
Supplementary material for ‘An Algorithm for
Generating Good Mixed Level Factorial Designs’

Ulrike Grömping and Roberto Fontana
05 November 2018

Contents
1 Approach for optimizing designs for the Hadamard approach 1

2 Further examples that illustrate the scope and limitations of our algorithm 2
2.1 Designs of strength at least 2 . 2
2.2 Designs of strength 1 / resolution II . 3

3 The new designs from the paper 3

4 Additional reference 4

1 Approach for optimizing designs for the Hadamard approach

For obtaining OA(12, 2a3141, 1) from a Hadamard-based OA(12, 211121, 2) (the L12.2.11 from R package
DoE.base augmented by a 12-level column), a brute force search for the best A2 over all selections of a out of
the 11 2-level columns was applied; among designs with the same A2 value, the one with the best generalized
resolution was chosen (Grömping and Xu 2014). The search was applied to each of 576 variants of assigning
a 3 × 4 full factorial to the 12 run factor, obtained by

• assigning the first level of the three-level factor to runs 1 to 4, the second level to runs 5 to 8 and the
third level to runs 9 to 12

• and assigning levels 1 to 4 of the four-level factor to runs 1 to 4, while combining each of the 24
permutations of the four levels for runs 5 to 8 with each each of the 24 permutations of the four levels
for runs 9 to 12 (i.e., 576 variants of allocating the 4-level factor).

This pragmatic approach of creating a 3-level and a 4-level factor was chosen for feasibility reasons:

• on the one hand, working with only a single order of the 3 × 4 full factorial does not yield the best
results; for example, the optimum design for a = 4 is not found by this approach.

• on the other hand, for covering all structurally different allocations, one would have had to also vary
the possible decompositions of the 12 runs into three groups for the levels of the three-level factor
(5775 variants); this would have led to more than three million (5775×576) variants from each of which
which to choose a columns (up to 462 column allocations to be tried for each variant); for gaining an
impression of the time needed, this latter approach has been taken for the largest array (a = 11), for
which no column allocations are needed; the time used was about four hours and 40 minutes; the result
obtained by the pragmatic approach was not improved (but might be in general).

• furthermore, including resolution II designs in 3 and 4 levels instead of full factorials only could have
possibly yielded an improved overall result.

• Even with the chosen limited approach, allocation times were substantial for settings with medium
number of 2-level factors.

Optimizing A2 or E(χ2) without watching out for total confounding is questionable for supersaturated
designs, since it might be possible but almost never desirable to end up with total confounding between two
columns; the Hadamard approach per construction prevents total confounding between the 2-level factors.

1

However, total confounding between a 2-level factor and the 4-level factor might occur. This indeed happened
for a = 10; resolving ties by choosing the design with the larger generalized resolution (GR, see Grömping
and Xu 2014) removed the total confounding. Depending on the frequency of ties, run times increase by
incorporating this feature.

2 Further examples that illustrate the scope and limitations of
our algorithm

2.1 Designs of strength at least 2

Coverage of mixed level arrays of larger strength in existing sources is a little patchy; for example, Eendebak and
Schoen (2010) provided an OA(64, 224181, 3), but did not comment on the existence of arrays with more 2-level
factors. For three and four 2-level factors, such arrays exist with (A4, A5) = (3, 0) or (A4, A5, A6) = (6, 1, 0),
respectively, and our algorithm finds non-regular arrays with these GWLPs after short optimization times
(optimality of A4 confirmed with the bound of Proposition 1). Regular arrays for these two scenarii can be
found with the method published in Kobilinsky et al. (2017); this method does not optimize A4 and finds
arrays with (A4, A5) = (3, 0) and (A4, A5, A6) = (7, 0, 0), respectively (with R package planor).

The remaining three example arrays of this section are related to experimentation with optimizer options
from the development phase of R package DoE.MIParray: an OA(128, 2243, 4), and OA(96, 223142, 3) and
an OA(48, 223142, 2). The factors to be considered were MIQCPMethod (2-level), MIPFocus (2-level) and
Heuristics (4-level) for Gurobi parameters, and scenario (initially 4-level, later 3-level; different level patterns)
and runsize (4-level, tiny to large with resulting numbers depending on the level pattern) for the experimental
situation. A resolution V array for the initial level pattern requires 128 runs. It was created using Gurobi and
Mosek, and creation was very fast, because its A5 equals the lower bound 1. An array like this could also
have been taken from the Eendebak and Schoen website (2010), which lists ten non-isomorphic GMA arrays,
or could have been produced by the algorithm of Kobilinsky et al. (2017) (regular array without optimizing
A5, but also yielding the optimum A5 = 1 in this case).

After further consideration, it was decided to drop one of the scenarii, because prior experimentation suggested
that it would likely add substantial run time with only little information. For the resulting experimental
situation, with factors at 2, 2, 3, 4, 4 levels, a resolution V array smaller than the 192 run full factorial is not
possible (which follows from the fact that the least common multiple of 2 · 2 · 4 · 4 = 64 and 2 · 3 · 4 · 4 = 96 is
192). Since 192 runs were considered too many, a resolution IV half fraction in 96 runs was considered. The
optimized array turned out to have an A4 value of 1/9; this was considered acceptable, since follow-up runs
could be used if deemed necessary for resolving potential ambiguities. This array was easily obtained both by
Gurobi and by Mosek. An array like this is not available on the website by Eendebak and Schoen (2010),
which does not cover any 96 run arrays with resolution III or IV.

Had one been prepared to contend with resolution III (not very sensible in the software development situation
at hand), 48 runs would have done the job. That array is much harder to optimize than the 96 run array.
Mosek found the GMA A3 = 2/9 (equal to the bound of Proposition 1) in about 45 seconds. Optimizing A4
did not improve the initial value 2.333, although a better A4 exists. A search over level orders, as described
in Section 4.4 of the paper, storing all 30 results from searches with time limit 60 s, produced a better array
from the level order 4,3,2,2,4: (A3, A4, A5) = (2/9, 17/9, 8/9); this is the best GWLP we obtained for this
setting. Gurobi produced the same GWLP starting from a different level order (4,3,2,4,2), while the design it
produced from the level order that was most successful under Mosek had a worse GWLP (A4 = 23/9). As
the website by Eendebak and Schoen (2010) does not cover the situation for this array, it is not known to us
whether this GWLP is optimal or whether its A4 can be improved.

Now suppose that a third 2-level factor is needed. In this case, A4 +A5 +A6 becomes 1 for 192 runs, 3 for
96 runs and 7 for 48 runs, according to Proposition 3. The lower bounds for AR are as follows: A5 ≥ 1/9
(n = 192), A4 ≥ 1/3 (n = 96) and A3 ≥ 1/3 (n = 48). The confirmed GMA design in 192 runs was found
within 22 s (lower bound for A5 met, A6 = 8/9 follows from Proposition 3). For 96 runs, the search over

2

level orders strategy was used (as mentioned in Section 4.4); after a total search time of about 7 minutes,
the sixth order (4,2,2,2,4,3) yielded the lower bound A4 = 1/3; subsequent efforts to reduce A5 from 8/3
were unsuccessful, and no other level order produced a better A5 either; thus, we do not know whether
the array we found has GMA, or whether an array with smaller A5 exists. Using Gurobi did not yield a
better array and required much more time to yield an equally good one. For 48 runs, it is much harder to
find a GMA array and confirm its optimality: an OA(48, 233142, 2) with A3 = 1/3 (the lower bound) was
not found; the best such array found, using the search strategy, had A3 = 0.389 (e.g. for the level order
4,2,2,2,3,4); this value could not be improved, even after rerunning the best orders with 10min each, or
after re-running the first optimum order for an entire hour; thus, we have obtained a “good design” with
(A3, A4, A5, A6) = (7/18, 5, 1.5, 1/9), without knowing whether it has a GMA A3, let alone whether it has
GMA overall.

2.2 Designs of strength 1 / resolution II

Liu and Liu (2012) provided a weak equidistant OA(12, 2933, 1); they did not explicitly optimize A2 or
E(χ2); however, the array’s E(χ2) = 0.515 is close to the lower bound 0.496 for E(χ2). A different array
with the same E(χ2) was obtained with our algorithm using Mosek (the algorithm was run with a time limit
of one hour; an approximately 45 min presolve step was followed by brief improvements). For a related array
reported by Liu and Liu with an additional 6-level factor, our computer was not capable of accommodating
the resource requirements by our algorithm; the same is true for most other arrays provided in Liu and Liu
(2012).

3 The new designs from the paper

The R workspaces stored in files 72runsGOOD.rda, largedesignsTable5.rda and MIP12.rda contain new
good designs created with our algorithm, as described in Sections 5.2.2 and 5.3 of the paper. These can
be loaded with the following commands (provided they are stored in the current working directory). The
72 run designs are stored as separate objects with names as usual in R package DoE.base (for example,
L72.2.1.3.1.4.1.6.1 denotes an array in 72 runs with one 2-level factor, one 3-level factor, one 4-level
factor and one 6-level factor); the 12 run designs are stored in the list object MIP12, which contains the
OA(12, 2a3141, 1) as its ath element; the code below displays the 10th element of that list. The commented
code lines below that array show how to export arrays to csv files (remove the comment character # for
running the code).
load("72runsGOOD.rda")
load("largedesignsTable5.rda")
load("MIP12.rda")
ls()

[1] "L144.2.1.3.2.4.2" "L144.2.2.3.2.4.2" "L192.2.1.3.1.4.3"
[4] "L192.2.2.4.2.6.1" "L192.2.3.3.1.4.2" "L216.2.1.3.2.4.1.6.1"
[7] "L288.3.2.4.2.6.1" "L384.2.4.3.1.4.2" "L432.2.1.3.3.4.2"
[10] "L576.2.2.3.1.4.2.6.1" "L576.3.1.4.3.6.1" "L72.2.1.3.1.4.1.6.1"
[13] "L72.2.1.3.2.6.1" "L72.2.1.3.3.4.1" "L72.2.1.3.3.6.1"
[16] "L72.2.2.3.1.4.1.6.1" "L72.2.2.3.2.4.1" "L72.2.2.3.2.6.1"
[19] "L72.2.2.3.3.4.1" "L72.2.2.3.3.6.1" "L72.2.3.3.2.4.1"
[22] "L72.2.3.3.2.6.1" "L72.2.3.3.3" "L72.2.3.3.3.4.1"
[25] "L72.2.3.3.3.6.1" "L72.2.4.3.2.4.1" "L72.2.4.3.2.6.1"
[28] "L72.2.4.3.3" "L72.2.5.3.2.4.1" "L72.3.2.6.1"
[31] "L72.3.3.4.1" "L72.3.3.6.1" "MIP12"

MIP12[[10]]

3

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 1 1 1 1 1 1 1 2 1 2 2 4
[2,] 1 1 2 1 1 2 2 1 2 1 2 3
[3,] 1 1 2 1 2 2 1 1 1 2 1 2
[4,] 1 2 1 2 1 1 2 1 1 1 1 1
[5,] 1 2 1 2 2 2 2 1 2 2 3 4
[6,] 1 2 2 2 2 1 1 2 1 1 3 3
[7,] 2 1 1 1 2 2 2 2 1 1 3 1
[8,] 2 1 1 2 1 2 1 2 2 2 1 3
[9,] 2 1 1 2 2 1 1 1 2 1 2 2
[10,] 2 2 2 1 1 1 1 1 2 2 3 1
[11,] 2 2 2 1 2 1 2 2 2 1 1 4
[12,] 2 2 2 2 1 2 2 2 1 2 2 2
attr(,"class")
[1] "oa" "matrix"
attr(,"origin")
attr(,"origin")$package
[1] "DoE.MIParry"
##
attr(,"origin")$call
mosek_MIParray(12, c(rep(2, a), 3, 4), 2, mosek.params = list(dparam = list(LOWER_OBJ_CUT = A2sMIP[a] *
144 + 0.5, MIO_TOL_ABS_GAP = 0.2, INTPNT_CO_TOL_PFEAS = 1e-05,
INTPNT_CO_TOL_INFEAS = 1e-07), iparam = list(PRESOLVE_LINDEP_USE = "OFF",
LOG_MIO_FREQ = 100)))

write.csv("L72.2.2.3.1.4.1.6.1", file="L72.2.2.3.1.4.1.6.1.csv")
write.csv(MIP12[[10]], file="SSA12.2.10.3.1.4.1.csv")

4 Additional reference

Liu, Y. and Liu, M.Q. (2012). Construction of equidistant and weak equidistant supersaturated designs.
Metrika 75, 33–53. DOI 10.1007/s00184-010-0313-9

4

	Approach for optimizing designs for the Hadamard approach
	Further examples that illustrate the scope and limitations of our algorithm
	Designs of strength at least 2
	Designs of strength 1 / resolution II

	The new designs from the paper
	Additional reference

