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Abstract

This paper provides new insights into coding invariance for linear models with qualitative factors,

including a coding invariant way of denoting the model coefficients. On this basis, “interaction

contributions” (ICs) are proposed for decomposing generalized word counts for factorial designs into

contributions that neither depend on level allocation nor on the coding of factors. Combinatorially

equivalent designs yield the same ICs, so that ICs are suitable for classifying factorial designs with

qualitative factors. ICs are based on singular value decomposition and have an interpretation in terms

of bias contributions of an interaction on the estimation of the overall mean. The paper introduces

ICs and their tabulations in interaction contribution frequency tables and illustrates their behavior in

various examples. ICs are compared to several other tools for assessing combinatorial equivalence of

general factorial designs, and they are found to provide a useful complement to existing methods.

Keywords: experimental design, qualitative factors, combinatorial equivalence, mean aberrations, generalized

word length pattern

1. Introduction

Two designs are called isomorphic, if they can be obtained from each other by swaps of columns and/or

rows and/or appropriate relabellings of factor levels. Isomorphism has to be judged differently for designs

with qualitative or quantitative factors: for designs with quantitative factors, isomorphism is sometimes

called “geometric isomorphism” (see e.g. Cheng and Ye 2004); here, changes in level orderings can lead

Abbreviations: IC stands for "Interaction Contribution", ICFT for "Interaction Contribution Frequency Table", DEFT
for "Distance Enumeration Frequency Table",ODFM for "Ordered Distance Frequency Matrices", PFT for "Projection
Frequency Table", PMFT for "Power Moment Frequency Table", MAFT for "Mean Aberration Frequency Table", SCFT for
Squared Canonical correlation Frequency Table, and ARFT for "Average R2 Frequency Table".
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to non-isomorphic designs. For qualitative factors, on the other hand, each relabelling of factor levels

leads to an isomorphic design; this type of isomorphism will be called “combinatorial equivalence” in this

paper; the expression “non-isomorphic” is used as a short form for “not combinatorially equivalent”, and

“equivalence screening” is used as a short form for “checking whether necessary conditions for equivalence

are violated”. When searching for appropriate designs, designs isomorphic to ones that have already

been investigated need not be considered. Therefore, the ability to decide whether or not designs are

isomorphic is important for efficiently handling resources. This is not only the case when searching for

good or optimal designs, but can also be relevant for basic activities regarding experimental practice,

for example when trying to adapt data from an existing experiment to a software tool that provides a

factorial structure; the effort of obtaining an appropriate map between two isomorphic designs can be

quite large and should only be undertaken if the designs in question are isomorphic.

Criteria for assessing combinatorial equivalence have to be coding invariant in two ways: they must

not depend on swapping some levels in any design column, and for a given set of levels, they must not

depend on a particular coding of the model matrix of a factorial linear model. In their seminal paper

on generalized minimum aberration (GMA), Xu and Wu (2001) introduced the so-called normalized

orthogonal coding (see Definition 2 in Section 2), which ensures that all coefficient estimators in a factorial

linear model for a full factorial design are uncorrelated and have the same variance. This paper interprets

coding invariance as invariance against the choice of a normalized orthogonal coding. Throughout the

paper, the expression “coding invariant” will always be used in this sense, which comprises both level

allocation and effect coding. It will be shown that outer products of effect model matrices are coding

invariant in this sense. Furthermore, the paper will provide a coding invariant way of specifying effect

coefficient vectors as a linear combination of right singular vectors of the effect model matrix. This

allows, for example, to create simulation scenarios involving effect sizes for qualitative factors in a coding

invariant way. The results on coding invariance will also serve as the basis for the development of the

“interaction contributions” (ICs) that will be introduced in this paper as a tool for assessing combinatorial

equivalence.

Clark and Dean (2001) and Katsaounis and Dean (2008) introduced necessary and sufficient conditions for

combinatorial equivalence; checking these can be painfully slow, so that various faster tools for equivalence

screening have been proposed, and Katsaounis (2012) proposed to use these also for screening designs with

qualitative and quantitative factors. Section 2.2 will present a collection of existing tools for equivalence

screening, including squared canonical correlation frequency tables (SCFTs) by Grömping (2017a) and

mean aberration frequency tables (MAFTs) by Fontana, Rapallo and Rogantin (2016), among several

others. The ICs proposed in this paper focus on general factorial designs with at least some factors at

more than two levels (since the toolbox for 2-level designs is already quite powerful); they will have to

compete with the existing tools. This article considers screening tools only, and the Examples section

contains a non-isomorphic set of designs that cannot be distinguished by any of the screening tools

considered here (i.e. none of them provides sufficient conditions for equivalence).
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ICs, like several of the other tools for equivalence screening, are based on generalized word counts: Xu

and Wu (2001) introduced the generalized word length pattern (GWLP) which is now widely used as

the basis of GMA. For a design with n factors, the GWLP can be written as (A0, A1, . . . , An), where

A0 = 1 generally holds. For j > 0, the generalized count Aj of words of length j can be written as

a sum of generalized word counts aj(S) from all sets S of j factors. These aj(S) are called projected

aj values in this paper, and they will be defined and explained in Section 2.2. In many applications,

the GWLP is applied to orthogonal array designs, which implies that A1 = A2 = 0, so that the first

interesting entry is A3. In this paper, A1 = 0 is assumed (i.e., level balance of all factors), and the number

R with A1 = · · · = AR−1 = 0 and AR > 0 is called the resolution of the design; this is in line with the

conventional understanding of resolution (e.g. in Hedayat, Sloane and Stufken 1999 p.280) for R ≥ 3 and

extends the concept to R = 2, e.g. for supersaturated designs. The majority of the tools for equivalence

screening used in this paper is related to the projected aj values, with particular focus on projected aR

values; the other tools are based on Hamming distances between design rows (see Section 2.2).

The ICs to be developed in this article provide a new coding invariant decomposition of the projected aj

values. They work for pure or mixed level designs with factors at arbitrary numbers of levels. ICs are

based on singular value decomposition (SVD); ambiguities arising from singular values with multiplicity

larger than one are resolved in two different ways, which leads to two types of interaction contribution

frequency tables (ICFTs). Like the projected aj values themselves, ICs have a statistical interpretation

in terms of bias contributions of the interaction to estimation of the overall mean. It is proposed to use

ICFTs for equivalence screening of general factorial designs, and the examples will demonstrate that

they complement the existing tools for this purpose. Note that, in spite of also using singular values, the

approach of the present paper is quite different from the proposal by Katsaounis, Dean and Jones (2013)

of using singular values for checking design equivalence for 2-level designs.

Section 2 will introduce notation and basic concepts, including a detailed introduction to the existing

tools for equivalence screening. Section 3 will provide two fundamental theorems on coding invariance in

factorial linear models. Section 4 will introduce the interaction contributions and their properties and will

provide the aforementioned two types of ICFT s. Section 5 will provide several examples that exemplify

the details of ICs as well as their performance in equivalence screening in comparison to other tools. The

final section will discuss connections to further related work and reasonable future steps.

2. Notation and basic concepts

We consider factorial designs with n factors in N runs, with si levels for the ith factor. The designs are

level-balanced, i.e. each factor has each level the same number of times, which implies at least resolution

II. Subsets of the factors are denoted by S ⊆ {1, . . . , n}, and the cardinality of a set S is denoted by |S|.

For j ∈ {1, . . . , n}, Sj = {S ⊆ {1, . . . , n} : |S| = j} denotes the set of all j factor sets. The restriction of

a design to the factors from a set S ∈ Sj is called a j factor projection and is for simplicity identified
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with the set S.

2.1 Matrix tools and factorial linear models

Before discussing factorial linear models, some matrix products are defined and rules for them established.

In the following, the superscript > denotes transposition. 1N and 0N denote column vectors of N ones

or zeros, respectively, ei denotes a unit vector with the value “1” in position i and zeros everywhere

else, and IN denotes an N -dimensional identity matrix. An orthogonal matrix Q is an r × r matrix

with Q>Q = QQ> = Ir. Note that multiplication with an orthogonal matrix applies rotation and/or

reflection operations only. This paper will use the term “rotation” for multiplication with any orthogonal

matrix Q, regardless whether Q involves only proper rotation (det(Q) = 1) or not.

Definition 1 (Matrix Products). The following matrix products are defined:

(i) For an m× n matrix A and an r × s matrix B, the Kronecker product is defined as the mr × ns

matrix A⊗B = (aijB)i=1,...,m,j=1,...,n.

(ii) For an na ×N matrix A and an nb ×N matrix B, the column wise Khatri-Rao product is defined

as the nanb ×N matrix A�c B = (a1 ⊗ b1, . . . ,aN ⊗ bN ), where ai,bi, i = 1, . . . , N denote the

ith columns of A and B, respectively, and ⊗ denotes the Kronecker product.

(iii) For an N ×na matrix C and an N ×nb matrix D, the row wise Khatri-Rao product is the N ×nanb

matrix obtained as the transpose of the column wise Khatri-Rao product of their transposes:

C�r D = (c1 ⊗ d1, . . . , cN ⊗ dN )>, where ci and di denote the transposed ith rows of matrices C

and D, respectively.

(iv) For two m× n matrices A and B, the Hadamard or Schur or element wise product is defined as

A ∗B = (aijbij)i=1,...,m,j=1,...,n.

Lemma 1. For an N × na matrix A and an N × nb matrix B, (A�r B)(A�r B)> = (AA>) ∗ (BB>).

Lemma 1 follows from (A�c B)>(A�c B) = (A>A) ∗ (B>B), which is a known result for the column

wise Khatri Rao product and the Hadamard product (see e.g. Kolda and Bader 2009, Section 2.6), by

applying it to A> and B> instead of A and B.

A full factorial linear model for data from a factorial design can be written as follows:

E(Y ) = µ+
n∑

i=1
Xiβi +

∑
S⊆{1,...,n},|S|≥2

XI(S)βI(S) (1)

with Y denoting the random N × 1 vector of response values, Xi the main effects model matrix for

factor i (si − 1 columns), XI(S) the interaction model matrix of the interaction among the factors in S

(df(S) =
∏

i∈S(si − 1) columns), and βeffect the coefficient vector corresponding to the effect indicated in

the subscript. Note that df(S) refers to the degrees of freedom (df) of the effect I(S) in the full factorial
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design and may be larger than the degrees of freedom available for the effect in a particular fractional

factorial design.

Definition 2 provides the normalized orthogonal coding introduced by Xu and Wu (2001), and the

subsequent lemma relates main effects model matrices in different normalized orthogonal codings to each

other.

Definition 2 (normalized orthogonal coding). Model (1) is said to be in normalized orthogonal coding, if

(i) the columns of Xi have mean 0, are orthogonal to each other and have squared length N ,

(ii) for S ∈ Sj , the interaction matrix XI(S) is the row wise Khatri-Rao product of the j main effects

model matrices Xi, i ∈ S.

Lemma 2. If Xi and X̃i are both N × (si − 1) main effects model matrices in normalized orthogonal

coding for factor i, there is an orthogonal (si−1)× (si−1) matrix Q such that X̃i = XiQ⇔ X̃iQ> = Xi.

Lemma 2 is obvious from noting that different orthogonal bases for the factor i main effect with all

columns of the same squared length N can only be obtained from each other by rotation and reflection

operations. Note that results generalize to complex coding by changing the transpose to conjugate

transpose.

The paper makes use of SVD: an m× n matrix A can be written as UDV> with orthogonal matrices U

(m×m) and V (n× n), and an m× n diagonal matrix D of min(m,n) non-negative singular values ζi.

The columns of U and V are called left and right singular vectors, respectively. The non-zero squared

singular values coincide with the non-zero eigen values of the positive semidefinite matrices A>A and

AA>. If all singular values are distinct, the first min(m,n) columns of matrices U and V are unique, up

to sign switches of corresponding column pairs ui and vi. Where relevant, this paper enforces uniqueness

by choosing signs such that the column means of U are non-negative. More serious ambiguities can arise

from multiple singular values of the same size, which lead to non-unique groups of singular vectors: if

N × r sub matrices Usub and Vsub correspond to a singular value ζ with multiplicity r > 1, these can be

replaced by the pair Lsub and Msub with Lsub = UsubQ and Msub = VsubQ with a suitable orthogonal

r × r matrix Q.

The final lemma of this section provides an auxiliary result that can be used to relate coding changes to

SVDs.

Lemma 3. Let X and X̃ be two different matrices with identical dimensions. The statements I and II

are equivalent:

I. X and X̃ have SVDs with the same U and D and different V.

II. X̃ = XQ with an orthogonal matrix Q 6= I.

Proof. II implies I: Let X = UDVX
>. Then X̃ = XQ = UDV>XQ = UDV>

X̃
, with VX̃ = Q>VX an

orthogonal matrix (since the product of two orthogonal matrices is again an orthogonal matrix).
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I implies II: X = UDV>X and X̃ = UDV>
X̃
; choose the orthogonal matrix Q = VXV>

X̃
.

2.2 Tools for equivalence screening

This section briefly explains the existing tools used as competitors for ICFTs in this paper. They are

based on projected aj values (Section 2.2.1) or Hamming distances (Section 2.2.2). Some of the tools can

also be used as quality criteria (this will be mentioned, if applicable), while others are interesting for

equivalence screening only.

2.2.1 Tools based on projected aj values

It was mentioned in the introduction that the element Aj of the GWLP can be written as the sum over

all j factor sets of the projected aj values, i.e. as Aj =
∑

S∈Sj
aj(S). The following definition provides

these projected aj values in the notation of this paper.

Definition 3 (projected aj values). For S ∈ Sj , with XI(S) the interaction model matrix in normalized

orthogonal coding, aj(S) = 1>NXI(S)X>I(S)1N/N
2.

The definition implies that the projected aj value is the sum of df(S) squared column means (for complex

coding generalized to the sums of squared norms of column means) of the interaction model matrix XI(S)

in normalized orthogonal coding. This sum is coding invariant, while its summands are not. The aj(S)

and their collection in projection frequency tables (PFTs) can be used for equivalence screening (see

e.g. Xu et al. 2004, Schoen 2009). In this paper, we will restrict attention to PFTs from R factor sets,

where R is the resolution of the design. PFTs are useful also for ranking designs (large individual aj

values are undesirable).

Fontana et al. (2016) defined “aberrations” as the df(S) summands of aj(S), if the levels 0, . . . , si − 1

of the ith factor are coded as ω0, . . . , ωsi−1, where ω denotes the sith primitive complex root of unity.

For a design with s level factors, this coding implies that all columns of XI(S) contain elements of

{ω0, . . . , ωs−1} only. Fontana et al. (2016) attempted to render the aberrations coding invariant by

obtaining “mean aberrations”, for which - separately for each column of XI(S) (corresponding to an

interaction df) - the df’s summand of aj(S) is averaged over all permutations of the df’s (possible) levels.

They made this approach computationally attractive by providing a formula that calculates these mean

aberrations without actually conducting the permutations. For factors with up to three levels, the mean

aberrations are indeed coding invariant. For s > 3, this is no longer the case, as can e.g. be seen by

comparing the mean aberrations for Fontana et al.’s 5-level design F2 in unmodified form and for a version

with levels 0 and 1 (coded as ω0 and ω1, respectively) for the third factor swapped: the mean aberrations

are 60 zeros and four ones for the unmodified design and 48 zeros, eight 0.2 values and eight 0.3 values

for the modified design. (4-level examples with such behavior can also be given.) Thus, mean aberration

frequency tables (MAFTs) are suitable tools for equivalence screening for designs with s ≤ 3 only. We
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will consider MAFTs of dimension R only, with R the resolution of the entire design. For symmetric

designs with s prime, the df(S) mean aberrations for I(S) sum to aj(S).

For full resolution sets S, i.e. j factor sets S with resolution j, Grömping and Xu (2014) obtained a

different decomposition of aj(S) into the squared canonical correlations between the main effects model

matrix Xi for i ∈ S and the interaction model matrix XI(S−{i}); since each element of S can be singled

out for the main effects model matrix, there are j decompositions into squared canonical correlations,

with a total of
∑j

i=1(si− 1) summands and the total sum j ·aj(S). Grömping (2017a) introduced squared

canonical correlation frequency tables (SCFT s) and proposed their use both for assessing design quality

(large individual values are undesirable, since they imply that there is a coding for which there is a high

bias potential from an interaction for individual main effects coefficient estimators) and as a tool for

equivalence screening; SCFTs are most interesting for R factor projections with R the resolution, but

they can also be obtained for higher dimensions (even though they do not necessarily decompose aj(S)

for j factor sets with resolution less than j); like for PFTs and MAFTs, we will only consider SCFTs

from R factor sets. SCFTs work for mixed level designs and for arbitrary numbers of levels.

2.2.2 Tools based on Hamming distances

Ma et al. (2001) introduced centered L2 discrepancies (CD2 in their notation) for the equivalence

screening of 2-level designs and generalized them to the “distance enumerator” Ba for general designs.

Ba can be calculated from the Hamming distances between the N rows of a design: the Hamming

distance of two vectors v1 and v2 of the same length is the count of nonzero elements of v1 − v2. The

Hamming distance between two rows of a design d is invariant to column permutations and permutations

of factor levels within columns. For any N × n symmetric s-level design d, an N ×N distance matrix

DH(d) of the Hamming distances can be created, and two designs d1 and d2 are isomorphic, if there

is a permutation of the rows of d2 that leads to identical Hamming distance matrices for all k factor

projections of d1 and the permuted d2 (Katsaounis and Dean 2008, in extension to Clark and Dean’s 2001

result for 2-level designs). As a search for this row permutation can be computationally very intensive,

screens based on the frequency distributions of the Hamming distances have been proposed, and Ba is

one such screen: with h0(d), h1(d), . . . , hn(d) denoting the frequencies of elements 0, 1, . . . , n in DH(d),

Ba(d) =
∑n

i=0 hi(d)ai/N ; Ma et al. used B4/5(d). For equivalence screening of designs d1 and d2, Ma et

al. proposed to compare Ba(d1) and Ba(d2) for the entire designs, in case of equality for all n− 1 factor

sets and all 1 factors sets, and if necessary for successively larger numbers of projections (n− 2 factor

sets and 2 factors sets, and so forth). Tables of the distance enumerators will be called DEFTs in the

following.

Xu and Deng (2005) proposed to tabulate power moments of row similarities in the
(

n
t

)
t factor projections,

where the power moment is defined as Kt(dS) =
∑

1≤i<k≤N (t−DH(dS)i,k)t with dS denoting the design’s

projection on the t factor set S and t −DH(dS)i,k the number of coincidences between rows i and k

of dS . Tables of the power moments will be called power moment frequency tables (PMFTs) in this
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paper. Katsaounis and Dean (2008) considered PMFT s under the name momp. Xu and Deng proposed

to use PMFT s for ranking designs in terms of “moment aberration projection”, striving to minimize the

frequencies for large values. When comparing resolution R designs, tabulation of the power moments for

R factor sets and larger projections are of interest.

Mandal (2015) proposed to use an ordered distance frequency matrix (ODFM ) for equivalence screening

based on his Theorem 2.3; an unordered distance frequency matrix F(d) can be obtained by replacing

each 1 × n row of DH(d) with the 1 × (n + 1) row of its frequencies for the distance values 0 to n;

we denote the ordered version as F∗(d). Comparing ordered distance frequency matrices avoids the

necessity of searching for row permutations. For comparing two designs, Mandal proposed to first

compare F∗(d1) with F∗(d2), and to proceed in case of equality by searching for an (n− 1) factor set

Sn−1 such that F∗(d1;{1,...,n−1}) = F∗(d2;Sn−1), if this can also be found to proceed by searching for

an (n − 2) factor set Sn−2 such that F∗(d1;{1,...,n−2}) = F∗(d2;Sn−2), and so forth, until no adequate

subset can be found. For exploiting the full potential of Mandal’s Theorem 2.3, it would be necessary

to ensure S1 ⊂ · · · ⊂ Sn−2 ⊂ Sn−1; Mandal’s proposed algorithm does not do so. In this paper, for

subsets of q < n factors, the method has been implemented by obtaining multisets of the
(

n
q

)
ordered

distance frequency matrices for the q dimensional projections of designs d1 and d2, and by declaring the

designs as non-isomorphic, if their multisets differ. Mandal’s approach is more complicated than the

other approaches considered in this paper, since its results for a single dimension cannot be presented in

a simple table; it seems to be similar to the screening algorithm named “Deseq1” by Dean and Clark

(2001) and Katsaounis and Dean (2008).

Ma et al. (2001) conjectured that failure of DEFTs to reveal non-isomorphism might be sufficient for

proving equivalence; Katsaounis and Dean (2008) proved this to be false for designs with A1 > 0. The

Examples section contains several non-isomorphic sets of designs with A1 = 0 that cannot be distinguished

by DEFT s so that the conjecture seems to be false in general (Examples 4, 5, 7, 8). Mandal (2015) also

conjectured that ODFM s might be sufficient for proving equivalence; while ODFM s are able to ascertain

non-isomorphism for some cases for which DEFTs and PMFTs fail, Examples 4, 5 and 7 of this paper

also disprove his conjecture. Xu and Deng (2005) demonstrated that PMFT s are stronger than PFT s in

discriminating designs. For all examples of this paper, PMFT s show the same discriminatory behavior as

PFTs.

The Hamming distance based tools of this section were proposed for pure level designs by their inven-

tors, and their implementation for mixed-level designs has not been attempted, although it is likely

straightforward at least for PMFTs and DEFTs.

2.3 Regularity of designs

There are different types of design regularity. Under the most well-known one, some factors are created

using defining relations in the other factors. Kobilinsky, Monod and Bailey (in press) provided a generalized
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version of this (called “generalized regular”), and Grömping and Bailey (2016) discussed various existing

types of regularity and defined three new very general types: geometric regularity, CC regularity and

R2 regularity. CC regularity and R2 regularity are related to SCFTs and may have implications for

ICs. They are therefore briefly explained here and will be recurred to in the Examples section and

in the discussion: a design is called CC regular, if its SCFTs in all dimensions contain zeros and ones

only; a design is called R2 regular, if entire factor main effects are either completely confounded or

unconfounded with other effects, i.e. if the average squared canonical correlations are all zeros or ones in

all dimensions for all factor projection combinations; since the average squared canonical correlations can

also be considered as average R2 values from linear models with orthogonal main effects model matrix

columns as responses, Grömping 2017a collected them in average R2 frequency tables (ARFTs), and a

design is R2 regular whenever its ARFTs in all dimensions contain zeros and ones only. Of course, R2

regularity implies CC regularity.

3. Coding invariance

This section establishes two general results on coding invariance, which will also constitute the basis

for ICFTs: Theorem 1 shows the coding invariance of XI(S)X>I(S); Corollary 1 states that matrices U

and D of the SVD are coding invariant, while V depends on the coding; Corollary 2 makes clear that

interaction model matrices for different codings can be obtained from each other by post-multiplication

with an orthogonal matrix, and Theorem 2 introduces a coding invariant way of specifying the model

coefficients; this theorem is quite useful for the creation of meaningful and non-redundant simulation

scenarios for linear models with qualitative factors.

Theorem 1. The matrix XI(S)X>I(S) does not depend on the choice of normalized orthogonal coding.

Proof. According to Lemma 1, XI(S)X>I(S) can be written as the Schur product of matrices XiX>i ,

i ∈ S, with Xi a main effects model matrix in normalized orthogonal coding. Because of Lemma 2,

XiX>i = X̃iX̃>i for two choices Xi and X̃i of normalized orthogonal coding for factor i.

Corollary 1. For the SVD XI(S) = UDV>, the matrices U and D do not depend on the choice of

normalized orthogonal coding, while V depends on that choice.

Proof. XI(S)X>I(S) = UDV>VD>U> = UDD>U> is the eigen value decomposition of the coding invari-

ant matrix XI(S)X>I(S); X>I(S)XI(S) = VD>U>UDV> = VD>DV> is the eigen value decomposition

of the coding dependent matrix X>I(S)XI(S).

Note that Srivastava and Raktoe (1976) already found that the eigen values of effect matrix cross

products X>effXeff are invariant to random factor level permutations, where the subscript “eff” denotes an

admissible effect according to Srivastava and Raktoe, which could e.g. be I(S) for an arbitrary choice of

S ⊆ {1, . . . , n}; this is related to the coding invariance of D stated in the corollary.
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Corollary 2. Let XI(S) and X̃I(S) denote two interaction model matrices for the factors in S ⊆ {1, . . . , n}

in normalized orthogonal coding. There is an orthogonal matrix Q such that X̃I(S) = XI(S)Q.

Proof. The result follows immediately from Corollary 1 and Lemma 3.

Theorem 2. Consider model (1) denoted in normalized orthogonal coding for an unreplicated full factorial

design in N =
∏n

i=1 si runs, with si the number of levels for the ith factor. For an arbitrary effect “eff”,

denote the model matrix in any particular choice of normalized orthogonal coding as Xeff = UDV>X and

the corresponding coefficient vector as βeff.

Define c = V>Xβeff ⇔ βeff = VXc. Then, the following holds:

(i) The contribution of effect “eff” to Equation (1) can be written as Xeffβeff = UDc.

(ii) For a different normalized orthogonal coding with the model matrix X̃eff and the corresponding

coefficient vector γeff, there is an SVD X̃eff = UDV>
X̃

such that γeff = VX̃c with the same vector

c.

Proof. Part (i) follows from V>XVX = Idf(eff) after replacing Xeff with its SVD and βeff with VXc:

Xeffβeff = UDV>XVXc = UDc. For part (ii), noting that X̃eff = XeffQ for a suitable orthogo-

nal matrix Q according to Lemma 2 or Corollary 2, Lemma 3 implies the existence of a VX̃ such

that X̃eff = UDV>
X̃
. Thus, X̃effγeff = UDV>

X̃
γeff. Inserting an identity matrix changes this into(

UDV>
X̃

VX̃V>X
)(

VXV>
X̃

γeff

)
= XeffVXV>

X̃
γeff. The matrix Xeff has full column rank, so that equality

of both Xeffβeff and XeffVXV>
X̃

γeff to UDc implies the equation βeff = VXV>
X̃

γeff, which is equivalent

to γeff = VX̃V>Xβeff = VX̃c.

Theorem 2 assumes a full factorial design in order to make sure that all effect model matrices in a full

factorial model are of full column rank. The result holds without change for models with fewer runs,

if their model matrices are chosen as appropriate subsets of rows of the full factorial model matrices.

However, of course, there may be estimability issues with model coefficients due to rank deficiencies.

Furthermore, note that the coding invariant representation c of the coefficient vector is unique up to

sign changes only, if all singular values have multiplicity 1; as was mentioned in Section 2, this paper

enforces uniqueness by choosing signs such that all column means of matrix U are non-negative. If there

are singular values with multiplicity r > 1, there are more difficult ambiguities, because the matrices

U and V are non-unique (see also Section 4.2); in those cases, matrix U and vector c have to be kept

together in suitable pairs.

4. Interaction contributions

This section introduces the ICs as a coding invariant decomposition of aj(S) and states their relation to

the bias of Ȳ as an estimator for µ from confounding with the highest order interaction I(S) (Section 4.1).

The case of singular values with multiplicity r > 1 will be given special treatment in Section 4.2, since
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such singular values imply nontrivial non-uniqueness of singular vectors, and thus also of the ICs to be

defined in Section 4.1.

4.1. The decomposition

According to Definition 3 and with XI(S) = UDV>, aj(S) = 1>NXI(S)X>I(S)1N/N
2 = ūDD>ū>, with

ū the row vector of column averages of U. This quadratic form can be written as a sum and thus provides

a decomposition of aj(S) into df(S) non-negative summands. The following theorem summarizes this

representation and provides the conditions under which the decomposition is unique.

Theorem 3. Let ζi = ζi(XI(S)) denote the ith singular value of the matrix XI(S), ūi the column average

of the corresponding ith left singular vector.

(i) Then the projected aj(S) value can be decomposed as

aj(S) =
min(N,df(S))∑

i=1
ζ2

i ū
2
i . (2)

(ii) If all non-zero singular values have multiplicity one, the decomposition (2) is unique.

(iii) Assuming there is at least one non-zero singular value ζi with multiplicity ri > 1 and corresponding

N×ri matrix Usub,i of left singular vectors, the decomposition (2) is unique if and only if 1>NUsub,i =

0>ri
for all such pairs ζi and Usub,i.

Proof. Part (i) directly follows from Definition 3 (see above). For part (ii), note that, if all non-zero

singular values are unique, all corresponding columns of the matrix U are unique up to sign changes; sign

changes do not affect the squared column averages. Regarding part (iii), a non-zero singular value ζi with

multiplicity ri > 1 has a corresponding N × ri matrix Usub,i of left singular vectors whose columns are

non-unique, as they can be rotated or reflected in arbitrary ways. However, if 1>NUsub,i = 0>ri
, the same

is also true for all rotated versions Lsub,i = Usub,iQ, i.e. 1>NLsub,i = 1>N0>ri
. Thus, all the corresponding

summands in (2) are zero, regardless of the choice of columns. If this is the case for all matrices of

left-singular vectors corresponding to non-zero singular values with multiplicity ri > 1, (2) yields a unique

decomposition. Otherwise, the decomposition will change, depending on the arbitrary choice of left

singular vectors.

Definition 4 (interaction contributions). (i) For a set S ∈ Sj , the terms ζ2
i ū

2
i , i = 1, . . . , df(S), are called

the interaction contributions for the set. For N < df(S), the last df(S)−N interaction contributions are

defined as zeros. (ii) For an entire design in n ≥ j factors, the interaction contributions of all j factor

sets S ∈ Sj are called the interaction contributions of order j.

The ICs of Definition 4 are coding invariant, but may be non-unique, if there are non-zero singular values

with multiplicity larger than 1. For an interpretation of the ICs, we now point out their relation to the

bias of Ȳ as an estimator for the overall mean, when omitting the interaction I(S) from the model in
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spite of its relevance. Note that Xu and Wu (2001) already pointed out the relation of the generalized

word counts Aj to a bias of the overall mean from j-factor interactions. Assume that we have R factors

(R the resolution), model (1) with n = R is the true model, and we wrongly fit the smaller model

E(Y ) = µ+
R∑

i=1
Xiβi +

∑
S⊆{1,...,R},2≤|S|≤R−1

XI(S)βI(S) (3)

omitting the highest order interaction (for R = 2, the third summand in (3) is omitted). The estimator for

µ is Ȳ , with expectation µ+ 1>NXI({1,...,R})βI({1,...,R})/N , i.e., bias 1>NXI({1,...,R})βI({1,...,R})/N . Note

that, because of the design’s resolution, the omission of main effects or lower order interactions with any

factor would not bias the intercept estimator, i.e., the bias would remain the same if we would, e.g., omit

an entire factor instead of omitting only the R factor interaction. Of course, this bias strongly depends on

the sizes of the unknown coefficients in βI({1,...,R}). According to Theorem 2, the effect of the unknown

coefficients can be considered in terms of the coding invariant representation through the vector c; it

is customary to consider length 1 vectors, and β = Vc has length 1 if and only if c has length 1. The

following lemma details the relation of the IC s to the bias.

Lemma 4. Let the true model be model (1) with n = R, and XI({1,...,R}) = UDV>X the model matrix

in normalized orthogonal coding for the interaction I({1, . . . , R}), βI({1,...,R}) = VXc the corresponding

coefficient vector with c a df({1, . . . , R})× 1 vector, and ū = 1>NU/N , ūi its ith element.

(i) Then a coding invariant representation of the bias for the estimation of µ by Ȳ = 1>NY/N is given

as ūDc =
∑min(N,df({1,...,R}))

i=1 ciζiūi.

(ii) The worst-case squared bias for a length 1 vector βI({1,...,R}) is ūDD>ū> = aR({1, . . . , R}) and is

attained for c = D>ū>/
√

ūDD>ū>.

Proof. In terms of c, the bias can be written as

1>NXI({1,...,R})βI({1,...,R})/N = ūDc =
∑min(N,df({1,...,R}))

i=1 ciζiūi.

For Part (ii), note that the worst case absolute bias for a length 1 c (representing a length 1 βI({1,...,R}))

is the singular value of the row vector ūD, attained for c equal to the right singular vector of ūD.

The ICs are the squared biases if the vector c is chosen as ei, i = 1, . . . , df(S), i.e., if the parameter vector

βI(S) is chosen as a right singular vector vi of XI(S). They are also the summands of the worst case

squared bias, as provided in part (ii) of the lemma. When considering arbitrary j factor sets S that have

resolution R < j, the total bias of Ȳ as an estimator for µ may contain other contributors besides the

bias contribution of the interaction I(S).
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4.2. Resolving ambiguities

This section presents two different but related ways of obtaining unique summands for ambiguous cases in

Equation (2): a concentrated allocation (indexed with “c”) concentrates the entire sum of all ambiguous

summands from a particular singular value ζ with multiplicity r in a single summand and leaves r − 1

zero summands; an even allocation (indexed with “e”) distributes the sum evenly over r summands. The

following lemma ascertains the existence of rotations that correspond to these allocations.

Lemma 5. Let XI(S) = UDV>, ζ a singular value with multiplicity r > 1, the N × r matrix Usub

and the df(S) × r matrix Vsub the corresponding sub matrices of U and V, ūsub the 1 × r vector of

column means of Usub. For an orthogonal r × r matrix Q, denote Lsub = UsubQ, Msub = VsubQ and

l̄sub = ūsubQ.

(i) There is a rotation matrix Qc, such that l̄sub = ||ūsub||2e>1 . The corresponding summands of (2)

are ζ2||ūsub||22 and r − 1 zeros.

(ii) There is a rotation matrix Qe, such that l̄sub = ||ūsub||21r
>/
√
r. The corresponding summands of

(2) are all identical to ζ2||ūsub||22/r.

The proof and technical details regarding the appropriate rotation matrices can be found in Grömping

(2017b). The calculation of both rotations is implemented in the R package DoE.base (Grömping 2016).

The ICs of Definition 4, with suitable treatment according to Lemma 5 if necessary, lend themselves to

tabulation. The resulting interaction contribution frequency tables are now defined.

Definition 5 (interaction contribution frequency tables). The table of the (ζiūi)2 obtained from all

sets S ∈ Sj , with uniqueness enforced as indicated in Lemma 5 (if necessary), is called the Interaction

Contribution Frequency Table of order j, or ICFTj; it comes in the versions ICFT j,c and ICFT j,e, with

“c” short for concentrated and “e” short for even.

Analogously to PFTs, SCFTs and MAFTs, we will exclusively consider ICFTs of order R, with R

the design’s resolution. The index for the order is therefore omitted in the following. Contrary to the

decomposition results from Grömping and Xu (2014), however, ICs decompose aj values with arbitrary j;

the statistical interpretation as a bias contribution works as well, if it is acknowledged that this is not the

only contribution towards the bias of Ȳ for µ

5. Examples

This section gives several examples; some of these use designs provided on the website by Eendebak

and Schoen (2010), which were generated by the method described in Schoen, Eendebak and Nguyen

(2010). The first three small examples exemplify ICFT c and ICFT e in substantial detail, comparing
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Table 1: Example design in two 2-level factors and one 4-level factor, with metrics.

1 2 3 4 5 6 7 8
A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 2 1 3 3 1 2 0

0 1/3 1
SCFT 2 0 3
ICFT c 2 0 1
ICFT e 0 3 0

them to the values of other aj-based tools for equivalence screening; the worst case interaction parameter

vectors according to Lemma 4 are also given; these are sometimes but not always simply the first right

singular vectors of the concentrated rotation; Example 3 contains a different case. The subsequent

examples illustrate the screening performance of ICFT c and ICFT e in comparison to the tools presented

in Section 2.2. Results from equivalence screening with DEFT s, PMFT s and ODFM s will be reported in

the text, because it would be difficult to include them in the tables of the other results. Calculations of

PFT s, SCFT s and ICFT s have been done with R package DoE.base (Grömping 2016), while MAFT s,

DEFTs, PMFTs and ODFM s have been calculated with separate R functions; R package sets (Meyer

and Hornik 2009) was very helpful for the multiset comparisons for ODFM s.

Example 1. The first worked example uses the design given in Table 2 of Grömping and Xu (2014),

which is given in Table 1 for convenience, together with both types of ICFT and SCFT. The design

consists of a replicated full factorial in the two 2-level factors A and B, which is augmented with a 4-level

factor C that takes on the values 0 or 2 for A=B and 1 or 3 for A 6= B. The generalized word count is

A3 = a3 ({1, 2, 3}) = 1, and the design is CC regular but not R2 regular, since A and B main effects are

completely confounded by the BC or AC interactions, respectively, while only one df of the C main effect

(the 0/2 vs 1/3 contrast) is completely confounded by the AB interaction. The calculation of the ICFT s

is now worked out in detail. Factors A and B are coded as -1/+1 (unique normalized orthogonal coding),

factor C is coded with normalized Helmert coding. With S = {1, 2, 3}, the coding-dependent 8× 3 matrix

XI(S) and its coding invariant 8× 8 cross product XI(S)X>I(S) are given in Table 2. The three non-zero

eigen values of XI(S)X>I(S), equal to the non-zero squared singular values of XI(S), are (8, 8, 8), i.e. there

are three non-unique pairs of singular vectors. With the SVD algorithm used in R for Windows, the

initial squared column means of the matrix U are (1/48, 1/16, 1/24); the contributions to a3(S) are thus

8 times these values, i.e., (1/6, 1/2, 1/3). Concentrating the entire contribution on the first vector, ICFTc
shows the sum “1” from these as a single entry “1” and two zeros for the remaining contributions, while

distributing the contribution evenly, ICFTe shows three 1/3 values instead. The right singular vector

related to the only non-zero singular value in the concentrated case is v1 =
(
−
√

1/2,
√

1/6,−
√

1/3
)>

,

i.e. with the chosen coding, the largest bias on the intercept resulting from the three factor interaction

occurs for coefficient vectors proportional to this v1.

Example 2: Consider a regular design in 9 runs with three 3-level factors, for which A3 = a3({1, 2, 3}) = 2.

There is only one non-isomorphic design of this type. An interaction model matrix in a specific normalized

orthogonal coding can be found in Example 1 of Grömping and Xu (2014). The coding invariant eigen values

of XI(S)X>I(S), equal to the first 8 squared singular values of XI(S), are ζ2
1 = 18, ζ2

2 = · · · = ζ2
7 = 9, ζ2

8 = 0,
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Table 2: Interaction model matrix and coding invariant outer product for the design of Table 1.

A1:B1:C1 A1:B1:C2 A1:B1:C3
-1.414214 -0.8164966 -0.5773503
0.000000 1.6329932 -0.5773503
-1.414214 0.8164966 0.5773503
0.000000 0.0000000 -1.7320508
0.000000 0.0000000 -1.7320508
-1.414214 0.8164966 0.5773503
0.000000 1.6329932 -0.5773503
-1.414214 -0.8164966 -0.5773503

1 2 3 4 5 6 7 8
3 -1 1 1 1 1 -1 3
-1 3 1 1 1 1 3 -1
1 1 3 -1 -1 3 1 1
1 1 -1 3 3 -1 1 1
1 1 -1 3 3 -1 1 1
1 1 3 -1 -1 3 1 1
-1 3 1 1 1 1 3 -1
3 -1 1 1 1 1 -1 3

Table 3: Columns 13 to 15 from the 36 run Taguchi orthogonal array (cell entries are levels of factor C).

A\B 0 1 2
0 0,0,0,1 0,2,2,2 1,1,1,2
1 0,2,2,2 1,1,1,2 0,0,0,1
2 1,1,1,2 0,0,0,1 0,2,2,2

0 0.201 7/16 0.674
SCFT 0 0 6 0
ICFT c 6 1 0 1
ICFT e 6 1 0 1
MAFT 6 0 2 0

i.e. there are two unique and six non-unique pairs of singular vectors. In this case, ū = (1/3, 0, 0, 0, 0, 0, 0, 0).

Thus, the non-uniqueness of the second to seventh pairs of singular vectors is irrelevant (see Theorem 3

(iii)), and we obtain a unique ICFT that shows one interaction contribution 18/9 = 2 and seven zeros.

For the coding used in Grömping and Xu (2014), the right singular vector corresponding to the non-

zero contribution is (−0.433,−0.25,−0.25, 0.433, 0.25,−0.433,−0.433,−0.25)> (rounded to three digits),

i.e. the most harmful coefficient vectors in terms of bias for the intercept are proportional to this vector.

For this symmetric 3-level design, MAFT s are well-defined and coding invariant; they consist of two ones

and six zeros; the SCFT solely contains six ones (each main effect df is completely confounded by the

interaction of the other two factors).

Example 3: Table 3 shows the three factor design obtained from columns 13 to 15 of the well-known

Taguchi 36 run orthogonal array (see NIST / Sematech 2016), together with its metrics; this design

has A3 = a3({1, 2, 3}) = 7/8 = 0.875 and is isomorphic to one of the 24 non-isomorphic designs

to be considered in Example 8. Both ICFTs yield the same unequal non-zero subdivision of the a3

value into ICs (0.201 + 0.674 = 0.875): the length 1 parameter vectors that correspond to the larger

and smaller positive ICs are v1 = (−0.083,−0.493,−0.493, 0.083,−0.493, 0.083, 0.083, 0.493)> and v2 =

(0.493,−0.083,−0.083,−0.493,−0.083,−0.493,−0.493, 0.083)>, respectively. The entire bias potential of

the three-factor interaction from this design is activated for the length 1 parameter vector βI({1,2,3}) = Vc

with the c from Lemma 4 (ii), yielding (0.164,−0.472,−0.472,−0.164,−0.472,−0.164,−0.164, 0.472)>

(weighted average of v1 and v2 with unequal weights). As the design appears to be quite imbalanced

(it consists of one Latin square replicated three times combined with another Latin square replicated

once), the imbalanced behavior of ICFT appears plausible. MAFTs behave differently, in spite of also

decomposing a3({1, 2, 3}) based on the interaction degrees of freedom. SCFT s have a different rationale

and are therefore not directly comparable to ICFT s and MAFT s, although the SCFT entries correspond
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Table 4: Two resolution II designs in two 4-level factors (d1=(A,B1) and d2=(A,B2)), with metrics.

A B1 B2
0 0 0
0 1 1
1 2 2
1 3 3
2 0 0
2 1 3
3 2 1
3 3 2

0 1/5 1/3 1/2 1
d1 a2 0 0 0 0 1

SCFT 4 0 0 0 2
ICFT c 8 0 0 0 1
ICFT e 4 5 0 0 0

d2 a2 0 0 0 0 1
SCFT 2 0 0 4 0
ICFT c 8 0 0 0 1
ICFT e 6 0 3 0 0

to the non-zero MAFT entries for this design.

Example 4: Table 4 shows the two non-isomorphic GMA designs for two 4-level factors in 8 runs; both

have A2 = aj({1, 2}) = 1, and the first one is CC regular (but not R2 regular). The two designs cannot

be distinguished by DEFTs, PMFTs or ODFM s. The table shows that they can be distinguished by

their ICFT e but not by their ICFT c. The worst case length 1 parameter vectors are again obtainable as

the first right singular vectors (not shown). SCFT s can also distinguish these designs, while MAFT s are

not applicable because of s > 3.

Example 5: The two non-isomorphic Latin squares in three 5-level factors are available on teh website by

Eendebak and Schoen (2010). These were also considered by Fontana et al. (2016). Both are R2 regular

and have A3 = a3({1, 2, 3}) = 4, and they cannot be distinguished by any of the tools for equivalence

screening considered in this paper: they have the same distance enumerators (14.824) and power moments

(150) and the same ordered distance frequency matrices; both ICFTs are unique and identical to each

other (63 zeros and one “4” each); both SCFTs consist of twelve “1” entries (complete confounding

for all main effect degrees of freedom). Table 4 in Fontana et al. suggested that mean aberrations can

distinguish these designs; however, since they depend on level allocations (see Section 2.2 above), this

conclusion cannot be drawn.

Example 6: Table 5 shows metrics for the three non-isomorphic 18 run orthogonal arrays in seven 3-level

factors, which are e.g. obtainable from the Eendebak and Schoen (2010) website; these designs were used

by Ma et al. (2001), Schoen (2009), Mandal (2015) and Fontana et al. (2016), among others. All tools

for equivalence screening considered here can distinguish these three designs. Table 5 shows that ICFT es

are closely related to MAFT s: MAFT entries are identical to those of ICFT es or split them into halves;

however, remember that this is not always the case, as was seen in Example 3. Note that, due to typing

errors in the design tables of designs (b) and (d) in Ma et al. (corrections: change element b:(2,7) from 2

to 1, element d:(1,5) from 2 to 3 and element d:(9,6) from 1 to 3), Mandal obtained erroneous results for

these designs; with corrected values, ODFM s, like DEFTs, show no difference between the designs in

dimension 7 and correctly identify the non-isomorphic designs when considering 6 factor subsets. PMFT s

distinguish the designs in dimension 3, as do all aj-based tools.
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Table 5: Metrics for the three non-isomorphic 18 run designs in seven 3-level factors

0 1/12 1/6 1/4 1/3 1/2 2/3 1 2
d1 PFT 0 0 0 0 0 16 18 0 1

SCFT 0 0 54 96 0 54 0 6 0
ICFT c 227 0 0 0 36 16 0 0 1
ICFT e 119 144 0 0 0 16 0 0 1
MAFT 102 144 0 32 0 0 0 2 0

d2 PFT 0 0 0 0 0 20 12 2 1
SCFT 2 0 36 120 0 44 0 8 0
ICFT c 233 0 0 0 24 20 0 2 1
ICFT e 159 96 0 0 0 24 0 0 1
MAFT 134 96 0 48 0 0 0 2 0

d3 PFT 0 0 0 0 0 28 0 6 1
SCFT 6 0 0 168 0 24 0 12 0
ICFT c 245 0 0 0 0 28 0 6 1
ICFT e 239 0 0 0 0 40 0 0 1
MAFT 198 0 0 80 0 0 0 2 0

For designs with n > R factors, the behavior of PFTR, SCFTR, ICFTR and MAFTR is entirely driven by

the behaviors of the
(

n
R

)
R factor sets. For the last two examples, we therefore consider non-isomorphic

resolution III 3 factor designs only.

Example 7: The ten non-isomorphic GMA 32 run designs in three 4-level factors (from the Eendebak and

Schoen 2010 website) have A3 = a3({1, 2, 3}) = 1; they all have the same ICFT c (a single “1” and 26

zeros), while there are six distinct groups of ICFT e. SCFTs discriminate even better into nine distinct

groups. MAFTs are not applicable, and DEFTs, PMFTs or ODFM s cannot distinguish any of the

designs. Table 6 shows the two metrics that can distinguish these designs. Designs d6 and d10 cannot be

distinguished, all other designs are distinguishable at least by their SCFT.

Example 8: There are 24 non-isomorphic 36 run designs in three 3-level factors, obtained from Pieter

Eendebak (personal communication). Example 3 and Tables 7 to 10 provide their a3 values and ICFT s

and MAFT s. SCFT s have not been included in the tables, because they would make them much bigger

due to the necessity of including many additional columns. In order to keep table sizes manageable, the

designs have been arranged in four groups of similar patterns plus the singleton of Example 3 (isomorphic

to design 20 obtained from Pieter Eendebak). The tables display a diversity of relations between ICFT c,

ICFT e and MAFTs. Regarding equivalence screening, we focus on the three groups of designs that

cannot be distinguished by their a3 values: the three designs d14 in Table 8 and d10 and d18 in Table 9

have a3 = 5/12, the five designs d8, d9, d16, d19, d21 (all in Table 7) have a3 = 1/2, and the three designs

d7 in Table 8, d6 in Table 9 and d12 in Table 10 have a3 = 2/3. Interestingly, none of these can be

distinguished by DEFTs or PMFTs, while all of them can be distinguished by ODFM s. Designs d6, d7

and d12 can be distinguished by both versions of ICFT and by MAFT, as well as by SCFT ; d10 and

d18 from Table 9 cannot be distinguished by any of the metrics in the table but can be distinguished

by their SCFTs, and these two can be distinguished from d14 in Table 8 by all three tabulated metrics
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Table 6: Metrics for the ten non-isomorphic GMA 32 run designs in three 4-level factors

SCFT 0 1/4 3/8 1/2 5/8 3/4 1
d1 6 0 0 0 0 0 3
d2 3 3 0 0 0 3 0
d3 4 0 0 4 0 0 1
d4 2 3 0 3 0 1 0
d5 1 4 1 2 1 0 0
d6 3 0 0 6 0 0 0
d7 2 2 0 5 0 0 0
d8 1 4 0 4 0 0 0
d9 0 3 6 0 0 0 0
d10 3 0 0 6 0 0 0

ICFT e 0 1/19 1/15 1/13 1/11 1/9 1/7
d1 8 19 0 0 0 0 0
d2 14 0 0 13 0 0 0
d3 12 0 15 0 0 0 0
d4 16 0 0 0 11 0 0
d5 18 0 0 0 0 9 0
d6 14 0 0 13 0 0 0
d7 18 0 0 0 0 9 0
d8 18 0 0 0 0 9 0
d9 20 0 0 0 0 0 7
d10 14 0 0 13 0 0 0

and by SCFT. For the five designs with a3 = 1/2, things are more complicated: d8 and d9 cannot be

distinguished by the tabulated metrics; MAFT groups these two together with d16 and distinguishes this

triple from the two singletons d19 and d21, while ICFT c groups them together with d21 and distinguishes

this triple from the two singletons d16 and d19. ICFT e is able to distinguish three singletons from the

two indistinguishable designs, i.e. has the best discriminatory power among the three tabulated metrics.

SCFTs cannot distinguish d16 and d21 but can distinguish these two from three singletons; thus, with

any of the ICFTs or MAFTs in combination with SCFTs, non-isomorphism of all five designs can be

established, i.e. a combination of these a3-based metrics can achieve the discriminatory power achieved

by ODFM s in this example.

6. Discussion

This paper has given two results on coding invariance in factorial linear models: the outer cross product

matrices XI(S)X>I(S) are invariant to the choice of normalized orthogonal coding, and the vector βI(S) of

model coefficients can be expressed in a coding invariant way in terms of the vector c of linear combination

coefficients for the right singular vectors of the matrix XI(S). This allows to relate different codings to

each other, as well as to specify effects, e.g. for simulations, in a very general way. Furthermore, ICs

were introduced for a new coding invariant single degree of freedom decomposition of generalized word

counts Aj , and their tabulations in ICFTs, with the two versions ICFT c and ICFT e where necessary,
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Table 7: Metrics for non-isomorphic 36 run 33 designs, Part I (denominators 2a, a ∈ N0).

a3 metric 0 1/32 1/16 3/32 1/8 3/16 1/4 3/8 1/2 9/16 1 9/8 2
d1 ICFT c 7 . . . . . . . . . . . 1
2 ICFT e 7 . . . . . . . . . . . 1

MAFT 6 . . . . . . . . . 2 . .
d2 ICFT c 6 . . . 1 . . . . . . 1 .
5/4 ICFT e 6 . . . 1 . . . . . . 1 .

MAFT 4 . 2 . . . . . . 2 . . .
d3 ICFT c 7 . . . . . . . . . 1 . .
1 ICFT e 6 . . . . . . . 2 . . . .

MAFT 4 . . . . . 4 . . . . . .
d4 ICFT c 6 . . . . . 1 . 1 . . . .
3/4 ICFT e 5 . . . 2 . . . 1 . . . .

MAFT 2 . 4 . . . 2 . . . . . .
d8 ICFT c 7 . . . . . . . 1 . . . .
1/2 ICFT e 4 . . . 4 . . . . . . . .

MAFT . . 8 . . . . . . . . . .
d9 ICFT c 7 . . . . . . . 1 . . . .
1/2 ICFT e 4 . . . 4 . . . . . . . .

MAFT . . 8 . . . . . . . . . .
d13 ICFT c 6 . . . 1 . . . 1 . . . .
5/8 ICFT e 6 . . . 1 . . . 1 . . . .

MAFT 4 . 2 . . . 2 . . . . . .
d16 ICFT c 6 . . . 1 . . 1 . . . . .
1/2 ICFT e . 4 . 4 . . . . . . . . .

MAFT . . 8 . . . . . . . . . .
d19 ICFT c 5 . . . 1 2 . . . . . . .
1/2 ICFT e 5 . . . 1 2 . . . . . . .

MAFT 4 . 2 . . 2 . . . . . . .
d21 ICFT c 7 . . . . . . . 1 . . . .
1/2 ICFT e 7 . . . . . . . 1 . . . .

MAFT 6 . . . . . 2 . . . . . .
d22 ICFT c 7 . . . . . 1 . . . . . .
1/4 ICFT e 6 . . . 2 . . . . . . . .

MAFT 4 . 4 . . . . . . . . . .
d24 ICFT c 7 . . . 1 . . . . . . . .
1/8 ICFT e 7 . . . 1 . . . . . . . .

MAFT 6 . 2 . . . . . . . . . .
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Table 8: Metrics for non-isomorphic 36 run 33 designs, Part II (denominators 2a3b, a, b ∈ N0).

a3 metric 0 1/48 1/24 1/16 1/12 1/8 1/6 1/4 1/3
d7 ICFT c 6 . . . . . . . 2
2/3 ICFT e . . . . 8 . . . .

MAFT . . . . 8 . . . .
d14 ICFT c 4 . 2 . . . 2 . .
5/12 ICFT e . 4 . . 4 . . . .

MAFT . 4 . . 4 . . . .
d15 ICFT c 6 . . . . 1 . 1 .
3/8 ICFT e 2 . 3 . 3 . . . .

MAFT 2 . . 6 . . . . .
d17 ICFT c 4 . . 2 2 . . . .
7/24 ICFT e . 6 . . 2 . . . .

MAFT . 6 . . 2 . . . .
d23 ICFT c 6 . . . 2 . . . .
1/6 ICFT e . 8 . . . . . . .

MAFT . 8 . . . . . . .

Table 9: Metrics for non-isomorphic 36 run 33 designs, Part III.

a3 metric 0 1/48 0.023 1/24 0.046 1/16 1/12 7/48 0.269 0.537
d6 ICFT c 4 . . 2 1 . . . . 1
2/3 ICFT e . 4 2 . . . . . 2 .

MAFT . 4 . . . . . 4 . .
d10 ICFT c 4 . 1 . . 2 . . 1 .
5/12 ICFT e . 6 1 . . . . . 1 .

MAFT . 6 . . . . . 2 . .
d11 ICFT c 2 . 1 2 . . 2 . 1 .

13/24 ICFT e . 4 1 . . . 2 . 1 .
MAFT . 4 . . . . 2 2 . .

d18 ICFT c 4 . 1 . . 2 . . 1 .
5/12 ICFT e . 6 1 . . . . . 1 .

MAFT . 6 . . . . . 2 . .

Table 10: Metrics for non-isomorphic 36 run 33 designs, Part IV.

a3 metric 0 1/48 0.023 1/16 0.091 13/48 19/48 23/51 0.768
d5 ICFT c 4 . 1 2 . . . . 1

11/12 ICFT e . 6 1 . . . . . 1
MAFT . 6 . . . . 2 . .

d12 ICFT c 4 . . 2 1 . . 1 .
2/3 ICFT e . 6 . . 1 . . 1 .

MAFT . 6 . . . 2 . . .
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were proposed as tools for equivalence screening.

For 2-level factors, ICFTs, SCFTs and MAFTs do not contribute anything over and above PFTs or

PMFTs; for factors at more than 2 levels, they contain far more detail than PFTs and are therefore of

course more powerful for distinguishing non-isomorphic designs. Where all these are applicable, they

have roughly comparable discriminatory power, and seem to be sometimes but not always more powerful

than the Hamming distance based methods. ICFT e seems to be slightly more powerful than ICFT c in

distinguishing designs, and SCFT was even more powerful in some of the examples (however, see next

paragraph). ICFT and SCFT appear to capture different aspects of the non-isomorphism leading to

different detection abilities in some cases (see the five designs with a3 = 1/2 in Example 8). ICFTs are

therefore a welcome addition to the simpler tools for distinguishing non-isomorphic designs. From the

limited experience collected in search for example sets of designs with factors at more than two levels, it

seems that the DEFTs and ODFM s benefit from richer designs and are less powerful with very small

designs; nevertheless, ODFM s were able to distinguish all non-isomorphic designs in Example 8.

Grömping (2017a) discussed that SCFTs have only little discriminatory power for sets of (CC) regular

designs, since these have 0/1 SCFT entries only. It seems that, for R2 regular designs, this weakness is

shared by all other tools considered in this paper, including ICFT s: the R2 regular designs of Example 5

are indistinguishable, and a further set of R2 regular designs, the 12 non-isomorphic GMA 36 run designs

with three 6-level factors given on the website by Eendebak and Schoen (2010) (not included in this

paper), are also indistinguishable by all tools. It is conjectured that both ICFT c and ICFT e have only

integer entries for R2 regular designs. For designs that are only CC regular but not R2 regular, ICFT c

still seems to have integer entries only and is thus quite restricted (see for example the CC regular designs

d1 of Tables 4 and 6), while ICFT e may have a potential to distinguish CC regular designs that are

indistinguishable by SCFTs. This is a topic for further investigation.

ICFT s decompose aj(S) into df(S) contributions that are interpretable in terms of bias risk for Ȳ as an

estimator for the overall mean. While it is beneficial to have an interpretation for the ICs, the bias of

the overall mean estimator is not particularly interesting statistically, since the estimation of the overall

mean is usually not among the main purposes of experimental design. Like ICFTs, DEFTs, ODFM s

and MAFTs are of interest for equivalence screening only, while SCFTs, PFTs and PMFTs provide

quality criteria and are thus ranking tools that can also be used for equivalence screening. The ARFTs

(Grömping 2017a) that were mentioned in Section 2.3 could also be used in this sense for mixed level

designs; they enrich the PFT entry aR(S) with information about the numbers of main effect df of the

factors in S.

To the author’s knowledge, ICFT s, SCFT s and MAFT s (the latter for s ≤ 3 only) are currently the only

coding invariant tools that go beyond entire effects. They decompose the entire effects into individual

degrees of freedom, either of the interaction (ICFTs and MAFT s) or of the main effects of all factors in

the factor set (SCFT s). With MAFT s for s > 3, this leads to a dependence on the choice of coding; for

s = 3, MAFT s are useful for equivalence screening because they are powerful and very easy to compute.
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ICFTs–and SCFTs–are more computationally demanding for larger designs especially in case of many

factors (
(

n
R

)
sets to be considered). Nevertheless this effort is much smaller than checking for equivalence

with the necessary and sufficient criteria by Katsaounis and Dean (2008).
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