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Abstract 

Factorial experiments are widely used in industrial experimentation and other fields. Whenever a 

factorial experiment is not designed as a full factorial but as a – regular or non-regular – fraction 

thereof, choice between competing designs and interpretation of experimental results should take into 

consideration how the experimental plan will confound experimental effects. This article proposes 

mosaic plots of low order projections of factorial designs for visualizing confounding of low order 

effects. Mosaic plots are particularly useful for design and analysis of orthogonal main effects plans. 

The R code for creation of the plots in this article is available in the supplemental material online. 
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1 INTRODUCTION 

Factorial experiments can be used for simultaneously investigating the effects of several experimental 

factors on a response variable of interest. Each setting of a factor is called a factor level. For gaining as 

complete information as possible, one would ideally experiment with all factor level combinations: In 

such full factorial experiments, all possible combinations of the factor levels of k factors are run the 

same number of times (say, r times); for example, a full factorial in k=4 3-level factors would have 

81r experimental runs. A full factorial experiment is completely balanced, and one can estimate the 

main effects of each factor, all interaction effects between pairs of factors (interaction effects of 

degree 2) up to all interaction effects of degree k independently from each other. The complete balance 
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even implies that estimates for all estimable contrasts of lower order modeled effects cannot incur bias 

from wrongly omitting important effects, e.g. higher order interactions, in other factors.  

If the number of experimental factors is moderate or large, or some factors have many levels, full 

factorial experiments become excessively large and are often not feasible, even when resorting to 

unreplicated designs (i.e. r=1). In such cases, experiments with fewer runs have to be conducted, 

which leads to confounding (aliasing) among effects. This article considers factorial designs based on 

orthogonal arrays, for which the concept of strength describes the severity of confounding 

(see Section 2). The strength of a design is limited by the lowest order of confounding that is attained 

in the design; however, designs of the same strength can exhibit very different extents and severities of 

such lowest-order confounding. Mosaic plots (see Section 3) are proposed as a tool for visualizing the 

degree of lowest-order (=worst case) confounding that is inherent in an experimental design. In 

particular, these plots are useful for providing a warning against bias from 2-factor interactions in 

orthogonal main effects plans (e.g. Addelman 1962; Gupta et al. 1982; Suen and Kuhfeld 2005), many 

of which are available from published design catalogues (e.g. Appendix 8C of Wu and Hamada 2009); 

practitioners use such catalogued arrays for designing experiments, often without any knowledge 

about their inherent confounding structure.  

The considerations in this article are most useful for designs with qualitative factors, since mosaic 

plots do not reflect the geometric properties relevant for designs in quantitative factors. Nevertheless, 

mosaic plots can also be used to visualize confounding severity for designs with quantitative factors 

(see also Section 4.2). To the author’s knowledge, mosaic plots have not been considered elsewhere as 

tools for diagnosing experimental designs. 

The next section introduces orthogonal arrays and the terminology around their confounding 

properties. Section 3 introduces mosaic plots (Hartigan and Kleiner 1981 and 1984) in general, 

Section 4 describes their specific properties for strength s designs. Section 5 discusses the use of 

mosaic plots in experimental practice. The final section briefly summarizes key uses and limitations of 

mosaic plots and relates back to research on assessing factorial designs. All code for the analyses 

presented or discussed in this paper is provided in the online supplementary material. 
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2 ORTHOGONAL ARRAYS AND FACTORIAL DESIGNS 

An orthogonal array is a matrix with n rows and k columns; the entries of the i-th column consist of 

li levels (here denoted with 1, …, li) each of which occurs the same number of times; furthermore, the 

term “orthogonal” implies that, in addition, each pair of levels of the i-th and j-th column (i≠j) occurs 

the same number of times.  

Table 1 shows an example of a particularly popular orthogonal array, the well-known Taguchi L18, 

which can be used for examining up to one 2-level factor and up to seven 3-level factors in 18 runs 

(see e.g. NIST/SEMATECH 2012, Section 5.3.3.10). 

Table 1: The Taguchi L18 (columns show the 8 factors, rows the 18 experimental runs) 

        Factor 
Run 1 2 3 4 5 6 7 8 
 1  1 1 1 1 1 1 1 1 
 2  1 1 2 2 2 2 2 2 
 3  1 1 3 3 3 3 3 3 
 4  1 2 1 1 2 2 3 3 
 5  1 2 2 2 3 3 1 1 
 6  1 2 3 3 1 1 2 2 
 7  1 3 1 2 1 3 2 3 
 8  1 3 2 3 2 1 3 1 
 9  1 3 3 1 3 2 1 2 
10  2 1 1 3 3 2 2 1 
11  2 1 2 1 1 3 3 2 
12  2 1 3 2 2 1 1 3 
13  2 2 1 2 3 1 3 2 
14  2 2 2 3 1 2 1 3 
15  2 2 3 1 2 3 2 1 
16  2 3 1 3 2 3 1 2 
17  2 3 2 1 3 1 2 3 
18  2 3 3 2 1 2 3 1 

 

The array of Table 1 is widely known among engineering quality practitioners and is often used as the 

basis for designing experiments, by selecting as many columns as needed and ignoring the other 

columns. For example, Dhole, Naik and Prabharwalkar (2012) report an experiment on optimizing a 

milling process for EN33 steel, in which they assigned the 3-level factors A=”cutting speed”, B=”feed 

rate”, C=”depth of cut” and D=”tool material” to columns 2 to 5 from an L18. Similarly, Kim and Lee 

(2009) report an experiment on hybrid welding conditions of aluminum alloy in one 2-level factor and 

six 3-level factors, using columns 1 to 7 from the L18. Based on these published experiments, 

Section 5 will demonstrate how mosaic plots can help to improve experimental practice.  
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The rest of this section introduces some terminology around orthogonal arrays, factorial designs and 

their confounding structure. An orthogonal array is said to be of strength s (=resolution s+1, denoted 

by a roman numeral) if all level combinations of s-tuples of factors occur equally often (cf. e.g. 

Hedayat, Sloane and Stufken 1999). Thus, any orthogonal array has at least strength 2 (=resolution III) 

because of the orthogonality definition. The array of Table 1 has strength 2: it is orthogonal, but triples 

of the 3-level columns can of course not be replicates of a full factorial. Any combination of 

m columns from the array is called an “m-column projection” of the array. Obviously, any m-column 

projection (m≥s) of a strength s orthogonal array has at least strength s. Factorial designs are often 

created by choosing a few columns from an orthogonal array for the experimental factors; for these, 

the expressions “m-factor projection”, “strength” and “resolution” are the obvious analogs to the 

corresponding expressions for orthogonal arrays. Thus, a factorial design has strength s if and only if 

all its s-factor projections are (replications of) full factorials. The higher the strength of a design, the 

higher the degree of effects that can be estimated without confounding: in a strength 2 (=resolution III) 

design, main effects are unconfounded with each other but can be confounded with 2-factor 

interactions; in a strength 3 design, main effects are unconfounded with each other and with 2-factor 

interactions, but 2-factor interactions can be confounded with each other, and so forth. One often 

resorts to assumptions regarding negligibility of [(s+1)/2]+1- and higher order interaction effects 

(where [•] denotes the floor function) in order to justify use of a strength s design, for example 

negligibility of 2-factor and higher interactions for use of strength 2 designs or of 3-factor and higher 

interactions for use of strength 3 or strength 4 designs. If such an assumption is not appropriate at least 

approximately, the experiment can produce misleading results.  

For investigating the confounding risk inherent in a factorial design of strength s, s+1-factor 

projections are the lowest order (=worst) case to be considered, as all projections onto lower 

dimensions are full factorials. The strength of a design can be no larger than s whenever there is at 

least one s+1 factor projection that is not a full factorial, even if the deviation from a full factorial is 

slight only. Thus, designs of strength s can have a different extent of confounding (=proportion of 

confounded s+1 factor projections), and a confounded s+1 factor projection can have different 

severities of confounding (from almost full factorial to completely confounded). Therefore, tThis 
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article proposes to investigate the confounding of strength s designs using mosaic plots of the 

s+1 factor projections, which serve to visualize the severity of confounding for each such projection. 

3 MOSAIC PLOTS 

Mosaic plots are usually attributed to Hartigan and Kleiner (1981, 1984). Friendly (2002) discussed 

their history and traced them back to even earlier work. Friendly (1994) introduced their use for 

visualization of log-linear models, Friendly (1995) discussed them as part of a conceptual framework 

to categorical data visualization, and recently Wickham and Hofmann (2011) embedded them into a 

larger concept they called product plots. Mosaic plots are an integral part of modern graphical tools for 

categorical data (cf. e.g. Friendly, 2000; Hofmann 2003; Theus and Urbanek 2008, Section 4.1). Their 

construction is based on equations of the form  

 P(A=a, B=b) = P(B=b | A=a) P(A=a) 

 P(A=a, B=b, C=c) = P(C=c | B=b , A=a) P(B=b | A=a) P(A=a) (1) 

 …, 

where A, B and C are three categorical variables, a, b, and c are possible realizations of these, and the 

probabilities in (1) are estimated by the respective relative frequencies.  

In their most common form, mosaic plots visualize the relative cell frequencies from a two-variable 

contingency table as areas of rectangles. For example, Figure 1 visualizes the contingency table of hair 

versus eye colors from Snee (1974; see Table 2; available also in R software (R Core Team 2013) as 

HairEyeColor):  

• Figure 1a shows the marginal distribution of the Eye Color by the height of the horizontal 

stripes (e.g.: Brown and Blue are most frequent) and the conditional distribution of Hair Color 

given Eye Color by the width of the rectangles within the respective horizontal stripe (e.g.: 

people with brown eyes most often have brown hair, followed by black hair; people with blue 

eyes most often have blond hair, closely followed by brown hair).  

• Figure 1b depicts the marginal distribution of Hair Color by the width of the vertical stripes 

(e.g.: brown is by far the most frequent) and the conditional distribution of Eye Color given 

Hair Color by the height of each rectangle within each vertical stripe (e.g.: the majority of 

blond people have blue eyes).  
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• Both figures visualize the bivariate distribution through the proportions of the rectangles in the 

total area; for example, it can be seen that brown hair together with brown eyes is the most 

frequent combination, while black hair together with green eyes is the rarest combination. 

 

Table 2: The Hair and Eye Color data (Snee data extended by Sex, see Friendly 2000)   

(source: R software, datasets package, HairEyeColor) 

 Both Sexes Male Female 
 Brown Blue Hazel Green Brown Blue Hazel Green Brown Blue Hazel Green

Black 68 20 15 5 32 11 10 3 36 9 5 2
Brown 119 84 54 29 53 50 25 15 66 34 29 14

Red 26 17 14 14 10 10 7 7 16 7 7 7
Blond 7 94 10 16 3 30 5 8 4 64 5 8

 

Mosaic plots of more than two variables introduce further splits of each rectangle (cf. Figure 2a, which 

includes a further split on Sex for Figure 1b). The figures illustrate that the visual impression from a 

mosaic plot may strongly depend on the order in which the variables are added to the plot. For 

example, both plots in Figure 2 enrich Figure 1b by Sex information, either as the last split (Fig. 2a) or 

as the first split (Fig. 2b). The different factor order draws attention to different aspects of the three-

dimensional contingency table, either making it easy to assess sex proportions within eye/hair color 

combinations together with showing the same aspects as depicted in Fig. 1b (Fig. 2a) or supporting sex 

comparisons regarding the bivariate distribution of Hair Color and Eye Color (Fig. 2b). Mosaic plots 

can get quite messy when increasing the number of variables, which is presumably the reason many 

commercial software products offer them for two variables only.  
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a: Splits by Eye Color and Hair Color
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Figure 1: Two mosaic plots of Hair and Eye Colors data from Snee (1974)  

Relation to Equation (1): Fig.1a: Eye Color=A, Hair Color=B, Fig.1b: Hair Color=A, Eye Color=B  

a: Splits by Hair Color, Eye Color and Sex
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b: Splits by Sex, Hair Color and Eye Color
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Figure 2: Three-variable mosaic plots (data from Table 2)  

Relation to Equation (1):   

Fig.2a: Hair Color=A, Eye Color=B, Sex=C, Fig.2b: Sex=A, Hair Color=B, Eye Color=C 

4 MOSAIC PLOTS FOR ORTHOGONAL DESIGNS 

For the purpose of describing its structure, an m-factor projection of a factorial design can be 

considered as a data set with m categorical variables, in the sense that each experimental factor has a 

small set of factor levels (=categories) only. Hence, mosaic plots can also visualize relative 

frequencies of m-factor projections for factorial designs. It was pointed out in Section 2 that all s-

factor projections of a strength s design are (replications of) full factorials. Any full factorial 

projection is perfectly balanced; accordingly, regardless of factor order, its mosaic plot conveys a 
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visual impression of perfect balance: it consists of equally-sized rectangles, with all category splits 

reaching from end to end, like in Figure 3a (this is due to the fact that marginal and conditional 

probabilities in Equation (1) coincide for any tuple of factors).  

For strength s designs, as it is known a-priori that s-factor projections are full factorials, mosaic plots 

of s-factor projections are uninformative; s+1 factor projections are the lowest dimensional projections 

whose inspection is of interest, as was already mentioned in Section 2.  In all mosaic plots of 

s+1 factors, the first s splits are from end to end, i.e. equally-sized rectangles from the first s splits are 

sub-divided by the s+1st split. This makes s+1 factor mosaic plots much easier to grasp for strength s 

orthogonal arrays than for general data sets with s+1 categorical variables. This section discusses the 

specific properties of mosaic plots for strength 2 designs (Subsection 4.1), their relation to estimability 

and confounding (Subsection 4.2), and the more general strength s situation exemplified with s=3 

(Subsection 4.3).  

4.1 Mosaic plots for triples of factors in strength 2 designs  

In this section, the L18 from Table 1 is used as an example. According to Schoen (2009, Table III), 

there are exactly four non-isomorphic triples for 18 run designs in three 3-level factors and exactly 

three for one 2-level with two 3-level factors; only three of the former and two of the latter can be 

obtained from the L18 of Table 1, as has been determined by manual isomorphism searches among the 

projections of the L18 (see supplementary material). Figures 3 and 4 show representatives for all five 

different confounding patterns that occur among the 8 choose 3 (=56) three-column projections of the 

Taguchi L18 of Table 1; confounding increases from left to right. The behavior of the third=last split 

indicates the severity of confounding in the triple of columns. A flat line in the mosaic plot instead of a 

proper rectangle indicates that the respective combination does not occur at all; for example, in 

Figure 4c, two of the three possibilities for column 5 do not occur for any combination of columns 2 

and 4, i.e. the level combination of columns 2 and 4 completely determines column 5; this is the worst 

severity of confounding possible in a strength 2 orthogonal array. At the other extreme, the last split 

can be from end to end like the first two splits (cf. Figure 3a): this indicates that the array for the 

particular triple (ignoring all other columns) is a (replicate of a) full factorial, i.e. is perfectly balanced. 
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The key aspect conveyed by a mosaic plot is the severity of (im)balance in a design. This point will be 

discussed in more detail in the next section.  
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Figure 3: The two types of 3-column projections involving the 2-level column in the Taguchi L18  
(there are 12 triples of the full factorial type and 9 triples of the right-hand side nature) 
 

a: Columns 2, 3 and 4
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c: Columns 2, 4 and 5
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Figure 4: The three types of 3-column projections with only 3-level columns in the Taguchi L18  
(there are 28 triples, 6 triples and 1 triple of the respective sort, from left to right) 
 

4.2 Confounding, effect estimation, and mosaic plots 

To a pure mathematician, strength of a design is beautiful in itself. To an experimenter, it is important 

because strength is related to estimability and bias risk. Figure 5a shows the best possible structure for 

three 2-level factors: a full factorial design, i.e. a design of strength 3; all effects up to the highest 

interaction are estimable, and the naïve main effect estimator (difference of means) for each factor 

remains unbiased, even if the other two factors interact. Estimability can be harmed by level 

combinations that do not occur in the experiment (the flat lines in a mosaic plot). In extreme cases, 

effects can be completely confounded; this is for example well-known for main effects and 2-factor 

interactions in some triples of factors in regular resolution III fractional factorial 2-level designs. 

Figure 5c shows a (replicate of a) regular fractional factorial 2-level design in 4 runs with 3 factors, for 

which the combination of factors A and B completely determines the level of factor C, i.e. only one 
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level of factor C occurs for any combination of factors A and B; note that the mosaic plot and the 

consequences of aliasing in the triple are the same, regardless of the number of runs this triple is a 

projection of. Figure 5b depicts any triple of 2-level factors from a 12 run Plackett-Burman design 

(Plackett and Burman 1946; note that all three-factor projections of a 12-run Plackett-Burman design 

consist of a full factorial augmented with a resolution III half fraction thereof, see e.g. Lin and Draper 

1992): the figure shows that both levels of factor C occur for each level combination of factors A and 

B, however with unequal frequencies (ratio 2:1; in general, the exact proportions are difficult to read 

off the mosaic plot). For this more balanced triple of factors, main effects and 2-factor interactions 

(and even the three-factor interaction, provided it is not confounded with some other effect from the 

overall design) are all estimable, but nevertheless confounded; here, the milder consequence of 

confounding is that each naïve main effect estimator (difference of means) will be biased if there is a 

non-negligible 2-factor interaction between the other two factors. The size of a potential bias of naïve 

main effects estimators depends on two aspects: (a) the larger the confounded interactions the larger 

the bias; (b) the more severe the confounding in the experimental plan, the larger the bias (e.g. bias 

would of course be larger in Figure 5c than in Figure 5b). While the size of the interaction is usually 

unknown, the confounding structure of the experimental plan can be assessed and – as far as resource 

constraints permit – influenced.  
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Figure 5: Mosaic plots of two strength 2 triples of three 2-level factors 

 
Figures 4c and 5c show complete confounding, Figures 3a and 5a show full factorial situations, and all 

other mosaic plots from Figures 3 to 5 show partial confounding. The partial confounding of the 3-

factor projection in Figure 5b is relatively mild only, in the sense that all level combinations occur at 
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least once and the imbalance is weak. All confounded cases in Figures 3 and 4 show at least some 

empty cells; hence, it will generally not be possible to estimate all effects up to the 3-factor interaction, 

even if no further factors have to be considered; usually, even the main effects and 2-factor interaction 

estimates are not completely obtainable from such designs. The plots above (Figures 3 to 5) show 3-

factor projections of relatively small designs. Larger non-regular orthogonal arrays may contain 

projections that look almost but not quite like a full factorial design and thus yield almost unbiased 

naïve main effects estimates even in case of moderate interactions. 

As was mentioned before, the key feature of a mosaic plot for diagnosing experimental designs is the 

amount of balance. This is best reflected by the deviation from the ideal full factorial structure, which 

is a rectangular grid for any combination of factor levels (e.g. Figure 5a). The comparison to this ideal 

provides a good impression of the imbalance present in the design, as is for example observed when 

comparing Figures 5b and 5c to Figure 5a: Figure 5c shows only half as many proper rectangles of 

twice the expected size, which indicates strong imbalance. Figure 5b shows far less imbalance, since 

all 8 rectangles are present with much more moderate size differences. Thus, the mosaic plots provide 

an assessment of structure that can be quickly grasped by statisticians and non-statisticians alike and 

can be easily used for sensitizing non-statisticians to imbalance issues, once the full factorial pattern of 

equally-sized rectangles has been established as the ideal.  

It is also important to realize which features of a mosaic plot are not relevant for the quality of a 

design. For this purpose, Figure 6 illustrates two mosaic plots of the same strength 2 design, with the 

factor levels arranged in two different orders. The visual impression is quite different, but the severity 

of imbalance vs. a plot of a full factorial design (which would have twice as many equally-sized 

rectangles and no flat lines) is the same for both plots. Note that this consideration is valid for 

qualitative factors, where the order of the factor levels is arbitrary, so that plots a and b of Figure 6 

show equivalent designs. For quantitative factors, the designs would not be considered equivalent, and 

the design of Figure 6a would be considered worse than design of Figure 6b, because it completely 

confounds the low=(1,2) vs high=(3,4) comparison of any factor with the 2-factor interaction of the 

other two low/high comparisons, which would be considered more serious than confounding the (1,3) 

vs. (2,4) comparisons like in Figure 6b. 
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b: Levels of all factors rearranged
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Figure 6: Two mosaic plots for the same triple of 4-level factors 

4.3 Mosaic plots for quadruples of factors in strength 3 designs  

Figure 7 shows mosaic plots for three strength 3 quadruples of 2-level factors. Now all four margins 

are used for labeling factor categories. The strength is reflected by the fact that the separation lines are 

end to end for the first three factors (A, B and C). The designs are the full factorial reference design 

(Fig.6a, number of runs a multiple of 16) and two four-factor projections obtainable from a 24 run 

Plackett-Burman design (see e.g. Schoen and Mee 2012; according to Eendebak and Schoen 2013, 

these are the only two non-isormorphic strength 3 orthogonal arrays in four 2-level factors and 

24 runs): Figure 7b shows the best possible strength 3 projection from a 24 run Plackett-Burman 

design, which is a full factorial augmented with a resolution IV 8 run design; the figure shows that – 

within each combination of factors A, B and C – both levels of factor D occur, however not with the 

same frequency, but a ratio of 2:1 (again, the exact ratio is difficult to read from the figure). The other 

strength 3 projection of the same design in Figure 7c is a triplicate of the resolution IV 8 run design; 

the figure reveals that any triple of the factors A, B and C completely specifies the level of factor D, 

i.e. only one level of factor D occurs within each combination of A, B and C. The severity of 

imbalance obviously increases from left to right, going along with an increase in bias of the naïve 

main effects estimator in the presence of 3-factor interactions (or of the naïve estimator for e.g. the 2-

factor interaction of factors A and B in case a 2-factor interaction of factors C and D is present).  
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c: Worst 4-factor projection in 24 runs
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Figure 7: Mosaic plots of strength 3 quadruples of 2-level factors 

Conceptually, mosaic plots for s+1 factors in strength s designs can be used for any s; in practice, the 

idea is limited by space constraints, especially for accommodating labels for the factor levels. All four 

margins are used for four-factor projections; with the next dimension, one margin has to be used for 

two factors. In practice, one will rarely consider mosaic plots for more factors than four at a time. 

5 MOSAIC PLOTS IN EXPERIMENTAL PRACTICE 

Orthogonal main effects plans (e.g. Addelman 1962; Gupta et al. 1982; Suen and Kuhfeld 2005) have 

been proposed for ensuring that main effects do not bias each other; they are strength 2 plans. If 

interest is chiefly in estimation of main effects, they are considered useful, because they are 

parsimonious in the number of runs and permit uncorrelated estimation of all main effects. Some effort 

has gone into identifying minimum size orthogonal main effects plans (e.g. Jacroux 1992, Mukerjee 

and Wu 1995, Gallant 1997). Orthogonal main effects designs have been used in initial phases of 

industrial experimentation or in market research (cf. e.g. Kuhfeld and Tobias 2005), for example. It 

was mentioned in the introduction that such plans are used in experimental practice, based on 

published catalogues. However, estimates from orthogonal main effects plans are unbiased only 

provided that two-factor and higher interactions are negligible. Experimenters have not always been 

aware, how severely analysis results from such plans may depend on this assumption. Mosaic plots 

can help create such awareness, which is helpful for both design creation and analysis. 

5.1 Design creation 

Many engineers have access to books or software with orthogonal arrays, among others the orthogonal 

array of Table 1, and it is customary to select a few columns from such an array for a smaller 
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experiment, usually the first few that accommodate the required levels. The example designs reported 

in Section 2 are of this nature: Dhole et al. (2012) used the first four 3-level columns of the L18 for 

accommodating the four factors A=“cutting speed”, B=“feed rate”, C=“depth of cut” and D=“tool 

material”, Kim and Lee (2009) used the only 2-level column and the first six 3-level columns of the 

L18. Both designs could have been made more robust against bias of main effects from 2-factor 

interactions by avoiding the completely aliased triple of columns 2, 4 and 5 of the L18 that is depicted 

in Figure 4c.  

In the four-factor design, it would have been easy to look at the four mosaic plots of triples of factors 

before accepting the design; this could have been done manually or supported by a software option to 

browse all 3-factor projections (available in R package DoE.base by Grömping (2013a), see 

supplementary material). In either case, the plot of design factors A, C and D would have revealed the 

strong confounding of each main effect with the two-factor interaction of the other two factors. In this 

simple case, replacing any of the three columns behind factors A, C or D with one of the unused 3-

level columns would have improved the design; thus, even equipped with only mosaic plots and 

common sense, Dhole et al. might have ended up with column 6 instead of 5 (which would have been 

improved but not ideal, yielding three triples like Fig. 4a and one like Fig. 4b) or with the L18’s last 

four 3-level columns (5 to 8) instead of the first ones (which would have been one of the optimum 

choices with four triples like in Fig. 4a, like any choice without column 2). For situations with more 

than very few factors, a strategy based solely on looking at all mosaic plots becomes impractical. For 

example, Kim and Lee would have had to look at at least 35 mosaic plots (all triples of the seven 3-

level columns for the L18) in order to safely avoid the one particularly badly biased triple when 

manually trying to improve their design. With the help of numerical criteria for selecting relevant plots 

to look at, mosaic plots can still be very useful for designs like the one used by Kim and Lee; the R 

package DoE.base allows to look at all the completely confounded projections or at a user-specified 

percentage of worst projections. Applying the latter tool to the L18, it would also have been easy to 

improve Kim and Lee’s design (again, see supplementary online material). Nevertheless, manual 

creation of good designs with such simple tools is limited, especially as for more complicated designs 

things will not be as obvious as avoidance of a few badly aliased triples.  
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Generally, it will be necessary to determine a good or the best design by numerical criteria 

implemented in software or applied by a statistical expert. Identification of good orthogonal arrays is a 

current research topic (see also the final section). The R package DoE.base (Grömping 2013) offers 

an experimental automated column allocation optimization according to criteria proposed in Xu, 

Cheng and Wu (2004) and Schoen (2009) and extended in Grömping (2011). The development and 

implementation of further quality criteria is in progress. The theoretical confounding criteria are not 

easily accessible to statistical lay persons; statistical experts or software may use mosaic plots as a 

means of communicating the strength of the confounding to experimenters and decision makers. This 

communication may support interdisciplinary decision processes about whether a design appears so 

badly confounded that it may be better to decide on a larger design beforehand, or which factors to 

allocate to a badly confounded triple of array columns. 

5.2 Mosaic plots can support the analysis of data from an orthogonal main effects plan 

In regular fractional factorial 2-level designs, it is considered good practice to look at the confounding 

structure of a design, which is easily given as a list of aliased effects. For orthogonal main effects 

plans, which are often non-regular designs, such listings are not routinely considered and would be 

much more complicated to obtain. It is useful to inspect the design for particularly severe 

confounding, because this will have the most detrimental consequences in terms of biased estimates. 

Therefore, the afore-mentioned possibility to show mosaic plots for a user-specified proportion of 

worst-confounded projections can also help in analyzing experimental results. For example, the 

procedure will show up the triple of factors A, C and D as completely confounded in the experiment 

conducted by Dhole et al. (2012). Suppose (completely fictitious) that these authors encounter 

unexpected results for the main effect of factor “cutting speed” (A), or that they obtain subsequent 

confirmation runs that do not react as expected to changes in this factor. Then, being warned about the 

confounding issue in the triple A, C and D will suggest to consider the interaction of “depth of cut” 

(C) and “tool material” (D) as a potential cause of the unexpected result.  

6 FINAL REMARKS  

Severe confounding like in Figures 4c, 5c, or 6c should be avoided whenever possible. Such avoidance 

can be supported by mosaic plots, as was illustrated in Section 5.1. Whenever confounding as severe 
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as in these figures appears unavoidable, allocation of design factors to array columns should be 

carefully managed, and interpretation of results requires awareness of the strength and nature of the 

confounding; a mosaic plot can help with both these needs. Awareness of the confounding is 

particularly necessary, when orthogonal main effects plans (cf. Section 5) are used; it appears that their 

users sometimes feel overly safe-guarded against bias in main effects estimates. Awareness of the 

confounding pattern – supported by mosaic plots – can also help interpret experimental results 

correctly in moderate confounding situations. Good interpretability of mosaic plots is limited to three- 

or at most four-factor projections, which is sufficient for the purpose of checking main effects against 

bias risk from low order interactions.  

Some recent research deals with finding optimal experimental plans based on orthogonal arrays: 

systematic catalogues of non-isomorphic arrays have been created and investigated according to 

various criteria for comparing designs (e.g. Evangelaras, Koukouvinos and Lappas 2007, Schoen 

2009). The so-called projection frequency tables proposed by Xu, Cheng and Wu (2004) are 

particularly closely related to mosaic plots, as both focus on s+1 tuples of factors for strength s 

designs. Projection frequency tables are based on generalized aberration as introduced by Xu and Wu 

(2001), and Grömping (2013b) proposed a modification and further types of tables for mixed level 

designs. The search for adequate criteria for ranking orthogonal arrays – especially with mixed levels 

– is an active field of research. Whatever criteria the future brings, mosaic plots are likely to remain 

useful tools for visualizing a design’s low-order confounding properties.  

7 SUPPLEMENTARY MATERIAL 

The file “Online Supplement.zip” contains a ReadMe file and five files with R code for creation of the 

mosaic plots in the article, for the two examples, and for the isomorphism checks for the three-column 

projections of the L18. The code files make use of R packages DoE.base (Grömping 2013) and vcd 

(Meyer, Zeileis and Hornik 2006).  
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