unsuitable candidate designs.  

4.1. The algorithm and its implementation 

The algorithm has been implemented in the free open-source software package FrF2 (Grömping 

2007-2011) within the R (R development core team 2011) software environment. It consists of 

the following four  steps: 

1. Select the (next) best (criterion: MA) design from a complete catalog of resolution IV designs 

with the desired number of runs and factors. 

2. Does the design have enough clear 2fis for accommodating the requirement set?  

If yes, continue with next step. If no, go to step 1.  

3. Does the design have enough vertices of at least the degrees requested by the requirement 

set?   

If yes, continue with next step. If no, go to step 1.  

4. Apply a subgraph isomorphism search algorithm (algorithm by Cordella et al. 2001 as 

implemented in R-package igraph, cf. Csardi and Nepusz 2006) in order to identify a 

mapping of experiment factors to design factors such that the requirement set is clear. If 

such a subgraph is found, the algorithm returns the solution design and this mapping. 

Otherwise go to Step 1.  

Step 1 relies on complete catalogs of designs ordered by the MA criterion available from the 

literature (Chen, Sun and Wu 1993 with personal communication by Don Sun regarding the 

resolution IV 64 run designs; Xu 2009 and the supplementary website for resolution IV designs 
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with 128 runs and up to 24 factors). For implementation of the algorithm in the software FrF2, 

the published catalogs have offline been enhanced by their CIGs and by some calculated criteria 

based on the CIGs, most important  the number of clear 2fis in support of step 2. (As the 

complete catalog for 128 run designs is very large and would inhibit usability of the software, it is 

provided in the separate R package FrF2.catlg128 (Grömping 2010-2011) for occasional 

loading when needed, while the software itself only contains a selection of particularly promising 

128 run designs.) Obviously, whenever a complete catalog of designs is available for the search 

process, the algorithm will either return the best possible design – after successful identification 

of a subgraph mapping between the experiment graph and the design graph – or will exhaust 

the catalog without finding a design which  implies that  the requirement set cannot be 

accommodated within the cataloged designs.  

In addition to implementation within the software for up to 128 runs, an exemplary 256 run 

catalog of the best designs (up to 9 words of length 4) for 18 factors has been created and 

searched for clear compromise plans, based on work by Ryan and Bulutoglu (2010). This branch 

of work was instigated by a referee and serves as an investigation into scalability of the 

algorithm. More MA clear compromise plans were included in the appendix as a result of this 

extra computational effort described further in chapter 2 of the online supplement.  

Note that the algorithm proposed here is quite similar to a proposal made by Wu and Chen 

(1992) on the basis of linear graphs (i.e. making negligibility assumptions for effects outside the 

requirement set). Wu and Chen also proposed using a subgraph isomorphism search; an 

individual subgraph mapping run of their algorithm is in principle identical to step 4 of the above 

algorithm. As linear graphs are not unique and there can be many such graphs for any 

moderately-sized design (e.g. 1676 graphs for the MA design in 32 runs for 10 factors, as 

mentioned in Section 3), their proposal is very resource-intensive and has not been widely 

applied. The main resource advantage of the CIG-based algorithm consists in uniqueness of the 

CIG for each design; for example, for 32 runs with 10 factors the algorithm has to search just 
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one CIG for the MA design and at most a total of 27 CIGs for checking any resolution IV design 

in 32 runs for 10 factors. Nevertheless, the CIG-based algorithm, although often fast for the most 

typical sizes of experimental situations, is also quite resource-intensive for larger designs, 

especially with unfortunate requirement sets (cf. Section 4.3).  

4.2. A detailed application 

The algorithm is now illustrated in detail, using the above robustness example. In the following, 

denote the seven control factors as C1 to C7, the two noise factors as N1 and N2. The CIG for 

the requirement set is then shown in Figure 3. 

 
Figure 3: Requirement set CIG for the robustness example 

 
The task of assigning the experimental factors to the appropriate factor numbers of a suitable 

design now consists in finding the best possible design in the required number of runs for which 

the graph from Figure 3 is contained in the design’s CIG. In this fairly simple example, it is 

immediately visible by comparing Figures 2 and 3 that the requirement set CIG cannot be 

accommodated in the CIG for design 9-4.1 but can be accommodated in the CIG for design 

9-4.2. This is now also derived by using the algorithm. 

 

Example continued: The design has 9 factors, resolution IV requires 32 runs. The requirement 

set CIG has 9 vertices and 14 edges; two vertices have seven edges each (degree 7), while the 

other 7 vertices have degree 2.  

Step 1: Design 9-4.1 is the best (=MA) design for the situation at hand. 
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Step 2: Design 9-4.1 has too few edges (8 clear 2fis = 8 edges only, 14 needed)  loop 

back to Step 1. 

Step 1: Design 9-4.2 is the next best design for the situation at hand. 

Step 2: Design 9-4.2 has enough edges (15 clear 2fis = 15 edges). 

Step 3: Design 9-4.2 has two vertices with degree 8 and seven vertices with degree 2 (cf. 

Figure 2) and is thus a candidate worthy of entering Step 4.  

Step 4: The subgraph isomorphism search matches experimental factors N1 and N2 to 

design factors 5 and 9, experimental factors C1 to C7 to design factors 1,2,3,4,6,7,8. 

 

4.3. Resource considerations 

As was mentioned before, the subgraph isomorphism problem is known to be NP complete. 

Even knowing which design will be able to accommodate the requirement set, the search for an 

adequate mapping (i.e., step 4 of the algorithm in the only iteration) may take a long time in 

unfortunate situations. For example, searching for how to accommodate the requirement set of a 

class 3 compromise plan with 17 factors and m1=3 within the 128 run design 17-10.2407 took 

about 1.5 seconds when using the first three factors for G1, but – on the same computer under 

comparable circumstances – more than 48 hours (aborted without finishing) when using the last 

three factors for G1. As examples for different structures, first and last factors as G1 have been 

compared for searches for MA class 3 clear compromise plans in 64 or 128 runs – run times 

were often similar, but sometimes differed strongly (cf. Chapter 1 of the online supplement for 

more detail). This clearly exemplifies the existence of structurally more or less fortunate 

requirement sets; a general law indicating which type of requirement set can be accommodated 

faster for the cataloged designs has not been found; knowing about the structure dependence, it 

may be worth reformulating a requirement set, given a certain formulation did not deliver a result 

in reasonable time. The actual optimization for the tables in the appendix was conducted with 

the first m1 factors being in G1 and was reasonably fast (for up to 128 runs).  
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When searching for clear class 3 compromise plans, prefiltering designs with algorithm 

steps 2 and 3 is very successful, which implies that having to search many designs 

unsuccessfully until the successful design is encountered is not too detrimental to the run time: 

For example, finding the mapping for the 128 run design 22-15.118181 for the MA clear class 3 

compromise plan with m1=2 factors within a reduced catalog with this design alone took between 

2 and 2.1 seconds, whereas the same search took about 20 seconds within the complete 

catalog of designs, even though more than 100000 designs had to be identified as inappropriate 

in the latter case. For class 1 and class 4 compromise plans, pre-filtering is less successful than 

for class 3 compromise plans because of their less pronounced structure. This is particularly so 

for class 1. It might help to store the maximum clique sizes with the stored CIGs; however, 

determining these is another resource intensive task that has not been attacked yet.  

Wu and Chen (1992) proposed that researchers should manually compare their requirement 

set to cataloged graphs rather than using automated processes. Chapter 2 of the online 

supplement investigates feasibility of identifying clear compromise plans in a catalog of 256 run 

designs with 18 factors. There, it also turned out that some situations can be addressed by 

visual inspection that would not have been resolved in adequate time by the algorithm. A 

combination of using the algorithm for an automatic search with a manual approach based on 

graph visualization tools turned out to be the best solution for some cases. 

5. Complete catalog of smallest MA clear compromise designs 

Previously-published catalogs of compromise plans (Addelman 1962 assuming negligibility of 

2fis outside the requirement set, Ke et al. 2005 for clear designs) gave a small selection of 

designs for maximum values of m1, together with instructions how to obtain further designs from 

these. Here, the CIG-based algorithm of the previous section has been used for creating 

complete MA catalogs of clear compromise plans for designs with up to 24 factors in 128 runs 

(cf. appendix). Ke et al.’s (2005) bounds have been used for limiting the search to possible 

candidate designs. Additional designs in 256 runs have been included into the tables; non-
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inclusion of a 256 run design does not mean non-existence (cf. also Chapter 2 of the online 

supplement). 

The catalog is presented in four tables in the appendix. Table 1 holds all base designs with 

their respective Yates matrix columns. Tables 2, 3 and 4 provide the complete listings of 

resolution IV clear compromise designs of the three classes for which such designs exist. These 

tables indicate which factors of the respective base design belong to G1; Table 1 can be used 

for translating the column numbers from Tables 2 to 4 to Yates matrix column numbers.  

 

5.1. Usage examples 

Table 3 shows that the smallest MA 16 factor clear compromise plan of class 3 with m1=2 can be 

obtained from the design 16-10.45 in 216-10 = 64 runs using its columns 6 and 16 for G1. 

According to Table 1, these correspond to Yates matrix columns 32 and 60 for the G1 factors 

and Yates matrix columns 1 2 4 8 16 7 11 13 14 19 21 22 25 26 for G2. The design entry is set 

in bold italics, which indicates that an isomorphic design can also be obtained from Ke et al. 

(2005) by omitting the last G2 factor. The design has 77 words of length 4, which leads to quite 

heavy confounding (14 model matrix columns hold 6 2fis each, one holds 7 2fis). If a larger 

design can be afforded and is desired, the footnote to Table 3 indicates that the 128 run design 

16-9.2 could be used with G1 columns 4 and 5, which corresponds to Yates matrix columns 

8 and 16 for G1 and the remaining Yates matrix columns of the design for G2.  

Let us now consider the analogous smallest MA class 1 clear compromise plan with 

16 factors and m1=3: according to Table 2 the MA clear design is based on the base design 16-

10.8 and uses its columns 6, 13 and 16 for G1, which translates into Yates matrix columns 32, 

25 and 63. This design has better aberration than the one obtainable from Ke et al. (2005). 

Nevertheless, it is still heavily confounded regarding some 2fis. If a 128 run design is desired for 

reducing the degree of confounding, the overall MA design 16-9.1 can be used, as it is listed 

further to the right in the table row for 16 factor designs: an MA clear class 1 compromise design 
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in 128 runs for 16 factors with m1=3 can be obtained from 16-9.1 using its columns 2, 3 and 5 for 

G1 (i.e. moving one column from G1 to G2 from the design with m1=4). Within Tables 2 and 3, it 

is always permitted to move factors from G1 to G2, as was also stated by Ke et al. (2005) for 

their corresponding tables 1 and 2. Beware that this is not true for Table 4, where for example 

the design for 10 factors with m1=4 can be based on the overall MA design 10-4.1, while m1=3 

requires using the design 10-4.3, which has worse aberration (cf. also the following section).  

5.2. Observations regarding MA clear designs 

The smallest run resolution IV MA designs in most of the tabulated cases require half the run 

size of a resolution V design. In some cases, designs with only a quarter of the runs of a 

resolution V design can also be used. For the latter cases, it may sometimes be desirable to 

double the run size for reducing the severity of confounding. In most such cases, the larger run 

size MA clear design can be obtained from the overall MA design in the doubled run size, e.g. 

from 16-9.1 in the class 1 example from the previous section. Often, this design is listed further 

to the right in Tables 2 and 3, in which case the MA column allocation for it can be obtained by 

moving one or more G1 column(s) to G2, as was the case for the class 1 example above. Where 

a larger MA clear design cannot be obtained in this way (some cases for Table 3, and all cases 

for Table 4), footnotes indicate how to allocate G1 factors, like in the class 3 example of the 

previous section.  

For clear class 4 compromise plans, it is not permitted to move factors between G1 and G2, 

which is due to the absence of requirements regarding estimability of 2fis within G1. 

Consequently, there is no monotonicity in terms of m1: for example, the overall MA design in 

10 factors in 64 runs (10-4.1) can accommodate a clear class 4 compromise plan for m1=2 or 

m1=4, but not for m1=3: The design has two non-overlapping words of length 4 (positions 1,2,3,7 

and positions 5,6,8,9). Choosing all m1=4 factors for G1 from the same 4-letter word, the design 

can be used as a clear compromise plan of class 4 for m1=4, since all confounding is within G1 

and within G2 only. When omitting one of these factors from G1, its interaction with the other 
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three becomes important, and the design is not a clear class 4 compromise design for m1=3. A 

G1 with m1=2 factors can again be accommodated within this design, because there are two 

factors (positions 4 and 10) that do not occur in the two 4-letter words and thus have all their 2fis 

clear. 

The designs that can also be obtained from Ke et al. (2005) have been set in bold italics in 

Tables 2 to 4. It can be seen that the larger MA clear designs cataloged here are in most cases 

better than those obtainable from Ke et al. The difference in aberration can sometimes be large, 

e.g. for a class 1 design with 12 factors and m1=2, where the Ke et al. design obtained from their 

17 run class 3 design by omitting the last 5 G2 columns would result in 18 words of length 4, as 

opposed to only six such words in the design cataloged here. For other cases, the difference is 

slight, for example for the class 3 design in 13 factors with m1=2, where the design obtainable 

from the Ke et al. instructions has 26 words of length 4 as compared to 25 such words for the 

MA clear design.   

Class 3 compromise plans are also class 4. As the class 3 requirement set is larger, the MA 

clear class 3 compromise plan is of course not necessarily MA for class 4. However, class 3 and 

class 4 MA clear compromise plans often coincide. Deviations occur in particular for relatively 

large values of m1, because – as has been discussed above – there may be designs with 

confounded interactions within both G1 and G2 but clear interactions between groups. Class 3 

compromise plans are also class 1. Alternatively, one can obtain a class 1 compromise plan with 

m1 increased by one vs. a corresponding class 3 plan by moving one factor from G2 to G1. A 

comparison of Tables 2 and 3 shows that MA clear class 1 compromise plans can often achieve 

better aberration than the corresponding class 3 plans.  

6. Final remarks 

Clear interactions graphs (CIGs) have been introduced, and an algorithm based on complete 

catalogs of CIGs has been proposed that is guaranteed to find the best existing clear design 

among the cataloged designs. Section 4 provided details  on the algorithm and described an 
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implementation  in the open-source software package FrF2 (Grömping 2007-2011). This 

algorithm has been used for creating a complete catalog of smallest MA clear compromise plans 

with up to 128 runs and 24 factors; some additional MA clear compromise plans in 256 runs 

have also been included. This work serves as a demonstration of the usefulness of the CIGs and 

the CIG-based algorithm. On the other hand, the work on the catalog has also been used to 

improve the software: those base designs that have shown up as yielding MA clear compromise 

designs should be generally useful for finding clear designs, even if no perfect compromise 

design is sought. The 128 run clear compromise plans from the catalog in Tables 2 to 4 are 

based on 68 different base designs, 30 of which were not originally part of the selection of 

128 run designs included in R-package FrF2. They have been added to the catalog 

implemented directly in FrF2, which should also improve the chances for automatically finding 

better designs for general requirement sets. At the very least, the thus-enhanced software will 

automatically find all MA clear compromise designs cataloged in this article, without loading the 

additional complete catalog of 128 run resolution IV designs.  

Apart from the CIGs and the proposed algorithm, the catalog of clear compromise plans is of 

interest in its own right, as there are practical situations for which the experimental factors 

naturally fall into two groups with a certain pattern of 2fis being of interest. For example, in the 

robustness scenario mentioned in the introduction, control factors and noise factors are a natural 

choice for the two groups G1 and G2. The interactions between these two groups will be 

particularly interesting. Nevertheless, one may not be willing to assume negligibility of other 

interactions. In this case, a class 4 clear compromise design might be adequate. One may also 

want to estimate interactions among control factors, which will imply a class 3 clear compromise 

design, whenever one is not willing to assume negligibility of the 2fis among noise factors. Many 

other such situations are conceivable. Therefore, the catalog of MA clear compromise designs 

can be quite useful for practitioners. 
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Finally, note that research on large designs is currently quite active (e.g. Block and Mee 

2005; Sanchez and Sanchez 2005; Xu 2009; Ryan and Bulutoglu 2010; Shrivastava and Ding 

2010). Extension of the CIG-based algorithm to larger run sizes is nevertheless limited, as was 

also seen when running the algorithm for searches among the 256 run designs in 18 factors: as 

the number of resolution IV designs increases dramatically with increasing run size, it will not be 

feasible to search complete catalogs of large resolution IV designs without prohibitive computing 

efforts (as of today’s computing power). It will however be useful to pre-select large designs with 

promising alias structures, e.g., many clear 2fis, from newly-found catalogs, which can support 

many experimental projects with improved designs. In situations for which run size is not crucial, 

like some computer experiments, resolution V designs may be the answer to the search for clear 

2fis: the work by Sanchez and Sanchez 2005 allows to generate very large resolution V designs 

for up to 120 factors; these are guaranteed to keep main effects and 2fis estimable as long as 

higher order effects can be considered negligible; however, they are not generally minimum 

aberration.  
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Appendix: Tables of catalogs 

Table 1: Resolution IV regulari base designs used in at least one clear compromise design  
(from the catalogs by Chen, Sun and Wu 1993 or Xu 2009, personal communications by Don Sun (64 runs) and 
Kenneth Ryan (256 runs, 18 factors) and the web supplement to Xu 2009)  
Design 
m-k.no. 

Runs 
2m-k 

Column numbers of 
factors 1 to m in Yates matrixii 

7-2.1 32 1 2 4 8 16 7 27 
8-3.1 32 1 2 4 8 16 7 11 29 
9-4.1 32 1 2 4 8 16 7 11 19 29 
9-4.2 32 1 2 4 8 16 7 11 13 30 
9-3.1 64 1 2 4 8 16 32 7 27 45 
10-4.1 64 1 2 4 8 16 32 7 27 43 53 
10-4.3 64 1 2 4 8 16 32 7 11 29 51 
11-5.1 64 1 2 4 8 16 32 7 11 29 45 51 
11-5.4 64 1 2 4 8 16 32 7 11 21 46 56 
11-5.6 64 1 2 4 8 16 32 7 11 19 29 62 
12-6.1 64 1 2 4 8 16 32 7 11 29 45 51 62 
12-6.2 64 1 2 4 8 16 32 7 11 21 46 54 56 
12-6.4 64 1 2 4 8 16 32 7 11 21 41 54 56 
12-6.23 64 1 2 4 8 16 32 7 11 21 25 31 45 
12-5.1 128 1 2 4 8 16 32 64 31 103 43 85 121 
13-7.1 64 1 2 4 8 16 32 7 11 21 25 38 58 60 
13-7.3 64 1 2 4 8 16 32 7 11 19 29 37 59 62 
13-7.6 64 1 2 4 8 16 32 7 11 19 30 37 41 52 
13-7.34 64 1 2 4 8 16 32 7 11 13 19 21 25 46 
13-6.1 128 1 2 4 8 16 32 64 31 103 43 85 44 86 
13-6.6 128 1 2 4 8 16 32 64 31 103 43 85 44 89 
14-8.1 64 1 2 4 8 16 32 7 11 19 30 37 41 49 60 
14-8.4 64 1 2 4 8 16 32 7 11 19 30 37 41 52 56 
14-8.7 64 1 2 4 8 16 32 7 11 19 29 37 41 47 49 
14-8.40 64 1 2 4 8 16 32 7 11 13 14 19 21 25 54 
14-7.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 
14-7.3 128 1 2 4 8 16 32 64 31 103 43 85 46 61 67
14-7.5 128 1 2 4 8 16 32 64 31 103 43 85 44 86 13 
14-7.14 128 1 2 4 8 16 32 64 31 103 43 49 74 62 109
14-7.71 128 1 2 4 8 16 32 64 31 103 43 85 121 13 14 
14-7.94 128 1 2 4 8 16 32 64 31 103 43 85 44 89 113 
15-9.3 64 1 2 4 8 16 32 7 11 19 29 37 41 47 49 55 
15-9.9 64 1 2 4 8 16 32 7 11 13 19 21 25 35 37 63 
15-9.40 64 1 2 4 8 16 32 7 11 13 14 19 21 22 25 58 
15-8.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 
15-8.3 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 13
15-8.10 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 55
15-8.34 128 1 2 4 8 16 32 64 31 103 43 85 44 86 13 97
15-8.78 128 1 2 4 8 16 32 64 31 103 43 49 78 45 62 105
15-8.150 128 1 2 4 8 16 32 64 31 103 43 85 44 82 57 113 
15-8.423 128 1 2 4 8 16 32 64 31 103 43 85 121 13 14 22 
15-8.1221 128 1 2 4 8 16 32 64 31 103 43 85 44 89 113 125 
16-10.2 64 1 2 4 8 16 32 7 11 19 29 37 41 47 49 55 59 
16-10.8 64 1 2 4 8 16 32 7 11 13 14 19 21 25 35 37 63 
16-10.45 64 1 2 4 8 16 32 7 11 13 14 19 21 22 25 26 60 
16-9.1 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 110 
16-9.2 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 
16-9.80 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 55 56 
16-9.890 128 1 2 4 8 16 32 64 31 103 43 85 44 82 57 113 89 
16-9.1261 128 1 2 4 8 16 32 64 31 103 43 85 46 61 67 70 105 
16-9.1413 128 1 2 4 8 16 32 64 31 103 43 85 46 56 88 79 55  
16-9.2913 128 1 2 4 8 16 32 64 31 103 43 85 121 13 14 22 19 
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Table 1, continued 
Design 
m-k.no. 

Runs 
2m-k 

Column numbers of 
factors 1 to m in Yates matrix* 

16-9.5539 128 1 2 4 8 16 32 64 31 103 43 85 14 22 13 19 26 
17-11.2 64 1 2 4 8 16 32 7 11 19 29 37 41 47 49 55 59 62 
17-11.7 64 1 2 4 8 16 32 7 11 13 14 19 21 22 25 35 37 63 
17-11.6 =  
17-11.38iii 64 1 2 4 8 16 32 7 11 13 14 19 21 22 25 26 28 63  

17-10.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 116 
17-10.1036 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 55 56 79 
17-10.2407 128 1 2 4 8 16 32 64 31 103 43 85 44 82 57 113 89 105 
17-10.5846 128 1 2 4 8 16 32 64 31 103 43 85 46 61 67 70 105 108 
17-10.5924 128 1 2 4 8 16 32 64 31 103 43 85 46 56 88 79 55 104 
17-10.9040 128 1 2 4 8 16 32 64 31 103 43 85 121 13 14 22 19 26 
17-10.12633 128 1 2 4 8 16 32 64 31 103 43 85 14 22 13 19 26 28 
18-11.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 116 121 
18-11.23 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 38 79 98 
18-11.95 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 116 105 
18-11.5146 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 55 56 79 104 
18-11.6381 128 1 2 4 8 16 32 64 31 103 43 85 44 82 57 113 89 105 123 
18-11.14398 128 1 2 4 8 16 32 64 31 103 43 85 46 56 88 79 55 104 112 
18-11.18050 128 1 2 4 8 16 32 64 31 103 43 85 121 13 14 22 19 26 28 
18-10.1iv 256 1 2 4 8 16 32 64 128 27 46 92 105 127 143 179 182 194 213 
18-10.4 256 1 2 4 8 16 32 64 128 127 199 217 51 210 60 102 142 171 7 
18-10.21016v 256 1 2 4 8 16 32 64 128 127 199 217 242 108 15 54 101 163 170 
19-12.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 55 58 86 
19-12.2 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 55 58 97 
19-12.10 128 1 2 4 8 16 32 64 31 103 43 85 44 82 54 56 88 78 123 125 
19-12.488 128 1 2 4 8 16 32 64 31 103 43 85 44 86 25 105 58 106 54 114 
19-12.9648 128 1 2 4 8 16 32 64 31 103 43 85 44 82 57 113 89 105 123 125 
19-12.11319 128 1 2 4 8 16 32 64 31 103 43 81 45 49 118 73 94 56 104 127 
19-12.12482 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 55 56 79 104 112 
19-12.26381 128 1 2 4 8 16 32 64 31 103 43 45 87 46 88 55 56 79 104 112 
19-11.1 256 1 2 4 8 16 32 64 128 27 46 92 105 127 143 179 182 194 213 229 
20-13.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 55 58 86 91 
20-13.2 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 55 58 97 108 
20-13.11 128 1 2 4 8 16 32 64 31 103 43 85 44 82 54 56 88 78 123 125 104 
20-13.43452 128 1 2 4 8 16 32 64 31 103 43 81 44 93 21 13 19 49 14 25 28 
20-13.47458 128 1 2 4 8 16 32 64 31 103 43 45 87 46 88 55 56 79 104 112 127 
20-12.1 256 1 2 4 8 16 32 64 128 27 46 92 105 127 143 179 182 194 213 229 248 
21-14.1 128 1 2 4 8 16 32 64 31 103 43 85 44 82 54 56 88 78 123 125 104 25  
21-14.4 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 78 58 83 97 28 104 
21-14.8 128 1 2 4 8 16 32 64 31 103 43 85 44 82 54 56 88 78 123 125 104 113  
21-14.68031 128 1 2 4 8 16 32 64 31 103 43 81 44 93 21 13 19 49 14 25 28 61 
21-13.1 256 1 2 4 8 16 32 64 128 27 45 46 92 105 127 143 152 179 203 213 214 236 
22-15.1 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 78 58 83 97 28 104 114  
22-15.7 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 78 58 83 97 28 104 112  
22-15.8509 128 1 2 4 8 16 32 64 31 103 43 49 74 124 7 61 84 13 67 82 37 62 94  
22-15.118181 128 1 2 4 8 16 32 64 63 71 25 104 30 41 78 112 15 49 119 86 23 111 97  
22-14.1 256 1 2 4 8 16 32 64 128 27 46 77 88 105 127 143 158 164 179 185 201 213 234 
23-16.1 128 1 2 4 8 16 32 64 31 103 43 85 44 82 54 56 88 78 123 125 104 25 112 49  
23-16.8 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 38 58 79 83 124 114 123 106  
23-16.5532 128 1 2 4 8 16 32 64 31 103 43 49 74 124 7 94 14 50 121 100 88 112 21 61  
23-16.172917 128 1 2 4 8 16 32 64 63 71 25 104 30 41 78 112 15 49 119 86 23 111 97 46  
23-15.1 256 1 2 4 8 16 32 64 128 27 43 46 77 88 105 127 143 158 179 185 201 213 234 236 
24-17.2 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 38 58 79 83 110 124 97 104 114  
24-17.4 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 38 58 79 83 124 114 123 106 113 
24-17.4552 128 1 2 4 8 16 32 64 31 103 43 49 74 124 7 94 14 50 121 100 88 112 21 61 13  
24-17.256531 128 1 2 4 8 16 32 64 63 71 25 104 30 41 78 112 15 49 119 86 23 111 97 46 39  
24-16.1 256 1 2 4 8 16 32 64 128 27 46 77 83 84 105 127 143 146 158 165 166 179 185 213 248 
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Table 2: Catalog of smallest MA class 1 clear compromise designs (no entryvi: resolution V needed)vii,viii 

Cell entries: design and choice of design columns for G1; “+n” denotes the columns of the design to the left with column n added 

Bold face entry: isomorphic design can also be obtained from Ke et al. 2005. 
m1 2 3 4 5 6 7 8 9 10 11 12 

117 factors 7-2.1 7-2.1 7-2.1   
 1 4 +5 +7   
8 factors 8-3.1 8-3.1   
 1 5 +8   
9 factors 9-4.1 9-4.2 9-3.1 9-3.1 9-3.1   
 1 9 +5 1 4 5 6 +8 +9   
10 factors 10-4.1 10-4.1 10-4.1 10-4.3   
 1 4 +5 +10 1 5 6 9 10   
11 factors 11-5.1 11-5.1 11-5.4   
 1 5 +11 6 8 9 10   
12 factorsix 12-6.1 12-6.2 12-5.1 12-5.1 12-5.1 12-5.1 12-5.1 12-5.1   
 1 5 6 8 9 1 2 3 4 +5 +6 +7 +10 +11   
13 factorsix 13-7.1 13-7.6 13-6.1 13-6.1 13-6.1 13-6.1 13-6.6   
 4 6 4 10 13 1 3 5 7 +8 +9 +10 1 2 3 5 7 8 9 10   
14 factorsix 14-8.1 14-8.7 14-7.1 14-7.1 14-7.3 14-7.3 14-7.94   
 1 10 5 10 13 1 2 4 5 +7 1 4 5 8 9 11 4 5 7 8 9 11 12 1 2 3 5 7 8 9 10   
15 factorsix 15-9.3 15-9.9 15-8.1 15-8.1 15-8.34 15-8.1221 15-8.1221   
 1 10 6 12 15 1 4 5 6 +11 4 5 7 9 10 13 1 2 3 5 7 8 9 +10   
16 factors 16-10.2 16-10.8 16-9.1 16-9.2 16-9.1261   
 1 10 6 13 16 2 3 5 8 1 4 5 6 11 4 5 7 8 9 11   
17 factors 17-11.2 17-11.7 17-10.1 17-10.1 17-10.5846   
 1 10 6 14 17 1 4 5 8 +9 4 5 7 8 9 11   
18 factorsx,xi

 18-11.1 18-11.1 18-11.23 18-11.95 18-10.1 18-10.1 18-10.1 18-10.1 18-10.4 18-10.4 ?xii 
 1 4 +5 2 5 9 10 1 4 5 8 9 4 5 6 13 14 +18 +1 +2 1 4 5 6 7 9 11 13 15 16 +17  
19 factorsx,xi 19-12.1 19-12.2 19-12.488 19-11.1 19-11.1 19-11.1 ? ? ?   
 1 4 1 8 9 1 8 9 12 1 2 4 5 9 +13 +14   
20 factorsx,xi 20-13.1 20-13.2 20-12.1 20-12.1 ? ? ? ? ?   
 1 4 4 5 15 1 2 4 5 +9   
21 factorsx,xi 21-14.1 21-14.4 21-13.1 21-13.1 ? ? ? ? ?   
 1 2 2 6 17 1 3 4 6 +9   
22 factorsx,xi 22-15.1 22-15.7 22-14.1 22-14.1 22-14.1 ? ? ? ?   
 1 12 2 6 17 1 2 3 7 +9 +10   
23 factorsx,xi 23-16.1 23-16.8 23-15.1 23-15.1 ? ? ? ? ?   
 1 2 2 5 9 1 2 8 9 +15   
24 factorsx,xi 24-17.2 24-17.4 24-16.1 ? ? ? ? ? ?   
 1 12 2 5 9 5 6 10 22   
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Table 3: Catalog of smallest MA class 3 clear compromise designs (no entryvi: resolution V needed)viii,xiii 

Cell entries: design and choice of design columns for G1; “+n” denotes the columns of the design to the left with column n added 

Bold face entry: isomorphic design can also be obtained from Ke et al. 2005. 
m1 1 2 3 4 5 6 7 8 9 10 11 

7 factors 7-2.1 7-2.1 7-2.1    
4 +5 +7    

8 factors 8-3.1 8-3.1    
5 +8    

9 factors 9-4.1 9-4.2 9-3.1 9-3.1 9-3.1    
9 5 9 4 5 6 +8 +9    

10 factors 10-4.1 10-4.1 10-4.3 10-4.3    
4 +10 5 6 9 +10    

11 factors 11-5.1 11-5.6 11-5.6    
11 6 10 +11    

12 factorsix 12-6.4 12-6.23 12-5.1 12-5.1 12-5.1 12-5.1 12-5.1 12-5.1    
11 6 12 2 3 4 +5 +6 +7 +10 +11    

13 factorsix 13-7.3 13-7.34 13-6.1 13-6.1 13-6.1 13-6.6 13-6.6    
10 6 13 5 7 8 +9 +10 1 2 5 7 8 9 +10    

14 factorsix 14-8.4 14-8.40xiv 14-7.5 14-7.71 14-7.94 14-7.94 14-7.94    
10 6 14 7 9 10 6 7 10 11 1 2 5 7 8 +9 +10    

15 factorsix 15-9.3 15-9.40xv 15-8.150 15-8.423 15-8.1221 15-8.1221 15-8.1221    
10 6 15 1 8 9 6 7 10 11 1 2 5 7 8 +9 +10    

16 factors 16-10.2 16-10.45xvi 16-9.890 16-9.2913 16-9.5539    
10 6 16 1 8 9 6 7 10 11 6 7 9 10 11    

17 factors 17-11.2 17-11.38xvii 17-10.2407 17-10.9040 17-10.12633    
10 6 17 1 8 9 6 7 10 11 6 7 9 10 11    

18 factorsx,xi 18-11.1 18-11.1 18-11.6381 18-11.18050 18-10.1 18-10.1 18-10.4 18-10.4 18-10.21016 18-10.21016 18-10.21016 
4 +5 1 8 9 6 7 10 11 4 5 6 13 14 +18 5 6 9 11 13 15 16 +17 2 3 5 6 7 8 9 11 12 +14 +15 

19 factorsx,xi 19-12.10 19-12.9648 19-12.9648 ? ? ? ? ?    
1 1 8 +9    

20 factorsxi 20-13.11 20-13.43452 ? ? ? ? ? ?    
1 9 10    

21 factorsxi 21-14.8 21-14.68031 ? ? ? ? ? ?    
1 9 10    

22 factorsxi 22-15.8509 22-15.118181 ? ? ? ? ? ?    
10 2 3    

23 factorsxi 23-16.5532 23-16.172917 ? ? ? ? ? ?    
10 2 3    

24 factorsxi 24-17.4552 24-17.256531 ? ? ? ? ? ?    
10 2 3    
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Table 4: Catalog of smallest MA class 4 clear compromise designs (entry Vvi: resolution V needed)viii,xviii 
Cell entries: design and choice of design columns for G1; “+n” denotes the columns of the design to the left with column n added 
Bold face entry: isomorphic design can also be obtained from Ke et al. 2005.  
W.l.o.g., G1 is assumed to be the smaller of the two sets G1 and G2. For larger G1, switch roles of G1 and G2. 

m1 1 2 3 4 5 6 7 8 9 10
7 factors 7-2.1 7-2.1 7-2.1 
 4 +5 4 5 7 
8 factors 8-3.1 8-3.1 V V
 5 +8 
9 factors 9-4.1 9-4.2xix 9-3.1 9-3.1 
 9 +5 4 5 6 1 2 3 7 
10 factors 10-4.1 10-4.1 10-4.3 10-4.1 10-4.1
 4 +10 5 6 9 1 2 3 7 +10
11 factors 11-5.1 11-5.6 11-5.6 11-5.1 11-5.1
 11 6 10 6 10 11 5 6 9 10 +11
12 factorsix 12-6.4xx 12-6.23xx 12-5.1 12-5.1 12-5.1 12-6.1xx 
 11 6 12 2 3 4 1 8 9 12 +3 1 2 3 4 7 8 
13 factorsix 13-7.3xxi 13-7.34xxi 13-6.1 13-6.1 13-6.1 13-6.1 
 10 6 13 5 7 8 1 2 11 13 +5 +7 
14 factorsix 14-8.4xiv 14-8.40xiv 14-7.5 14-7.1 14-7.1 14-7.1 14-7.14 
 10 6 14 7 9 10 1 3 10 12 +4 +5 1 3 5 6 8 11 13
15 factorsix 15-9.3xv 15-9.40xv 15-8.150 15-8.3 15-8.10 15-8.78 15-8.78 
 10 6 15 1 8 9 7 9 11 14 1 2 10 11 13 1 5 6 8 11 14 +4
16 factors 16-10.2xvi 16-10.45xvi 16-9.890 16-9.80 16-9.80 16-9.1413 V V 
 10 6 16 1 8 9 1 2 11 13 +10 1 2 3 10 11 12
17 factors 17-11.2xvii 17-11.38xvii 17-10.2407 17-10.1036 17-10.1036 17-10.5924 V V 
 10 6 17 1 8 9 1 2 11 13 +10 1 2 3 10 11 12
18 factorsx,xi 18-11.1 18-11.1 18-11.6381 18-11.5146 18-11.5146 18-11.14398 18-10.1 18-10.1 18-10.1 
 4 +5 1 8 9 1 2 11 13 +10 1 2 3 10 11 12 1 3 4 5 6 15 16 +13 +14 
19 factorsx,xi 19-12.10 19-12.9648 19-12.9648 19-12.11319 19-12.12482 19-12.26381 19-11.1 19-11.1 19-11.1 
 1 1 8 +9 2 3 10 12 1 2 10 11 13 1 2 3 10 11 13 1 3 4 13 14 15 16 1 3 5 6 15 16 18 19 +4 
20 factorsxi 20-13.11 20-13.43452 ? 20-12.1 ? 20-13.47458 ? 20-12.1 ? ? 
 1 9 10 1 3 15 16 1 2 3 10 11 13 1 3 4 13 14 15 16 20
21 factorsxi 21-14.8 21-14.68031 ? 21-13.1 ? ? 21-13.1 ? ? ? 
 1 9 10 4 5 8 16 4 5 6 8 14 16 17 21
22 factorsxi 22-15.8509 22-15.118181 ? ? ? ? 22-14.1 22-14.1 22-14.1 ? 
 10 2 3 3 6 8 11 13 17 20 +9 +10 
23 factorsxi 23-16.5532 23-16.172917 ? ? ? ? ? ? ? ? 
 10 2 3 
24 factorsxi 24-17.4552 24-17.256531 ? ? ? ? ? ? ? ? 
 10 2 3 
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i There are also non-regular resolution V designs, indicated by footnotes in the 

following tables. These have not been considered for the catalogs. 

ii Generators can be determined from the binary representation of the Yates matrix 

column number: A letter of the alphabet is present in the generator if there is a “1” in 

the respective position from the right. For example, column 8 is 1 0 0 0 in binary 

code, which corresponds to letter D; column 12 is 1 1 0 0 in binary code, which 

corresponds to the 2fi CD. 

iii The design is called 17-11.6 in the Chen, Sun and Wu catalog in the paper, but 17-

11.38 in the complete enumeration of 64 run resolution IV designs as obtained from 

the authors (personal communication with D.X.Sun). Numbering in the paper reflects 

some trade-off choices by the authors regarding MA and MaxC2 criteria, numbering 

in the complete listing is strictly in terms of MA. 

iv Design 18-10.1 is from the Xu and Wu catalog and not from the complete Ryan and 

Bulutoglu catalog. 

v The catalog has been sorted according to WLP up to length 6; design 18-10.21016 is 

within a large group of designs with the same WLP, even after additional sorting 

w.r.t. the number of words of length 7. It has minimum aberration among the designs 

with 11 factors with all their 2fis clear. 

vi Designs with “?” entries require at least 256 runs; the actual run size is unknown 

(because a graph-enhanced complete catalog of resolution IV 256 run designs is not 

available). Exception: the class 1 design with 256 runs and 18 factors, cf. footnote 

xii. 

vii The actual run size is larger than the Ke et al. (2005) lower bound for the following 

combinations (numbers of factors with G1 sizes in parentheses):  

10 and 11(1), 12(3 to 5), 13(3 to 4), 14(3), 18 to 22(1), 18 (6 to 8), 19 (5 to 7), 20 
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and 21(4 to 6), 22 and 23 (4 to 5), 24(4). Whenever the lower bound is 256 and a 

resolution V design is not possible, the actual run size is not known. 

viii Designs in bold italics can also be obtained from the Ke et al. (2005) article (up to 

isomorphism). 

ix For 12 to 15 factors, there is an irregular resolution V design in 128 runs (cf. e.g. Mee 

2009, Section 8.2). This can of course be used as well.  

x For 18 and 19 factors, there is an irregular resolution V design in 256 runs (cf. e.g. 

Mee 2009, Section 8.2). This can of course be used as well. 

xi For the 256 run designs for 18 factors, an incompletely sorted catalog of the best 

(MA) 508177 designs has been checked (many ties that might that have not been 

sorted w.r.t. numbers of length 7 or longer words); for the larger 256 run designs, 

only the MA design has been checked.  

xii No MA plan was found; the MA clear class 3 plan for 11 factors in G1 (7, 42 and 84 

words of lengths 4, 5 and 6, resp.) can accommodate a class 1 compromise plan by 

moving one factor from G2 to G1. There may be a class 1 256 run resolution IV plan 

with less aberration.  

xiii The actual run size is larger than the Ke et al. (2005) lower bound for the following 

combinations (numbers of factors with G1 sizes in parentheses):  

8(3), 10 (1 and 5), 11 (1, 4, 5), 12 (3 to 5), 13 (3,4,8), 14 (3 and 8), 15(8), 16 and 17 

(6 to 8), 18 to 22 (1), 18 (5 to 7), 19 (4 to 6), 20 and 21 (3 to 5), 22 (3 and 4). 

Whenever the lower bound is 256 and a resolution V design is not possible, the 

actual run size is not known. 

xiv 14-7.1 would do it with its columns 4 and 5 for G1. 

xv 15-8.1 would do it with its columns 4 and 5 for G1. 

xvi 16-9.2 would do it with its columns 4 and 5 for G1. 

xvii 17-10.1 would do it with its columns 4 and 5 for G1. 
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xviii The actual run size is larger than the Ke et al. (2005) lower bound for the following 

combinations (numbers of factors with G1 sizes in parentheses):  

10,11(1), 12(3 to 5), 13(3,4), 14(3), 16 to 19 (7+), 18 to 22(1), 20 to 22(3 to 5), 23 to 

24 (3 to 4). Whenever the lower bound is 256 and a resolution V design is not 

possible, the actual run size is not known (exception: some 18 run resolution IV 

designs in 256 runs have also been investigated). 

xix 9-3.1 would do it with its columns 4 and 5 for G1. 

xx 12-5.1 would do it with its columns 2, 2 3, or 1 3 4 8 9 12 for G1. 

xxi 13-6.1 would do it with its columns 5 and 7 for G1. 

 


