
Cheat sheet for par() graphical parameters, annotation, and prepplot

Ulrike Grömping

08 April 2021



Cheat sheet for par() graphical parameters, annotation, and prepplot. Page 1.

Symbols and lines

pch
1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

lty
1

2

3

4

5

6

Sizes and widths

cex
0.5

1

1.5

2

3

lwd
0.5
1

1.5

2

3

ps
6

12

18

24

36

General par settings

• bg background colour for device region
(only opaque colors)

• fg foreground colour
• col default plotting colour
• font font type (normal, bold, italic,

bold and italic, symbol)
• xpd clipping is reduced by TRUE and

even more by NA

• pty maximal (default) or square plot-
ting region

Regions: plot, figure, inner and device

Single figure

Figure region = Inner region = Device region

Plot region

margin line 0

margin line 1

margin line 2

m
a
rg

in
 l
in

e
 0

m
a
rg

in
 l
in

e
 1

m
a
rg

in
 l
in

e
 2

m
a
rg

in
 l
in

e
 3

m
a
rg

in
 l
in

e
 0

m
a
rg

in
 l
in

e
 1

mar=c(3,4,4,2)+0.1

Arrangement of figures

Plot region 1

Figure region 1

inner margin line 0

Plot region 2

Figure region 2

inner margin line 0

inner region is the union of figure regions

outer margin line 0

Function box draws a box around the plot, figure, inner or outer region.

Arrangements

The default cex is automatically adapted to the chosen arrangement.

par(mfrow=c(2,3)) or ditto with mfcol

1 2 3
4 5 6
mfrow

1
2

3
4

5
6

mfcol

layout: more advanced than using only par

mm <- rbind(c(1,1,2),

c(1,1,3),

c(4,5,5))

ws <- c(2,1,1)

hs <- c(2,2,1)

layout(mat=mm,

widths=ws,

heights=hs)

1
2

3

4 5

Coordinate systems and extents

Normalized coordinate systems refer to [0, 1] × [0, 1], with (0,0)
lower left and (1,1) upper right. Coordinates can be queried with
par, e.g. par("usr") (and, more advanced, set). They are vec-
tors c(x1, x2, y1, y2). See function convertXY for conversion
between systems.

• usr axis extremes in user coordinates
• fig corners of current figure region on device (as [0, 1] ×

[0, 1])
• plt corners of current plot region in figure region (as [0, 1]×

[0, 1])
• omd corners of “region inside outer margins” on device (as

[0, 1] × [0, 1]); these appear to exclude the most outward
inner margins, i.e. they are not the corners of what function
box fences in as the inner region.

• din, fin, pin, cin: sizes in inch as (width, height) for
device, figure, plot, character

• cin, cxy, cra: size of a character as (width, height) in
inches, user coordinates or pixels (not precise, see help for
suggestions)

• mar, mai: bottom, left, top, right margins, in lines or inches
• oma, omi: bottom, left, top, right outer margins, in lines or

inches
• mex: character size expansion factor for margins (if larger,

mai increases relative to mar)

Axes

• tck, tcl: tick length in different units
• las tick label orientation
• lab for default number of tick marks
• mgp distance (lines) of axis elements from plot region
• xaxs, yaxs: handling of range limits
• xaxp, yaxp: extreme tick marks and number of intervals

(for linear axes)
• ann (FALSE for suppressing all axis and overall titles)
• bty for box type (n for none)

o l 7 c u ]

© 2021 Ulrike Grömping. Inspired by a sheet by Gaston Sanchez, who in turn gives credit to Flowing Data



Cheat sheet for par() graphical parameters, annotation, and prepplot. Page 2.

Text elements, e.g. placed with text(x, y, "mytext", ...)

• cex or ps: text size (cex is not limited to text size); for margins, there is the separate
expansion factor mex, which affects the relation between mar and mai

• font: type face of the font (default 1=normal)
• col: colour of the font
• cex, font and col have separate versions for axis, labels, main title and sub title, respectively

(with .axis, .lab, .main or .sub)
• las: text orientation (las=1 often recommended)
• family: mono, sans or serif; many others are possible (e.g. ?Hershey, package extrafont).
• srt: string rotation (crt for character rotation doesn’t work on any device I tried)
• adj and pos (not in par) control adjustment of text relative to its x/y position

mono

sans

serif

Lato

srt=0

s
r
t
=
4
5

s
r
t
=
9
0

s
r
t
=
1
3
5 srt=180

s
r
t
=
2
2
5

s
r
t
=
2
7
0

s
r
t
=
3
1
5

placement with adj
|adj=0.5

|adj=0adj=1

| adj=−0.3adj=1.3

adj=c(−0.1,1.3)
adj=c(1.1,−0.3) adj=c(−0.1,−0.3)
adj=c(1.1,1.3)

pos overrides adj
placement depends on offset
offset=0.5 (default)

pos=1
pos=2

pos=3
pos=4

offset=1

pos=1

pos=2

pos=3

pos=4

Placing annotation

• main (the title) is per default vertically placed in the center of the top margin.

Default placements

sub: margin line mgp[1]+1

xlab: margin line mgp[1]

y
la

b
: 
m

a
rg

in
 l
in

e
 m

g
p
[1

]

axis line at margin line mgp[3]lin
e
 a

t 
m

a
rg

in
 l
in

e
 m

g
p
[3

]

default mar: c(5, 4, 4, 2) + 0.1

default mgp: c(3, 1, 0)

(prepplot allows for different mgpx and mgpy.)

tick labels at margin line mgp[2]

las=1)
(with

mgp[2]
line

margin
at

labels
tick

• par("adj") governs default horizontal (or parallel to axis) adjustments of main, sub, xlab

and ylab (one-for-all par("adj") is rarely suitable).

Customize placement of annotation

• par("mgp"), par("adj"), and font-related par settings affect all uses, e.g. in high-
level plotting functions.

• Suppress initial annotation for more customization:
– axes=FALSE or xaxt="n"/yaxt="n" suppresses axes
– empty strings (e.g. xlab=" ") or ann=FALSE suppress titles

• custom axis with tick labels: axis command(s) (NOT for axis titles)
• main, sub, xlab, ylab: title command(s)

– line argument (real-valued) allows changing the margin line.
– possibly, several title commands, even with label for same axis

• mtext places text in margins: line (real-valued) provides margin line.
For outer=FALSE,

– adj is relative to plot region, padj ditto,
– at refers to user coordinates.

For outer=TRUE,
– adj is relative to device region, padj ditto„
– at refers to device coordinates: (0,0)=bottom left, (1,1)=top right.

An aside: Multiline text boxes

• lheight line height multiplier for multi-line text (combined with cex for actual line
height)

• Function strwrap creates multiple strings from one long string, paste with
collapse="\n" makes this into a multiline string (textstring in the following).

• Functions strheight and strwidth calculate the height and width required for
printing (multiline) texts. Boxes centered at (0.5, 0.5) have been obtained:

lheight=1

Multiline text can be used

for explanations. Text should

be large enough and should

not overlap with other

graphical elements.

lheight=1.5

Multiline text can be used

for explanations. Text should

be large enough and should

not overlap with other

graphical elements.

w <- strwidth(textstring, cex=1)

h <- strheight(textstring, cex=1)

rect(0.5 - w/2 - w/20, 0.5 - h/2 - h/10,

0.5 + w/2 + w/20, 0.5 + h/2 + h/10,

col = mycol, xpd=NA)

© 2021 Ulrike Grömping. Inspired by a sheet by Gaston Sanchez, who in turn gives credit to Flowing Data



Cheat sheet for par() graphical parameters, annotation, and prepplot. Page 3.

Prepare plotting with function prepplot of package prepplot

Philosophy of prepplot

Package prepplot supports custom preparation of the figure area. Data information can
then be added. In particular, prepplot makes it easier to

• provide a background colour for the plotting region
• allow background stripes in addition to gridlines

– optionally distinguish minor and major gridlines
• highlight specific value ranges with stripes

– from within prepplot (if no grid lines are needed)
– or with function stripes and a transparent stripe colour

prepplot respects many par settings. It overrides bty (always o), several colours, and las

(default 1).

Stripes and gridlines

Default stripes and grid lines

0 10 20 30 40 50

40

50

60

70

80

90

Education

F
e
rt

ili
ty

stripesx = TRUE

gridy = TRUE

points()

Default stripes and grid lines

0 10 20 30 40 50

40

50

60

70

80

90

Education

F
e
rt

ili
ty

gridx = TRUE

stripesy = TRUE

points()

Default grid lines

0 10 20 30 40 50

40

50

60

70

80

90

Education

F
e
rt

ili
ty

gridx = TRUE

gridy = TRUE
points()

Default grid lines with highlighted x range

0 10 20 30 40 50

40

50

60

70

80

90

Education

F
e
rt

ili
ty

gridx = TRUE

gridy = TRUE

stripes()

points()

Everything except mgp, font sizes and colour choices is default.

Using high-level plotting functions with prepplot

• Highlevel plotting functions with an add argument can be directly used on prepplot back-
grounds, setting add=TRUE.
Example functions: barplot, curve, plot.histogram.

• Many highlevel plotting functions invisibly return relevant plot information, for example:
– barplot returns a matrix whose columns are midpoints of (grouped) bars (e.g. for

custom labelling of bars).
– hist returns a list of class histogram with all relevant information.
– density returns a list of class density with, among other things, an x and y element.
– boxplot returns a list of relevant statistics. Numeric locations on the group axis are

the position numbers of the names element of that list.
– . . .

These often also permit to suppress plotting (plot=FALSE).
• A typical workflow would

– run a plot function with plotting suppressed,
– use result for determining prepplot axis limits, tick positions and more,
– use plot or lines method on stored object, or rerun plot function with add=TRUE.

Miscellaneous remarks on prepplot

• Settings in prepplot do not modify settings in par.
• mgpx defaults to par("mgp"), mgpy defaults to mgpx. Neither modifies par("mgp").
• xlim and ylim can have more than two elements, their range is then taken.

Caution: Make sure the axes contain necessary reference values, e.g. zero on the vertical
axis of a histogram.

Colors

• Colors "grey0" (equal to "black") to "grey100" (equal to "white") can be used for quick
grey shading, function grey.colors can provide a palette of grey values.

• Packages like RColorBrewer, pals, . . . should be used for high quality color palettes.
• Transparent colors should be used, where plot points overlap or background should remain

partly visible. Transparency can be achieved with functions col2rgb and rgb:
– col2rgb("grey20") returns vector of RGB values (here: 51, 51, 51).
– rgb(col[1], col[2], col[3], alpha, maxColorValue = 255) adds transparency to

a color with RGB values in col (alpha=255 is opaque, alpha=0 fully transparent).
• Possibilities for color legends:

– base function legend (but not good for fills, and placement can be awkward)
– pals::pal.bands can showcase a palette

(use for legend in layout arrangement on a long horizontal template)
– more thinking required, but much more flexible: plotrix::color.legend places a

legend rectangle anywhere in the plot region.

© 2021 Ulrike Grömping. Inspired by a sheet by Gaston Sanchez, who in turn gives credit to Flowing Data


