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Figure: Averaged normalized importances for X1 from 100 simulated datasets (simulation process described below)  

for m=1,2,3,4 (left to right) with β1=(4,1,1,0.3)T, corr(Xj,Xk)=ρ
|j−k| with ρ=−0.9 to 0.9 in steps of 0.1  

Grey line: true normalized LMG allocation; Black line: true normalized PMVD allocation 
: Variable importance (% MSE Reduction) from RF-CART; ×: Variable importance (% MSE Reduction) from RF-CI 

 
 

Let C(ρ) denote the 4x4 correlation matrix among the regressors, and let R(ρ)Λ(ρ)RT(ρ) denote its 
eigen value decomposition, depending on the correlation parameter ρ. For the Figure above, 
simulated regressor variables with correlation matrix C(ρ) have been generated by  

• first generating a vector of 4 uncorrelated uniform random variables  
• and then pre-multiplying this vector with R(ρ)Λ(ρ)1/2. 

Response data have subsequently been generated according to a linear model with normal random 
error. Function randatunif in utilityPrograms.R does this.  
 
It is striking in the above Figure that the forests’ variable importances show a discontinuous behavior 
at ρ=0, especially obvious with m=1. This discontinuity gave rise to the observation that variable 
importances depend on the shape of the regressor space, as will be pointed out below.  
C(ρ) for ρ=0 is the 4-dimensional identity matrix; for this matrix, the eigen vectors are not uniquely 
determined. The depicted average variable importance for ρ=0 is based on unit eigen vectors, which 
implies that the regressors are a uniform sample from a 4-dimensional cube with sides parallel to the 
axes of the coordinate system. However, the eigen vectors of C(ρ) for |ρ| 0 converge against a 
different set of eigen vectors (direction arbitrary, order depending on the sign of ρ), which can be 
seen in function randatunif.rotcube in utilityPrograms.R. When multiplying the 
uncorrelated regressors from a unit cube with sides parallel to the axes with the above-mentioned 
limiting set of eigen vectors (cf. function randatunif.rotcube), the resulting regressors are still 
uncorrelated but come from a rotated cube. Simulating uncorrelated regressors according to this 
procedure leads to average normalized variable importances for ρ=0 that are exactly where expected 
when smoothly interpolating the triangles for non-zero ρ in the Figure above.  
Thus, allocations to X1 (strongest regressor) in the uncorrelated regressor case are higher, if cube 
sides are parallel to the axes of the coordinate system (and thus to split directions of trees) than if 
cube sides are rotated; this effect might be similar in nature to correlation. 


