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Abstract

An algorithm for the creation of mixed level arrays with generalized minimum aberration (GMA)

is proposed. GMA mixed level arrays are particularly useful for experiments involving qualitative

factors: for these, the number of factor levels is often a consequence of subject matter requirements,

while a priori assumptions on a statistical model are not made, apart from assuming lower order

effects to be more important than higher order effects. The proposed algorithm creates GMA arrays

using mixed integer optimization with conic quadratic constraints. Fully achieving GMA is feasible for

small problems; for larger problems, the optimization task is reduced to considering the confounding

of low-order effects only. Lower bounds for the lowest-order confounding are provided (given the

number of experimental runs). Where one of these bounds is actually attainable, the algorithm is

often fast in providing an array which attains it. Examples illustrate the scope and usefulness of the

algorithm, which is implemented in an R package, using one of two commercial optimizers.

Keywords: Experimental design; Orthogonal arrays; Generalized minimum aberration; Mixed integer optimiza-

tion

1 Introduction

Factorial experiments are often run using orthogonal arrays. For example, engineers make ample use

of the collection of arrays provided by the Japanese engineer Genichi Taguchi (see e.g. NIST Sematech

2016). Mixed level experiments, i.e. experiments for which not all factors have the same number of levels,

are common in applications, especially if some factors are qualitative in nature. If a particular mixed

level experiment is required, availability of a suitable array can be an issue. It is common to create a
* Correspondence to: Ulrike Grömping, Dep. II, Beuth University of Applied Sciences, Luxemburger Str. 10, D-13353

Berlin, Germany. Phone: +49 (0) 30 4504 5127. E-mail address: groemping@beuth-hochschule.de.
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ble5.rda) and instructions to using these as well as additional examples (SupplCSDA.pdf).
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factorial design from a subset of the columns of a published array, and Grömping (2018c) discussed ways

to improve this type of usage by optimizing the choice of columns.

Of course, optimization of column selection from an existing array cannot be better than the creation of a

tailor-made optimized array for the task at hand. For experiments with some qualitative factors, one will

often not have a particular model in mind, but will aim for the estimation of main effects, perhaps also of

two-factor interactions, assuming that lower order effects are more important than higher order effects.

For such a context, Fontana (2017) introduced an algorithm for the creation of an orthogonal array

in a given number of runs that fulfills the quality criterion “generalized minimum aberration” (GMA,

see Section 2.1); his formulation relied on the complex coding (Bailey 1982). For m factors, Fontana’s

algorithm used a sequence of m mixed integer quadratic optimization steps, with all but the first problems

also having conic quadratic constraints. Because of the complex coding, the matrices for the target

function and for the constraints of each step were constructed using the Cholesky decomposition of an

NxN matrix, where N denotes the number of runs needed for a full factorial experiment in the factors to

be investigated, i.e. is usually very large. The intriguing feature about the approach is its principal ability

to algorithmically create an optimized array for a specific experimental situation with mixed numbers of

levels that is at the same time model-robust. Unfortunately, the details of the algorithm’s implementation

were such that its application in practice would only work for very small data situations; we set out to

improve that situation.

We modify and improve Fontana’s proposal in the following ways: Based on Gr"omping (2018a), we

substantially reduce the sizes of the matrices in the optimization problems. Furthermore, we reduce the

number of optimization problems to be considered, by replacing the first few conic quadratic problems

with a single linear one that enforces zero confounding for effects up to a specified order (Fontana alluded

to such a possibility; its implementation in his algorithm would have required the use of strata according

to Fontana 2013, because of using the complex coding). For the objective of the first actual minimization,

we derive a lower bound, which, if attained, allows to finish this optimization step fast (see Sections

2.3 and 4.4). Furthermore, we implement a loop over optimizations of different problem representations

which proves very successful in increasing the chance that the first optimization step finds an optimum. In

addition, we choose a pragmatic approach which allows us to provide good designs for larger problems: due

to the nature of the optimization problem to be solved by mixed integer optimization, establishing overall

GMA is extremely time consuming or even impossible for many problems of relevant sizes. Therefore,

we primarily aim for minimizing confounding of lowest-order effects. There still remain cases for which

neither confirmation of an optimum nor further improvement is possible; for these, we consider it valuable

to provide “improved” arrays, even if they are not necessarily optimal. All these – GMA designs, designs

with optimized lowest-order confounding and “improved designs” – are what we call “good designs”. We

propose to use our algorithm for algorithmically obtaining good mixed level designs for situations for

which a GMA array is not readily available.

Many specialized algorithms in the design community, e.g. the enumeration algorithms by Bulutoglu and
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Margot (2008) for symmetric orthogonal arrays or by Schoen, Eendebak and Nguyen (2010) for general

orthogonal arrays, are intended as a tool for design researchers, for enumerating all existing designs or

for providing an authoritative list of designs that practitioners can turn to. Other algorithms, e.g. the

Kobilinsky et al. (2017) algorithm, can be used in design creation of a (mixed level) factorial design for a

specific experiment. Our algorithm is of that latter nature. It is more general than the Kobilinsky et al.

(2017) algorithm, in that it incorporates (part of) the GMA quality criterion (see Section 2.1) into design

creation; furthermore, the Kobilinsky et al. (2017) algorithm is restricted to the construction of arrays

that can be obtained from design keys (using pseudofactors), whereas our algorithm can construct arrays

from the larger class of all orthogonal arrays. On the other hand, the Kobilinsky et al. (2017) algorithm

can account for randomization restrictions, which is not in the scope of our algorithm. Both algorithms

have been implemented in an R package (Grömping 2018b, R package DoE.MIParray; Kobilinsky et al.

(2018), R package planor).

This paper derives the algorithm and provides examples that evidence its usefulness. All calculations

have been done using the afore-mentioned R package DoE.MIParray, which offers functions based on two

different commercial solvers for mixed integer optimization problems (Mosek and Gurobi, as documented

in Mosek ApS 2017 and Gurobi Optimization, Inc. 2017). Both vendors provide free academic licenses and

R packages that support access from within R. Mixed integer optimization is an area of active research;

thus, what seems currently extremely challenging may become easily doable with future improvements to

mixed integer algorithms. It is therefore possible that the range of applicability for the algorithm will

broaden over time. Nevertheless, mixed integer optimization remains an NP hard problem. We present

more detail than Fontana (2017) on the algorithm’s implementation in the two solvers; the purpose

of presenting the specifics of inputs to the commercial solvers is to enable readers to create their own

implementations in other professional solvers, e.g. CPLEX. Apart from giving a high-level overview, we

do not discuss any specifics of how mixed integer optimization is implemented within the solvers we use;

readers are referred to the literature, e.g. the very accessible modeling cookbook provided by Mosek Aps

(2018) and references therein.

Section 2 introduces the necessary fundamentals and some basic results. Section 3 provides a motivating

example that illustrates the type of design that benefits most from our algorithm, Section 4 describes the

algorithm, and Section 5 applies it to the test cases of Fontana (2017) (5.1) and to further interesting

mixed level requests for orthogonal arrays (5.2) or supersaturated strength 1 arrays (5.3). The discussion

highlights the merits of our proposal and points out needs for further research.

2 Basics and Auxiliary Results

An array d for accommodating m factors in n experimental runs can be written as an n×m array of

symbols. The jth factor has sj levels, which are denoted as 1, . . . , sj , and the n rows of the array d

contain the factor level combinations for n experimental runs. An orthogonal array (OA) of strength t
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in n runs with m1 factors at s1 levels, . . . , mk factors at sk levels is denoted as OA(n, sm1
1 . . . smk

k , t):

for an OA of strength t, each t-tuple of factors has each level combination the same number of times.

Usually, OA’s with strength 2 or more are considered; we also consider OA’s of strength 1 for which each

factor has each of its levels the same number of times, but level combinations of pairs of factors need

not be balanced. In statistical applications, one often considers the resolution R (denoted by a roman

numeral), which is t+ 1. An array is called “supersaturated”, if there are fewer rows than needed for

accomodating all main effects degrees of freedom. Supersaturated arrays can have at most strength 1,

and we will restrict attention to arrays with at least strength 1.

We denote (column) vectors as bold face lower case letters, matrices as bold face capitals; 1n or 0n denote

column vectors of n ones or zeroes, respectively, In denotes the n-dimensional identity matrix, Jn an

n× n matrix of ones. Comparison for vectors (e.g. r ≥ 0N ) is to be understood element wise. ⊗ denotes

the Kronecker product, ? the element wise (i.e. Hadamard) product, and the superscript > denotes the

transpose.

The first sub section presents known results and notation on GMA and related topics. Sub sections 2.2

and 2.3 derive new and useful auxiliary results which support an efficient implementation of our algorithm.

Sub section 2.4 presents known facts on quadratic cones and mixed integer optimization.

2.1 GMA and related metrics, and counting vectors

For the considerations to follow, it is helpful to represent the n×m array d via a counting vector r. The

idea is simple: a full factorial array in the m factors would have N =
∏m

j=1 sj runs. We define D as this

full factorial in lexicographic order (i.e. levels of the jth factor from 1 to sj , leftmost factor changing

levels most slowly). We can then represent an n×m array d by the N × 1 vector r that contains for each

row of D the frequency with which it is contained as a row in d. This vector is called the counting vector.

Of course, the sum of all elements of r is n and r ≥ 0N .

The quality criterion “generalized minimum aberration” (GMA) was introduced by Xu and Wu (2001)

and is based on the generalized word length pattern (GWLP), which measures the amount of confounding

with the overall mean for each effect order (0=intercept=overall mean, 1=main effects, 2=two-factor

interactions, . . . ). The GWLP is calculated from model matrices in “normalized orthogonal coding”:

Definition 1 (normalized orthogonal coding). Let M = (M0
...M1

... . . .
...Mm) denote the N ×N model

matrix of the full model for the unreplicated full factorial design D, with Mj denoting the N × df(j)

matrix of interaction effect columns for all j-factor interactions. Then M is said to have normalized

orthogonal coding, if

(i) M0 = 1N ,

(ii) all columns of M1 (main effects columns) have mean 0, squared Euclidean norm N and are

orthogonal to each other,
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(iii) and the df(j) columns of Mj , j > 1, are obtained as the products of j columns from M1 that refer

to j distinct factors.

Definition 1 (i) and (iii) correspond to the usual way of obtaining model matrix columns for the intercept

and for interaction effects. The critical step is thus the choice of a coding for the main effects; examples

of normalized orthogonal codings for 2-level, 3-level and 4-level main effects factors are given in Table 1.

Note that the complex coding obtained from the sth roots of the unity is another example of normalized

orthogonal coding. Furthermore, note that Definition 1 implies that all columns of the matrix M have

mean zero and squared norm N and are orthogonal to each other.

For actual designs (called fractions F in the following), the model matrix MF = (1n

...MF ;1
... . . .

...MF ;m)

for the full model is obtained from M by omitting runs not present in the fraction and duplicating

runs occurring multiple times, if applicable. MF has normalized orthogonal coding if the M from

which it has been obtained complies with Definition 1. The GWLP is denoted as (A0, A1, . . . , Am), with

A0 = 1 (confounding of the overall mean with itself). Aj is called the number of (generalized) “words”

of length j, and it is calculated as the sum of squared column averages over all df(j) columns of MF ;j ,

where MF has normalized orthogonal coding. The strength t of an array is any positive integer for which

A1 = · · · = At = 0; one usually identifies t with the maximum possible strength; the resolution of an

array is the integer R such that A1 = · · · = AR−1 = 0, AR > 0; we thus have R = t+ 1, as was mentioned

before. GMA consists in minimizing A1, A2, A3, . . . in turn, i.e., one first maximizes the resolution, and

then minimizes the number of shortest words AR, followed by the number of second shortest words AR+1,

and so forth.

AR is a summary metric: it sums the confounding over all R factor sets; Grömping and Xu (2014)

introduced a mixed level version of “generalized resolution” (GR), which measures the distance of the

worst case R factor set from complete confounding. For GR = R, there is at least one R factor set, in

which at least one factor’s main effect is completely confounded by the interaction of the other R − 1

factors. GR > R is thus higly desirable, and is particularly important for resolution II designs, for which

complete confounding confounds main effects with each other.

Using the counting vector r, we can write Aj = 1
n2 1>n MF ;jM>

F ;j1n = 1
n2 r>MjM>

j r. Thus, minimizing

Aj is equivalent to minimizing the quadratic form r>MjM>
j r w.r.t. the choice of a non-negative N × 1

integer counting vector r with sum n. The matrix Hj = MjM>
j has some useful properties which help to

make the optimization feasible. Subsection 2.2 derives these.

For strength 1 OAs, i.e. for balanced possibly supersaturated arrays, it is unusual to consider their quality

in terms of A2. For 2-level designs, the typical metric is E(s2), which is equivalent to A2 according to

Xu (2015); for mixed level designs, two frequently used metrics are E(χ2) and E(fNOD). According to

Grömping (2017), E(χ2) = nA2/
(

m
2
)
, so that optimizing A2 is equivalent to optimizing E(χ2) (see also

Section 2.3).
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Table 1: Contrast matrices for s = 2, 3, 4
s = 2

-1
1

s = 3
−
√

3/2 −
√

1/2√
3/2 −

√
1/2

0
√

2

s = 4
−
√

2 −
√

2/3 −
√

1/3√
2 −

√
2/3 −

√
1/3

0
√

8/3 −
√

1/3
0 0

√
3

2.2 Properties of Hj

Before looking at Hj itself, we consider cross products of normalized orthogonal contrast matrices. Let

Cs denote the s× (s−1) main effect contrast matrix for an s-level factor in normalized orthogonal coding;

the matrices in Table 1 are examples of C2, C3 and C4. Grömping (2018a) showed that outer products

of effect model matrices are invariant to the choice of normalized orthogonal coding. This applies in

particular also to the matrices Cs themselves, which are effect model matrices in a simple one-factor

model with s runs.

Lemma 1. Let Cs denote the contrast matrix for an s-level effect in normalized orthogonal coding. Then

CsC>s = sIs − Js.

Proof. The proof is by induction. Because of the coding invariance of the outer product, we can use any

particular normalized orthogonal coding and will use the normalized Helmert coding for which the first

few contrast matrices are given in Table 1. For 2-level factors, the assertion is trivial. Assume that the

assertion holds for an s-level factor. The contrast matrix Cs+1 can be written as

Cs+1 =

 √
s+1

s Cs −
√

1
s 1s

0>s−1
√
s

 .

With straightforward calculations, this implies the stated form for the outer product matrix Cs+1C>s+1.

Hj = MjM>
j is the sum of the outer products of the df(j) individual columns of Mj , but can

also be written as a sum of outer product matrices over all
(

m
j

)
j-factor interactions, i.e. as∑

S⊆{1,...,m},|S|=j XI(S)X>I(S), where XI(S) denotes the model matrix from the interaction among the

factors in the set S = {i1, . . . , ij} for the unreplicated full factorial array D. The following lemma states

the resulting properties of the Hj , which are a direct consequence of the lexicographic order of the full

model matrix and Grömping’s (2018a) results on the nature of the model matrices.

Lemma 2. The matrix Hj = MjM>
j has the following properties:

(i) Hj can be written as

Hj =
∑

I(S):|S|=j

m⊗
i=1

(siIsi − Jsi)
i∈I(S)

,
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where the exponents in the Kronecker product are logical values interpreted as zeroes and ones and

are applied element wise, i.e. exponentiation with 0 keeps the dimensions and makes all elements

equal to one, while exponentiation with 1 keeps the unchanged matrix.

(ii) All elements of Hj are integers.

(iii) Hj is positive semidefinite with rank df(j).

(iv) All elements of Hj sum to zero.

Proof. The proof is sketched only. Part (i) follows from

XI(S) =
m⊗

i=1

1si i /∈ S

Csi
i ∈ S

and Lemma 1. Lemma 2 (ii) is a consequence of (i). Part (iii) follows from Hj being a sum of Hadamard

products of non-negative definite matrices (according to Grömping 2018a), and part (iv) holds, because

the full factorial array, represented by r = 1N , has Aj = 0 for all j > 0.

The algorithm will make use of the factorization Hj = MjM>
j with the N × df(j) matrix Mj . This

factorization brings a substantial advantage versus the proposal by Fontana (2017), who used the Cholesky

decomposition Hj = UjU>j with square matrices Uj instead: since the number of additional variables

needed in conic quadratic constraints (see Section 4) depends on the number of columns of Mj or

Uj , respectively, our formulation requires fewer variables and thus brings larger problems into reach.

Nevertheless, the size N of the full factorial is one of the limiting elements for usability of the algorithm.

2.3 Lower bounds for AR and sum of the Aj

Grömping and Xu (2014) reported a lower bound for AR in R factor arrays of resolution R (their

Theorem 5); for m factor arrays with m > R, a lower bound can be derived by summing the lower bounds

over all R factor subsets of the m factors. The algorithm discussed later in this paper can make use of a

lower bound for n2AR; this is provided in the following two propositions.

Proposition 1. Consider an array d in n runs and m factors with resolution R (i.e., with strength

t = R− 1). Then,

AR(d) · n2 ≥
∑

S⊆{1,...,m},|S|=R(
∏

i∈S si − rS) · rS , with rS being the remainder when dividing n by∏
i∈S si.

For example, if an OA(18, 2133, 2) is sought, there are three 3-factor sets S with one 2-level factor and

two 3-level factors each (rS = 0) and one 3-factor set S with three 3-level factors (rS = 18). With

Proposition 1, A3 · 182 ≥ 3 · (18− 0) · 0 + (27− 18) · 18 = 9 · 18, which implies A3 ≥ 0.5.
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Figure 1: Bounds of Propositions 1 (open symbol) and 2 (closed symbol) for OA(12, 2a3141, 1)

Following Grömping and Xu (2014), the bound of Proposition 1 is fulfilled, if and only if all R factor

sets have weak strength R, i.e. have resolution R and do not have duplicate rows. This is most often the

case for relatively small mixed level arrays, for which the algorithm is most useful. For symmetric s-level

arrays, the bound is zero whenever n is a multiple of sR, because rS = 0 for such situations.

For balanced supersaturated arrays, which have resolution II, Ai, Fang and He (2007) and Liu and Lin

(2009, their Lemma 2) published equivalent lower bounds for the quality criterion “expected χ2 value”

or “sum of χ2 values” (related to each other by the factor
(

m
2
)
for the number of pairs) that are closely

related to A2: according to Grömping (2017), n times the A2 contribution of a pair of factors equals the

χ2 contribution of the pair. Thus, these lower bounds can be easily adapted for A2 (multipliers 1/(n
(

m
2
)
)

or 1/n, respectively), see the following proposition. In general, the lower bound derived from the Ai,

Fang and He (2007) or Liu and Lin (2009) bound is sharper for supersaturated arrays, while the bound

from Proposition 1 is sharper for arrays that are not saturated; this is illustrated by Figure 1 for 12-run

arrays with one 3-level factor, one 4-level factor and x 2-level factors (for x < 6, negative calculation

results for the bound from Proposition 2 have been replaced by the trivial lower bound 0).

Proposition 2. Consider an array d in n runs and m factors with resolution 2 (i.e., with strength 1),

with factor i at si levels, i = 1, . . . ,m. Then,

A2(d) · n2 ≥ n2

2(n−1)

(
(
∑m

i=1 si)2 − (n− 1 + 2m) (
∑m

i=1 si) +m(m+ n− 1)
)
.

Note that n2A2 is always integer. Thus, in order for the bound of Proposition 2 to be sharp, it must be

integer, which is often not the case; thus, it can be slightly sharpened for practical use.
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The maximum of the bounds resulting from Propositions 1 and 2 can be used in the optimization process;

since mixed integer optimization can be extremely slow to confirm optimality, its incorporation can be

very helpful for situations for which it is in fact attained, because optimality is then known and does not

need to be confirmed by reducing the gap to zero in the mixed integer algorithm (see Section 4).

In addition to the lower bounds for AR, for arrays with distinct rows, i.e. counting vectors r with binary

elements, a simple formula for the sum of the Aj can be given:

Proposition 3. Consider m factors with s1, . . . , sm levels, for which N =
∏m

j=1 sj is the size of an

unreplicated full factorial array D. For any unreplicated n run array d in these m factors, the sum of the

GWLP entries is
∑m

j=0 Aj(d) = N/n.

In words, Proposition 3 states that the sum of the Aj is the inverse proportion of the degrees of freedom

needed for a full model (equal to the run size of the full factorial) that can be accomodated in an n run

array. For regular symmetrical s-level arrays, Proposition 3 follows from the number of generators needed,

noting that each generator contributes s− 1 to the sum (i.e. the number of words has to be multiplied

with s− 1 for obtaining the entries of the GWLP). For general symmetrical arrays, Proposition 3 directly

follows from Xu and Wu’s equation (8) with j = 0, and noting that their B0(d) = 1 if and only if array d

does not have repeated rows and that their B′j(d) = Aj(d). For mixed level arrays, the analogous reasoning

is not explicated in Xu and Wu (2001), but does also apply (personal communication with Hongquan

Xu). For obtaining GMA arrays, Proposition 3 implies that it suffices to optimize A1, . . . , Am−1, because

Am = N/n− 1−
∑m−1

i=1 Ai, provided d has distinct rows.

2.4 Quadratic cones and Mixed Integer Optimization

A cone is a set C for which a ∈ C =⇒ ∀λ ≥ 0 : λa ∈ C. A quadratic cone can be defined as

Qk = {(x1, x2, . . . , xk) : x1 ≥
√
x2

2 + · · ·+ x2
k}, i.e. consists of vectors whose first element is at least the

Euclidean norm of the vector of the remaining components. It is obvious that Qk is a cone. We will point

out that the problem of minimizing Aj can be written as minimizing the (squared) first coordinate of a

quadratic cone, given a set of equality constraints on the other coordinates. For casting this problem

into the format required by Mosek or Gurobi, it is necessary to use a more general form: a rotated

quadratic cone is defined as Qk
r = {(x1, x2, . . . , xk) : x1, x2 ≥ 0 and 2x1x2 ≥ x2

3 + · · · + x2
k}. Qk

r has

been written in the Mosek version of the definition (see Mosek ApS 2014); Gurobi omits the “2” on

the left-hand side; this paper uses the Mosek version throughout. Like Qk, Qk
r is obviously a cone. A

k + 1-dimensional rotated quadratic cone with its second coordinate fixed at 1/2 (Mosek; for Gurobi, one

would fix it at 1) can be used to represent a k-dimensional unrotated quadratic cone, using the equivalence

relation (√x1, x2, . . . , xk) ∈ Qk ⇔ (x1, 1/2, x2, . . . , xk) ∈ Qk+1
r . Thus, the quadratic cones needed for our

algorithm can be represented in the general rotated quadratic cone framework employed by Mosek and

Gurobi, respectively.

The documentations for Gurobi and Mosek (Gurobi Optimization, Inc. 2017 and Mosek ApS 2017) describe
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general mixed integer optimization strategies; specific details are partly hidden to the public. In short,

strategies combine solving a relaxed problem without integer constraints and then trying to find integer

solutions that are (almost) as good; heuristics are used in addition to simplex methods and branch and

bound / branch and cut strategies, and optimality is proven, if the optimum of the relaxed problem

equals the integer optimum. The discrepancy between relaxed and integer problem is called the “gap”,

and it is usually considered in relative terms as

gap = current integer minimum− current relaxed minimum
current integer minimum .

The current relaxed minimum is (of course) a lower bound for the integer minimum; providing the

algorithm with a known more aggressive lower bound helps to prove optimality; with Gurobi and Mosek,

the gap is nevertheless calculated based on the current relaxed minimum rather than a user-provided

lower bound. Optimality is considered confirmed, when the gap becomes zero or a user-provided lower

bound is reached. Thus, mixed integer optimization has two tasks: driving the current minimum as far

down as possible and proving its optimality by reducing the gap. In many examples, reaching the actual

optimum happens much faster than proving its optimality.

Our objective function is quadratic in the integer vector r. Today’s optimization software transforms

minimization of a quadratic objective into minimization of a linear objective under a conic quadratic

constraint. This is for example described in Mosek ApS (2018), and is the reason why we introduced

quadratic cones.

3 A motivating example

Larger arrays with strength 2 and far from saturating main effects df cannot be found easily in published

tables; for example, an optimized OA(72, 243241, 2) is neither found on the Eendebak and Schoen (2010)

website (which covers strength 2 arrays with up to 70 runs only) nor on the Kuhfeld (2009) website; the

latter provides many instances of 72 run arrays with many main effects df. Grömping (2018c) reported

on the creation of an OA(72, 243241, 2) by optimizing column selection from an OA(72, 243384161, 2)

taken from the Kuhfeld (2009) collection; this array reached (A3, A4) = (0.451, 3.247) and was used for a

biotechnological experiment (see Vasilev et al. 2014).

With our algorithm, a design with the globally optimal A3 = 0.074 (as confirmed by the lower bound of

Proposition 1) was found. Situations like this, where a mixed level design is sought for which the next

higher strength is not quite possible but AR is small, benefit the most from using our algorithm. The

main purpose of our algorithm is to enable researchers to produce a tailor-made design on demand in

such situations. Note that an attempt to improve the design’s A4 was unsuccessful, and neither was

optimality of A4 confirmed, so that we do not know whether the design has GMA or whether its A4 could

be improved; this is typical for attempts on improving AR+1, unless the design is very small. Note that
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the design of this brief section is part of the 72 run series worked out in the “Examples” section.

4 The algorithm

The purpose of this section is to explain the use of Mosek or Gurobi for finding a GMA design or –more

often –for finding a resolution R design and optimizing AR. The integer optimization itself is left to these

tools and not described here in any detail, as it would be unwise to program this instead of relying on the

highly sophisticated existing tools.

4.1 Mixed integer optimization for our problem

The objective n2Aj = r>Hjr (to be minimized) is quadratic in r. The following section details the

optimization problems to be solved for optimizing the GWLP. We build on Section 2.4, where quadratic

cones and the main concepts of mixed integer optimization were outlined.

Both Gurobi and Mosek offer APIs for R, which are provided in the R packages Rmosek and gurobi,

respectively. With these, optimization problems can be handed to the optimizers directly from R, without

having to handle the optimizers’ interfaces. Both Gurobi and Mosek are – to a certain extent – run-to-run

deterministic, i.e. do not contain random decision elements. Differences between runs can nevertheless

occur

• whenever a time limit is involved, due to resource availability on the computer,

• if different numbers of cores are used (we use two cores throughout),

• between machines with different abilities (e.g. if resource-intensive heuristics work better on the

more powerful machine).

Both Mosek and Gurobi offer options for controlling the solvers’ behavior in terms of presolve activities,

the intensity of using certain heuristics, and tolerances. Gurobi additionally offers two options for strategic

decisions, called MIQCPMethod and MIPFocus. For both, defaults are used, but can be overwritten by

the user. For our problem, MIQCPMethod=0 is often an important option to set (and is the default in R

package DoE.MIParray). The parameter MIPFocus controls whether Gurobi should focus more on finding

new feasible solutions or on improving the lower bound; within package DoE.MIParray, this parameter

defaults to focussing on finding new feasible solutions. Nevertheless, in many examples considered, Mosek,

which does not offer this kind of choice to the user, performs better in finding a good solution fast. All

documentation is freely available on the web, and a detailed discussion of the optimizers‘ possibilities

would go beyond the scope of this article. In principle, the instructions in this paper should enable

interested readers to implement our algorithm in other optimizers that offer convex integer optimization

under conic quadratic constraints.

We want to remark on timings, which we will provide in the Examples section. Timings are not about
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comparing the two optimizers; comparison might be unfair, because we may not have used the best

possible settings of optimizer options. On the other hand, an optimizer that does not require the user to

specify many options and still performs well has an advantage in our point of view. Although this paper

is not about comparing the two optimizers, we provide a few cautious comments on their performance. In

our examples, Mosek was often faster than Gurobi in finding a good design; on the other hand, Gurobi was

sometimes faster than Mosek in proving non-existence of a design. For both, the performance sometimes

strongly depended on the order in which the factors were provided to the optimizers, even though this

order does of course not change the structure of the problem. It does, however, change the order in which

the algorithms search the huge search space and is therefore consequential. Unfortunately, there seem to

be no general rules that govern whether an order is fast or slow.

4.2 The optimization problems

For achieving GMA, one has to successively request minimization of A1, A2, A3, and so forth. Since each

minimization may take a lot of effort, avoidance of minimization steps is a great time saver. We therefore

implement a resolution option: if resolution R0 is requested, the algorithm searches for a feasible counting

vector that respects the requested resolution. This is an integer-constrained linear optimization problem

with constant objective function, which can usually be solved much faster than the conic quadratic

optimization problems of later steps (see problem (1) below). The potential for this type of initial step

was already mentioned, but not implemented, in Fontana (2017). Subsequently, AR0 is minimized, using

optimization problem (2L), which is equivalent to optimization problem (2Q).

min 0(1)

subject to

1>N r = n,

M>
<R0

r = 0df<R0
,

r ≥ 0N ,

r integer.

min r>HR0r(2Q)

subject to

1>N r = n,

M>
<R0

r = 0df<R0
,

r ≥ 0N ,

r integer.

min t1(2L)

subject to

1>N r = n,

M>
<R0

r = 0df<R0
,

M>
R0

r− y = 0df(R0),

r ≥ 0N ,

r and t1 integer,

t2 = 0.5,

(t1, t2, y1, . . . , ydf(R0))> ∈ Qdf(R0)+2
r .

In the optimization problems, we denote by M<R0 the model matrix for the main effects and (for R0 > 2)

all interactions up to degree R0 − 1, and by df<R0 the number of columns of this matrix. The run size

constraint is written in terms of the summation vector 1N , which is identical to the model matrix M0,

which is not contained in M<R0 . Problem (2L) recasts the quadratic problem (2Q) as a linear problem

with conic quadratic constraint. All three problems require r to be integer; in many cases, r can (and
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should) instead be constrained to be binary, which requests a design with distinct rows.

Equivalence of the problems (2Q) and (2L) can be easily verified:

a. HR0 = MR0M>
R0

, with the N × df(R0) matrix MR0 . With the df(R0) × 1 vector y = M>
R0

r,

r>HR0r = y>y =
∑df(R0)

i=1 y2
i .

b. The quadratic objective function is linearized by adding a new variable t1 which becomes the

objective function: Minimizing t1, and at the same time constraining it by t1 ≥ y>y (expressed as

(
√
t1, y1, . . . , ydf(R0)) ∈ Qdf(R0)+1), will eventually yield the minimum possible y>y as the objective

value.

c. As the optimizers use rotated quadratic cones, the unrotated quadratic cone from b is embedded into

this more general notation by introducing the additional variable t2 with an appropriate equality

constraint (see also Section 2.4), chosen as 0.5 for Mosek’s approach.

If AR0+1 is subsequently minimized, problem (2L) must be appropriately extended: it retains all constraints

and adds a suitable optimality constraint, e.g. t1 ≤ t1,min + 0.3 (where the “+0.3” avoids numerical

problems and is not harmful, because t1 is integer). Its quadratic objective function is linearized in the

same way as done from problem (2Q) to problem (2L), i.e. df(R0 +1)+2 additional variables, df(R0 +1)+1

equality constraints and a conic quadratic constraint have to be added. Analogous extensions apply for

further problems concerning the minimization of Aj with j > R0 + 1, where applicable.

4.3 The overall algorithm

First, one decides on a suitable R0, i.e. a resolution to be requested, and on a maximum word length to be

considered, denoted as kmax. For designs with distinct runs, kmax ≤ m− 1 suffices for obtaining a GMA

design (according to Proposition 3). It will often be best to choose kmax = R0 or at most kmax = R0 + 1.

The algorithm has the following high-level steps:

1. Solve problem (1), i.e. obtain a vector r that satisfies the requested resolution R0.

If a solution is found, proceed to Step 2.

If infeasibility is detected, modify the problem, e.g. by removing a request for binary elements of r,

by reducing the requested resolution, or by increasing n.

2. Solve problem (2Q) in the representation (2L), i.e. minimize AR0 , subject to the resolution constraints,

taking the solution of Step 1 as the starting value. Optimality is ascertained

• if the lower bound of Section 2.3 is reached

• or if the gap is reduced to zero.

If optimality is confirmed:

• If kmax = R0, return the optimum solution.

• If kmax > R0 and the optimum is zero, increase R0 to R0 + 1 and rerun Step 2, using the

solution of the previous run as the starting value.
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• If kmax > R0 and the optimum is positive, proceed to Step 3.

If optimality is not confirmed within reasonable time (e.g. specified to the commercial solver as a

time limit), return the best attained solution as a potential “good” design (see also Sections 4.4 and

5).

3. for kmax > R0, and Aj−1 ≥ R0 already minimized, minimize Aj , R0 < j ≤ kmax (quadratic

objective function), subject to all prior constraints obtained for Aj′ , R0 ≤ j′ < j, using the solution

of the minimization of Aj−1 as the starting value. Repeat this step as often as necessary. (The

optimization problems for this step have not been explicitly stated, but their successive creation

has been described in the previous section.)

Step 1 is often fast. Step 2 can be fast, if the lower bound is attained; otherwise, confirmation of optimality

is successful for small problems only (see examples in Section 5.1 and 5.2.1). For such problems, it

may also be feasible to enter Step 3, i.e. to optimize Aj values with j > R0. If Step 2 does not yield a

confirmed optimum, it is recommended to run it with suitable verbosity as long as the objective function

improves for obtaining a “good” design, even if it is not necessarily optimum (see also Section 4.4).

4.4 Practical aspects

The algorithm is implemented in the R package DoE.MIParray; depending on the choice of kmax, it

optimizes low order confounding only or (with kmax = m−1 (or m)) can be used to ensure GMA. However,

there are resource-driven practical problems. Running optimization without explicit time constraints will

often run for a very long time, with an eventual interrupt by the user, risking to loose results. Running

with a time constraint guarantees that the result obtained will be stored, but unfortunately hot-starting

is of limited value: one can use the latest solution as a starting value, but it is not possible to preserve the

branch and bound interim results, which will have to be re-established, when re-starting the algorithm.

In many applications, obtaining GMA for all word lengths will not be feasible. Generally, it should

be considered more important to optimize shorter word lengths, and, in particular, to achieve the best

possible resolution. It can be recommended to start with an aggressive guess of the resolution, since

infeasibility in Step 1 of the algorithm is often detected very fast, e.g. because one of the known rules

for the existence of arrays is violated, which will be automatically detected. There are also other cases,

however: for example, there is no OA(54, 36, 3) (see e.g. the website by Eendebak and Schoen 2010),

although none of the feasibility bounds is violated; the infeasibility of this array is not established fast by

either Mosek or Gurobi.

After establishing resolution, AR is to be optimized; if this is successful, optimization of AR+1 is of

interest; otherwise, one would rather further improve AR. Whenever the lower bound according to

Propositions 1 or 2 is reached (applicable for AR only), one can safely switch to the next word length; for

other cases, it is often not easy or even impossible to achieve the conviction that an optimum has been

reached. It should usually be sufficient for practical purposes to optimize AR and AR+1 (provided R is
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the resolution), or AR only for the more difficult cases. If even optimality of AR cannot be reached or

confirmed, an array constructed by the algorithm may still be useful. Whenever a confirmed GMA array

cannot be achieved, the optimization result should be compared to arrays obtained from other approaches,

e.g. the column selection optimization implemented in R package DoE.base (Grömping 2018c).

Clearly, it is desirable to have an array consist of distinct runs only. Thus, it is worth a try to request

binary instead of integer elements for the vector r. Such a request, if feasible, should implicitly lead

to better optima, because GMA arrays have unreplicated runs, where possible. Therefore, R package

DoE.MIParray uses a restriction of r to binary as the default and allows relaxation to general integer as

an option. Sometimes, the optimum array with distinct runs is nevertheless more easy to find by initially

permitting repeated runs, i.e. general integer elements of r. Playing with optimizers’ options can also

sometimes help to solve difficult cases, particularly with Gurobi.

Although the optimization problem (of course) remains the same regardless of the order in which the

variables are entered, optimization speed and the quality of the improvement reached by an optimizer

within reasonable time does sometimes (strongly) depend on that order; for example, the design obtained

in Section 3 was obtained fast for two of the possible 105 level orders only; in this case (like in many

other cases), optimization problem (1) is solved very fast for all level orders, and optimization problem

(2L) leads to fast improvements of the objective function (which equals 722A3), while the quality of the

objective reached in short time strongly depends on the order of entering the variables. Using Mosek,

entering the level numbers in the order 2,2,2,2,3,4,3 (or an alternative order reported later in Table 4),

the algorithm reached the globally optimal A3 = 0.074 (as confirmed by the lower bound of Proposition 1)

within less than a minute. Many other orders of level numbers led to A3 values that were much worse

than this optimum and at least slightly worse than that of the design used in Vasilev at al. (2014).

Because of the strong dependence on level orders, combined with the algorithm’s tendency to improve the

objective value very fast in many cases, the R package DoE.MIParray offers functions mosek_MIPsearch

and gurobi_MIPsearch for looping through all different level orders, optimizing each for a specified time

(default 60s). This search functionality has been used for several situations in the Examples section.

5 Examples

The calculations were done using two threads on a Windows machine with i7 processor with four cores

and 32GB RAM, using the R package DoE.MIParray with R 3.4.1, Mosek version 8.1 and Gurobi version

8.0.1.

5.1 Test cases from Fontana (2017)

We start by addressing the test cases investigated in Fontana (2017). First, we consider accommodating

five 2-level factors in 4 (not in Fontana 2017), 6, 8, 10, 12, 14 or 16 runs. We ran the algorithm

15

Accepted Manuscript for https://doi.org/10.1016/j.csda.2019.01.020 (CSDA 2019 Vol. 137 pp. 101-114)

License CC-BY-NC-ND



Table 2: Run times (s) for finding the GMA array for five 2-level factors

n R AR bound Fontana 2017 Mosek all Gurobi all Mosek from AR Gurobi from AR

4 II 2.000 1.688 2.88 2.07 1.77 2.20
6 II 1.111 1.111 28 10.64 19.17 10.47 19.14
8 III 2.000 0.000 8 0.60 0.51 0.45 0.44
10 II 0.400 0.400 96 0.70 1.87 0.62 1.72
12 III 1.111 1.111 9 0.78 0.94 0.64 0.80
14 II 0.204 0.204 3415 1.34 4.15 1.28 3.93
16 V 1.000 1.000 29 0.32 0.27 0.14 0.16

from scratch without using any prior knowledge (i.e. optimizing A1, A2, and so forth, up to A5, as

proposed in Fontana 2017), or we requested each array to have the correct resolution R, so that only

AR to A5 needed to be optimized (we ignored the fact that optimization of A5 can be skipped due to

Proposition 3). For both these approaches, we applied the default settings in the R package DoE.MIParray,

using both the optimizers Mosek and Gurobi (using package DoE.MIParray’s functions gurobi_MIParray

and mosek_MIParray, respectively). In all cases, the correct GMA array was found. The run times

are reported in Table 2. The table shows that running from resolution 1 or starting from the correct

resolution does not make much difference for these small examples (although, in general, the difference

can be substantial). It can also be seen that there is no general advantage of one software over the

other. The run times we found are substantially shorter than those reported in Fontana (2017); a portion

of the improvement is likely due to a more powerful computer, and small portions may be due to the

fact that the latest version of Mosek is faster, but key contributors are most likely the smaller matrices

and in particular the incorporation of the lower bound for confirming optimality. Fontana (2017) also

reported a search time of 26 min for finding an OA(16, 26, 3); the time used for this optimization with

our implementation was below 1 s, even starting with resolution 1 (but with exploiting the lower bound

for confirming optimality), and regardless whether using Mosek or Gurobi.

Furthermore, Fontana (2017) created a GMA OA(18, 2133) (run time 270 s), a GMA OA(24, 223141,

2) (run time 37 min) and a GMA OA(12, 223141, 2) (run time 8 min). For the 18 run OA, the unique

GMA array was found and confirmed within less than 1 s by both optimizers, even when starting from

R0 = 1 (using kmax = 3, which is sufficient for GMA in these designs with m = 4 factors). The array

attains the lower bound A3 = 0.5, which was already calculated in Section 2.3. For the 24 run array, our

algorithm likewise produced a confirmed GMA OA(24, 223141, 2) in less than 1 s, since the array attains

the lower bound A3 = 1/9. For the 12 run array, our algorithm needed almost two minutes (Mosek) or

about one minute (Gurobi) for obtaining the confirmed GMA array; the longer time is due to the fact

that confirming GMA involved closing the gap for A3 in this case, since there is no lower bound for A3 in

this resolution II design.

All examples in this section were quite small. We tried to run the Fontana algorithm on selected 72 run

designs from the next section; this attempt was unsuccessful, as no solution was found in many hours.
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Table 3: GMA A3 values for the L18 series, their efficiencies w.r.t. the lower bound, proportion of GMA
designs among all non-isomorphic designs, and creation times from Mosek

OA(18, 3a, 2) OA(18, 213a, 2)
a LB A3 Eff. (%) GMA/all Time [s] A3 Eff. (%) GMA/all Time [s]
3 0.5 0.5 100.0 1/4 0.28 0.5 100.0 1/15 0.46
4 2.0 2.0 100.0 1/12 3.14 3.5 57.1 2/48 60.51
5 5.0 5.0 100.0 1/10 3.04 8.5 58.8 1/19 62.34
6 10.0 10.0 100.0 1/8 20.14 16.0 62.5 1/12 907.70
7 17.5 22.0 79.5 3/3 72.68 28.0 62.5 3/3 105.47

5.2 Further mixed level orthogonal arrays

Section 5.2.1 gives insights in the behavior of the lower bound relative to known GMA AR values, and

the algorithm’s success in finding GMA AR values in such cases. Furthermore, Section 5.2.2 provides

a few optimal or close to optimal arrays for mixed level situations for which GMA AR values are not

known to us. The supplemental material exemplifies very easy and more difficult cases, inspired by an

example from experimenting with Gurobi options.

5.2.1 Known series of arrays

The series OA(18, 3a, 2) and OA(18, 213a, 2) are well-researched (see e.g. Schoen 2009), and all their

GMA arrays are known. Table 3 shows the lower bounds for A3 (which are the same for both series of

arrays), the GMA A3 values, the efficiencies of the lower bounds in comparison to these known optima,

the number of non-isomorphic GMA arrays related to the overall number of non-isomorphic arrays, and

the times [s] used by Mosek until either optimality of A3 was confirmed or the time limit was reached

(in most time limit cases, the optimal A3 was actually found faster than the time limit). Optimization

with Gurobi was also investigated (not shown), and was for most cases worse than with Mosek (exception:

faster for a = 7). Clearly, the lower bound in Table 3 is much sharper for the symmetric designs. With

Mosek, the algorithm finds the GMA designs in all cases; for OA(18, 2136, 2), a time limit of 900s was

used (770s would have been sufficient), for all other cases the time limit was set to 60s. The time limit

was applied per optimization problem, and times longer than the limit mean that problem (1) of Step 1

or its preparation in R package DoE.MIParray took up a relevant amount of time (noteworthy for a = 7).

Confirmation within the time limit occurred for all cases of 100% efficiency, i.e. where the lower bound is

sharp. For OA(18, 2134, 2), confirmation by closing the gap to 0 required about 464 min with Mosek;

not shown in the table) or did not occur in more than 2525 min (gap still more than 50% with Gurobi,

running with option MIPfocus set to 3 for improving the gap); for the other scenarii with less than 100%

efficiency, confirmation has not been attempted. All arrays found are known from Schoen (2009) to have

GMA. The table shows that the lower bound is far from perfect, particularly for mixed level cases, i.e. a

failure to yield the lower bound does not imply a failure to yield the best design. Of course, for larger

scenarii, optimizing the shortest word length does not generally imply that a GMA design will be found.
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Table 4: Good 72 run designs of strength 2 found with our algorithm, using Mosek (mj is the number of
factors with j levels)

m2 m3 m4 m6 N/n LB A3 Eff. (%) Time [s] order
1 1 1 1 2 0.111 0.111 100.0 3.6
2 1 1 1 4 0.235 0.235 100.0 44.6 4,2,3,2,6
0 2 0 1 0.75 0.125 0.125 100.0 0.4
1 2 0 1 1.5 0.125 0.125 100.0 12.1
2 2 0 1 3 0.125 0.125 100.0 126.2 2,3,2,6,3
3 2 0 1 6 0.125 0.303 41.2 6736.0 2,6,3,3,2,2
4 2 0 1 12 0.125 0.473 26.4 46.6 2,3,6,3,2,2,2
2 2 1 0 2 0.012 0.012 100.0 3.6
3 2 1 0 4 0.037 0.037 100.0 28.9 3,2,2,2,4,3
4 2 1 0 8 0.074 0.074 100.0 21.4 3,2,2,2,2,4,3
5 2 1 0 16 0.123 0.352 35.1 50.1 2,2,4,2,3,3,2,2
3 3 0 0 3 0.031 0.031 100.0 12.2 2,3,2,2,3,3
4 3 0 0 6 0.031 0.314 10.0 2210.0
0 3 1 0 1.5 0.031 0.031 100.0 1.8
1 3 1 0 3 0.031 0.031 100.0 47.6
2 3 1 0 6 0.044 0.199 21.9 7.5 3,3,3,2,4,2
3 3 1 0 12 0.068 0.527 13.0 52.4 3,4,2,3,3,2,2
0 3 0 1 2.25 0.406 0.406 100.0 206.0
1 3 0 1 4.5 0.406 0.469 86.7 7397.7 3,6,3,2,3
2 3 0 1 9 0.406 0.704 57.7 19.0 6,3,2,2,3,3
3 3 0 1 18 0.406 0.549 74.1 64.5 2,6,2,2,3,3,3

Some mixed level 48 run series with strength 3 or more, published by Eendebak and Schoen (2010), have

been unsystematically investigated along similar lines as the 18 run series of Table 3. In all of them, the

lower bound amounted to 100% of the GMA AR for the smallest designs only, and the GMA AR was

found fast for most of the cases (regardless whether it was the lower bound or not), with cases being

closer to saturation more difficult to find. In some cases, e.g. for OA(48, 2831, 3), the “looping through

different level orders” strategy mentioned in Section 4.4 was needed for finding the best design (with each

optimization step limited to 60s). This strategy will also be used for finding some new “good” designs in

the next section.

5.2.2 Some new mixed level arrays

We initially focus on mixed level designs in n = 72 runs. 72 = 2332 offers many possibilities for

accomodating mixed level designs, which are the target application of our algorithm. In this section, all

optimizations used Mosek, which appeared to be successful fast in more situations than Gurobi.

In the light of the behavior regarding known GMA series, we expected to obtain the most useful new

designs for situations close to the next higher strength, i.e. e.g. for strength 2 designs which are almost

strength 3. Thus, we applied our algorithm for deriving 72 run arrays of strength 2 but close to strength 3

with confirmed GMA A3 (equal to the lower bound) or low A3 but unequal to the lower bound. These
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Table 5: Good large designs found with our algorithm, using Mosek (mj is the number of factors with j
levels)

n m2 m3 m4 m6 N/n R LB AR Eff. (%) GMA order Search time [s]
144 1 2 2 0 2 3 0.012 0.012 100.0
144 2 2 2 0 4 3 0.025 0.140 17.7
216 1 2 1 1 2 3 0.012 0.064 19.4 3,3,6,4,2 60
288 0 2 2 1 3 3 0.008 0.177 4.4 4,4,3,6,3 120
432 1 3 2 0 2 3 0.001 0.018 7.7 3,4,3,3,2,4 360
192 3 1 2 0 2 5 0.111 0.111 100.0 *
192 2 0 2 1 2 5 1 1.000 100.0 *
192 1 1 3 0 2 4 0.111 0.111 100.0 *
384 4 1 2 0 2 6 0.111 0.111 100.0 * 2,4,4,2,2,2,3 60
576 2 1 2 1 2 5 0.111 0.194 57.1 6,2,3,2,4,4 60
576 0 1 3 1 2 4 0.111 0.335 33.2 4,4,3,4,6 600

are shown in Table 4. Where the table shows an order, the default level order (from small to large) was

not successful, and a search over level orders was applied, in most cases restricting the search time for

each individual optimum to 60 s. In a few cases, for which the design obtained after 60 s was particularly

unsatisfactory, the optimum of the search was subsequently optimized by a longer search (time limit

up to three hours). Besides the quality of the resulting designs, the table also shows the search times

needed for arriving at the observed optimum, when using the successful search order (of course, the

total search takes much longer, if the successful order is not among the early ones). In one case, the

search for a larger scenario (OA(72, 233361, 2)) yielded a lower A3 value (A3 = 0.549) than the search

for a smaller one (OA(72, 223361, 2) with A3 = 0.704). In this case, a column selection from the larger

array of course yields a better array than the smaller one found with the algorithm alone. Two such

column selections yield the best possible A3; among these, one is preferrable because of a better A4 value

((A3, A4) = (0.493, 5.236)). While some of the arrays that were found are quite good, others can be easily

improved upon by the strategy of selecting columns from a published 72 run array with many columns,

for example the OA(72, 2433, 2).

Besides the 72 run arrays, we considered a few larger cases, without systematically covering these. Table 5

lists scenarii with more than 100 runs, for which our algorithm ran successfully and found an array

with confirmed optimal AR or with “good” AR in the sense that we were not able to find a better

one elsewhere. For the only array with AR = 1, a regular array with the same AR can be obtained

by the Kobilinsky et al. (2017) algorithm. The arrays with 100% efficiency have confirmed GMA if

m = m2 +m3 +m4 +m6 ≤ R+ 1; this is due to the fact that optimization of AR+1 is obsolete because

the sum of the GWLP is fixed to N/n. For the OA(144, 213242, 2), m = 5 > R + 1, and AR+1 = A4

was optimized (in the sense of running the algorithm for eight hours, which substantially improved A4

from the initial value 0.707 to 0.253), but not to a confirmed optimum; thus, the GMA status of that

array is unknown, even though A3 is a confirmed optimum. For those arrays for which AR is not a

confirmed optimum, optimization of AR+1 has not been attempted. The scenarii included in Table 5 were

arbitrarily selected by considering large run sizes and a mix of numbers of levels with relatively small
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size N of the corresponding full factorial, for which the Eendebak and Schoen website does not offer an

array. (For example, an OA(192, 253141, 5) was not included, because it is available from the Eendebak

and Schoen website.) The table does not report run times; for none of the arrays the construction took

more than some hours (at most running overnight, e.g. for the optimization of A3 and A4 in the OA(144,

213242, 2), or for running 60 orders for up to 360s in each step for the OA(432, 213342, 2)), in most cases

substantially less. Where Table 5 provides an order of levels, the array was found by a search over all

different orders, allocating at most the time specified in the “Search time” column for each step of each

order. The choice of a search time was to a certain extent arbitrary: where a short search time of 60s per

run did not yield an acceptable result while improvements within some short time seemed likely, search

time per run was increased to up to 10 minutes.

5.3 (Supersaturated) Resolution II arrays

Besides orthogonal arrays of strength at least 2, our algorithm can also produce (balanced) resolution II

(strength 1) arrays that are not as widely used and published as orthogonal arrays. Several of the examples

of Table 2 are of that nature. Balanced supersaturated arrays are special cases of such resolution II arrays,

and Proposition 2 provided a lower bound for their A2. Some sources provide supersaturated arrays

(SSDs) with many more main effects df than there are experimental runs; we refrain from discussing

the chances and risks of using SSDs and refer readers to Georgiou (2014) for such a discussion. Our

algorithm is not suitable for the creation of arrays whose full factorials would be extremely large; smaller

supersaturated arrays can, however, be successfully optimized with the help of our algorithm, since

optimization of the sum or expectation of χ2 (see also Section 2.3) is equivalent to optimization of A2.

Remember that E(χ2) = nA2/
(

m
2
)
.

There are many smaller mixed level situations, for which a specific supersaturated array for the requirement

at hand is not readily available. If a saturated OA can be found, a subset of its runs and columns can

sometimes be used (see Xu 2015). An SSD for mixed level situations can also be constructed using the

approach of augmenting an n run Hadamard matrix with an n-level factor; for example, the website by

Gupta et al. (2011) lists an OA(12, 121211, 1) with A2 = 11 and E(χ2) = 2. Such an array can be used

for creating OA(12, 2a3141, 1); we used the L12.2.11 from the Kuhfeld (2009) collection as imlemented

in the R package DoE.base, augmented by a 12-level column. Table 6 shows optimized OA(12, 2a3141, 1),

a = 1, . . . , 11,

• from selecting 2-level columns from the L12 and replacing the 12 levels of the 12-level factor by a

3× 4 full factorial (called the Hadamard matrix approach)

• in comparison to designs created with our algorithm, running it with time limit one hour (except

for a = 11, for which the time limit was increased to five hours).

The designs with a ≤ 6 have resolution II (strength 1), but are not supersaturated, the largest five

designs are (slightly) supersaturated. The optimization details for the Hadamard approach are given in
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Table 6: OA(12, 2a3141, 1) from Hadamard matrix or up to one hour (five hours) of our algorithm

Lower bound Hadamard approach Our algorithm
a N A2 E(χ2) Time [s] E(χ2) Eff. (%) GR Time [s] E(χ2) Eff. (%) GR
1 24 0.111 0.444 10.9 0.444 100.0 2.67 0.2/ 3600 0.444 100.0 2.67
2 48 0.222 0.444 67.6 0.444 100.0 2.67 0.3/ 3600 0.444 100.0 2.67
3 96 0.333 0.400 242.6 0.400 100.0 2.67 0.3/ 3600 0.400 100.0 2.67
4 192 0.444 0.356 567.1 0.356 100.0 2.67 3.7/ 3600 0.356 100.0 2.67
5 384 0.556 0.317 901.4 0.413 76.9 2.59 2.0/ 3600 0.381 83.3 2.67
6 768 0.667 0.286 1015.9 0.500 57.1 2.59 164.6/ 3600 0.381 75.0 2.67
7 1536 0.778 0.259 803.0 0.537 48.3 2.59 31.3/ 3600 0.444 58.3 2.67
8 3072 1.188 0.317 436.6 0.593 53.4 2.29 97.1/ 3600 0.444 71.2 2.67
9 6144 1.910 0.417 160.2 0.655 63.7 2.18 438.5/ 3600 0.436 95.5 2.67
10 12288 2.729 0.496 35.7 0.727 68.2 2.00 3410.1/ 3600 0.566 87.7 2.59
11 24576 3.639 0.560 3.4 0.769 72.8 2.18 9324.2/18000 0.658 85.1 2.50

the supplementary material; note that the chosen route is a compromize between feasibility and coverage

of all possibilities and does not guarantee that the best obtainable design is actually found; for the

smallest four designs (known because of the lower bound) and the largest design (because all structurally

different 3× 4 full factorials were tried, run time almost six hours), a better design from the Hadamard

approach does not exist, using full factorials for the 3× 4 part of the array. Most designs created with our

algorithm have a full factorial 3× 4 part, but the largest two have not; thus, there might be a possibility

to get a better design from the Hadamard approach by also trying mildly confounded 3- and 4-level

factors, which would, however, dramatically increase the search space.

The MIP calculations were done with Mosek. The table shows the actual time needed for first reaching

the optimum that was achieved within the time limit. Optimality was not confirmed for any of the arrays

with a ≥ 5. Our algorithm clearly outperformed the Hadamard approach:

• its E(χ2) is closer to the lower bound for all cases with less than 100% efficiency,

• its generalized resolution (Grömping and Xu 2014) was at least as good, and much better for the

cases with larger a (note that the GR for the Hadamard approach with a=10 can be improved to

2.184 by resolving ties in E(χ2) by better GR; generally doing this increases search time).

• it was faster than the Hadamard approach for a ≤ 8 (for a = 1, 2, 3, the Hadamard approach would

have yielded the optimum design from a fast naïve optimization with just the lexicographic full

factorial; for a = 4, the naïve approach was unsuccessful).

Since the bound on E(χ2) is not necessarily sharp, a low value on efficiency does not necessarily mean a

bad design, but may also arise from a poor lower bound. For a = 7, which has particularly low efficiency

for both approaches, extending the search time of our algorithm to five hours did not improve the result;

neither did a search over all 72 level orders (60 s each). The search found designs with A4 = 62/3 or

A4 = 188/9; the default order yielded the slightly worse A4 value. Trying to improve it with our algorithm

(time limit one hour) was unsuccessful.
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6 Discussion

Mixed integer optimization can provide confirmed GMA arrays for small problems. For medium size

problems, we have seen that it is often possible to obtain a confirmed optimum for the shortest word length

AR; this happens, whenever the GMA word length attains the lower bound provided in Proposition 1. It

is then possible to further optimize the second shortest word length; however, for word lengths other

than the shortest, there is generally no lower bound different from zero, so that it is usually necessary to

confirm optimality by reducing the gap to zero, which is often infeasible, as was e.g. seen in the 72 run

example of Section 3.

Obtaining optimized arrays by mixed integer optimization is particularly interesting for mixed level

experimentation, in case published arrays do not cover the experimentation needs. Our algorithm is

most useful, if the next larger strength is almost but not quite in reach. For such situations, a best

available array is often not catalogued, and it is not unlikely that the lower bound of Proposition 1 is

attained by the GMA AR. Good arrays without optimality confirmation can also be obtained, e.g. for

small supersaturated situations. Whenever optimality is not confirmed, it is advisable to compare the

array obtained with our algorithm to arrays obtained by other approaches, e.g. by optimized column

selection from a large nearly saturated array.

Conic quadratic mixed integer optimization is notoriously difficult. Besides playing with optimizer options

(especially for Gurobi), the examples showed that the order in which the level numbers are provided to

the optimizer can have a strong influence on success or failure of the optimization, and the R package

DoE.MIParray provides a function that facilitates automated searches over level orders. This is a very

pragmatic approach. It would be desirable to exploit the structure of the search space in some way.

As the optimum order for the search was found to depend on aspects like the number of cores or the

computational power of the machine used for the computations, existing general implementations of

mixed integer optimization (like Mosek or Gurobi) can most likely not be easily adapted to exploit the

structure of the search space. Thus, the task of developing an algorithm that exploits the structure of the

search space for building a mixed level OA from scratch (without having to enumerate all interim design

solutions) remains an open research question.

Our algorithm optimizes the summary measure AR (or E(χ2) for R=2), and does not consider worst case

R factor sets. Nevertheless, in the resolution II 12 run designs considered in Section 5.3, it successfully

produced arrays with good generalized resolution, i.e. with low worst case two factor confounding. It

would be very useful if this behavior could be systematically enforced, rather than being an outcome that

does or does not happen due to circumstances out of our control.
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