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Estimators of Relative Importance in Linear Regression Based on
Variance Decomposition

Ulrike Grömping

Assigning shares of “relative importance” to each of a set
of regressors is one of the key goals of researchers applying
linear regression, particularly in sciences that work with ob-
servational data. Although the topic is quite old, advances in
computational capabilities have led to increased applications of
computer-intensive methods like averaging over orderings that
enable a reasonable decomposition of the model variance. This
article serves two purposes: to reconcile the large and somewhat
fragmented body of recent literature on relative importance and
to investigate the theoretical and empirical properties of the key
competitors for decomposition of model variance.

KEY WORDS: Averaging over orderings; Linear model; Pro-
portional marginal variance decomposition (PMVD); Sequential
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1. INTRODUCTION

In many linear regression applications, a main goal of analysis
is the determination of a ranking of the regressors or an explicit
quantification of the relative importance of each regressor for the
response. This type of application is often encountered in dis-
ciplines that rely on observational studies such as psychology,
biology, ecology, economy and so forth (see, e.g., application
areas in the references). If all regressors are uncorrelated, there
is a simple and unique answer to the relative importance ques-
tion. However, it is the very nature of observational data that
regressors are typically correlated. In this case, assignment of
relative importance becomes a challenging task, for which the
standard output from linear regression models is not particularly
well suited. This article focuses on relative importance assess-
ment based on variance decomposition for linear regression with
random regressor variables. Thus, metrics such as level impor-
tance [the product of the unstandardized regression coefficient
with the regressor’s mean, advocated, e.g., by Achen (1982, p.
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71 ff)], which focus on the expected value of the response, are
not covered here.

For reviews of work on relative importance, see Johnson and
Lebreton (2004), Fickel (2001), Firth (1998), or Kruskal and
Majors (1989). Historically, Darlington (1968) gave an insight-
ful overview of the approaches to relative importance available
at that time, which include, among others, the so-called “use-
fulness” of a regressor [which is the increase in R2 if the re-
gressor is added to the model that already includes all other
regressors, equivalent to t statistics or so-called Type III sums of
squares; see, e.g., Dobson (2002, p.88)], simple squared marginal
correlations, squared standardized coefficients and products of
standardized coefficients with marginal correlations (Hoffman
1960). All these approaches lead to the same result in case of
uncorrelated regressors, but they can lead to quite different re-
sults for correlated regressors, and all these approaches have
been criticized. Customers of statistical analysis often request
a decomposition of the full model R2 into contributions from
the different regressors. Hoffman’s (1960) proposal does deliver
such decomposition, but is not considered appropriate by most
authors mainly because some allocated contributions can be-
come negative. Pratt (1987) provided a set of criteria under which
Hoffman’s proposal appears justified, which has convinced some
authors to reconsider the method, while the present author, in
line also with Darlington (1968), Bring (1996), or Johnson and
Lebreton (2004), rejects this method as inappropriate (see Sec-
tion 2.2).

The first proposal that will be pursued in this article came from
Lindeman, Merenda, and Gold [1980, p. 119ff; made known by
Kruskal (1987a,b), who mainly suggested a slightly different
nonadditive variant], henceforth LMG, who proposed to use se-
quential [also called Type I, see, e.g., Dobson (2002, p. 88)] sums
of squares from the linear model—the size of which depends on
the order of the regressors in the model—and obtained an overall
assessment by averaging over all orderings of regressors. This
proposal has so far not found its way into the statistical main-
stream, presumably for two reasons: first, it is computationally
challenging and has become feasible only with enhanced com-
puting power; second, its justification has originally been quite
ad hoc, and its properties are not yet well understood. Neverthe-
less, there is a substantial amount of literature that proposes us-
age of this method under various names: Theil and Chung (1988)
adopted the principle and proposed applying it to information
rather than proportions of variation. In a frequently cited arti-
cle, Chevan and Sutherland (1991) generalized the principle—
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called hierarchical partitioning in their paper—to more general
classes of regression models, and Walsh and MacNally (2005)
provided the R packagehier.part for applying this approach.
Budescu (1993) and Azen and Budescu (2003) introduced dom-
inance analysis that—among other things—assigns exactly the
LMG contribution to each regressor, and Azen (2003) provided
a SAS macro for the relevant calculations. Lipovetsky and Con-
klin (2001) reinvented LMG from a game-theoretic perspective
by applying the Shapley value (Shapley 1953). Stufken (1992)
already noted that Chevan and Sutherland’s proposal is equiva-
lent to the Shapley value, and proposed that game theory might
render useful additions to relative importance investigation.

The second proposal that will be discussed came from Feld-
man (2005) who introduced the “proportional marginal variance
decomposition,” henceforth PMVD, which is a weighted ana-
logue of LMG with data-dependent weights. Feldman showed
that PMVD is an instance of the game-theoretic proportional
value (Feldman 1999; Ortmann 2000) and exploited this fact
for simplifying computations. Grömping (2006) presented the
R package relaimpo that calculates most of the metrics dis-
cussed so far, including PMVD.

There is a need in the applied sciences for appropriate meth-
ods of assigning relative importance, as evidenced by a recent
boom of literature on relative importance (e.g., Soofi, Retzer,
and Yasai-Ardekani 2000; MacNally 2000; Whittaker, Fouladi,
and Williams 2002; Lebreton, Ployhart, and Ladd 2004; Johnson
2004; Budescu and Azen 2004; Conklin, Powaga, and Lipovet-
sky 2004; in addition to the already mentioned sources). Because
of the lack of an accepted mainstream methodology for the im-
portant task of relative importance investigations, the field has
substantially disintegrated, and many application areas appear
to have reinvented the wheel in one way or other.

This article serves two purposes: (i) to reunite the relative-
importance related aspects of the literature from the various fields
and (ii) to investigate the statistical properties of the key com-
petitors that decompose the model R2 (LMG and PMVD). An
introductory section on the linear model and on desirability crite-
ria for relative importance metrics (Section 2) will be followed
by an investigation of the theoretical quantities that are con-
sistently estimated by LMG and PMVD (Section 3). Section 4
presents a simulation study on the distribution of the estimators,
and Section 5 discusses the implications of the findings and areas
of further research.

2. THE FRAMEWORK FOR VARIANCE
DECOMPOSITION IN LINEAR REGRESSION

2.1 The Marginal Perspective on the Linear Regression
Model

The focus in this article is on decomposing the variance of
the response Y into proportions due to the X’s (and error) in the
linear regression model

Y = β0 + X1β1 + · · · + Xpβp + ε,

β0, β1, . . . , βp fixed and unknown, (1)

where the random variables Xj , j = 1, . . . , p, denote
p regressor variables and the random variable ε denotes an er-

ror term with expectation 0 and variance σ 2 > 0 which is
uncorrelated to the regressors. Because we assume a regres-
sion model with intercept, it can be assumed w.l.o.g. that all
X’s are centered (i.e., have expectation 0). The regressor vari-
ances are denoted as vj , j = 1, . . . , p, the inter-regressor corre-
lations as ρjk , and the p × p covariance matrix between re-
gressors is assumed to be positive definite so that any sam-
ple regressor matrix with n > p rows is of full column rank
with probability one. Model (1) implies the conditional mo-
ments E(Y | X1, . . . ,  Xp) =  β0 + X1β1 + · · · + Xpβp and
var(Y | X1, . . . , Xp) =  var(ε| X1, . . . ,  Xp) =  σ 2 and the
marginal variance model

var(Y ) =
p∑

j=1

β2
j vj + 2

p−1∑
j=1

p∑
k=j+1

βjβk
√

vjvkρjk + σ 2. (2)

Throughout the article, the true coefficients β1, . . . , βp are those
against which estimates from model (1) are consistent. If (1) is
misspecified by omitting relevant variables, the true coefficients
in this sense include the bias. Note that (2) depends on βj and vj

through βj
√

vj only, which is the coefficient one would obtain
for the standardized regressor Xj/

√
vj .

The first two summands of (2) constitute the part of the vari-
ance that is explained by the regressors, while the last summand
is the error variance. R2 from a linear model with n indepen-
dent observations is consistent for the proportion of the first two
summands of (2) in the total var(Y ). As long as the X’s are
uncorrelated with each other, the explained variance obviously
decomposes into the contributions β2

j vj , which can be consis-
tently estimated using the unique sums of squares (SS) for each
regressor.

In case of correlated X’s, it is no longer obvious how (2)
should be decomposed. LMG and PMVD choose different ways,
which are detailed below. All discussions are in terms of the
theoretical quantities towards which the estimates converge for
increasing sample sizes, and w.l.o.g. allocation to the regressor
X1 is singled out for investigation. The order in which regressors
are entered into the model is denoted as r = (r1, . . . , rp), which
is a permutation of the regressors’ indices {1, . . . , p}, and the
set of regressors appearing before X1 in the order r is denoted
as S1(r). In order to simplify formulas, let us further introduce
the notations

evar(S) = var(Y ) − var(Y |Xj , j ∈ S), (3)

and
svar(M  |S) = evar(M ∪ S) − evar(S) (4)

for the explained variance based on regressors with indices from
S and the sequentially added explained variance when adding
the regressors with indices in M to a model that already contains
the regressors with indices in S. Note that the true coefficient
of determination R2(S) can be written as evar(S)/var(Y ). For
most purposes, working with evar is equivalent to working with
R2.

2.2 Desirability Criteria for Decomposition of R2

The following criteria for decomposition of the model R2 are
considered useful in the literature, though seldom listed explic-
itly:
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Figure 1. Two simple causal models that can lead to the linear regression model E(Y |X1, X2, X3) = β0 + X1β1 + X2β2 + X3β3.

(a) Proper decomposition: the model variance is to be decom-
posed into shares, that is, the sum of all shares has to be the
model variance.

(b) Non-negativity: all shares have to be non-negative.

(c) Exclusion: the share allocated to a regressor Xj with βj  =
 0 should be 0.

(d) Inclusion: a regressor Xj with βj  =  0 should receive a
nonzero share.

The list could be extended by further reasonable requests; the cri-
teria listed here are the ones most relevant for comparing LMG
and PMVD among each other and with other relative importance
metrics. Criteria (a) to (d) are requested by various authors [see,
e.g., Feldman 2005 (all), Darlington (1968, (a),(b)), Theil (1971,
(b)), Johnson and Lebreton (2004, (a), (b)), Cox (1985, slightly
different context, (c), (d))], and are cited here for ease of refer-
ence. Feldman (2005) postulated these four criteria in the sense
of strict admissibility criteria and showed that PMVD is admis-
sible in this sense while LMG is not. The present author agrees
that criteria (a) and (b) are indispensable, so that the method by
Hoffman (1960) as justified by Pratt (1987) is not further dis-
cussed because of its violation of criterion (b). Criterion (d) is
fulfilled by both LMG and PMVD, and it is conjectured that it
will be fulfilled by any nontrivial metric that fulfills both (a) and
(b).

Exclusion (criterion (c)) is fulfilled for all relative importance
metrics mentioned in this article—even the simple ones that have
been severely criticized in the literature—as long as all regres-
sors are uncorrelated. Feldman (2005) generally requested ex-
clusion since he considered a regressor with a zero coefficient to
be “spurious.” When thinking of predictive relevance, a regres-
sor with 0 coefficient in the equation does indeed not contribute
anything useful, given that all regressors with nonzero coeffi-
cients are available, so that exclusion is a reasonable request. If
the relative importance question is asked with a causal interpre-
tation in mind (as is, e.g., the case when aiming at prioritizing
intervention options) and regressors are correlated, exclusion is
a less convincing requirement: Figure 1 shows graphs of two
causal models—with directed arrows indicating a direct causal
relation—that both (assuming linearity of all relations) imply the
same linear regression model with p = 3 correlated regressors.
In model I, regressor X1 directly influences both other regres-
sors and the response. If the shaded arrow is deleted from the
graph, the coefficient β1 becomes zero, since in the presence of

X2 and X3 there is no additional explanatory value in X1. Nev-
ertheless, X1 obviously exerts an influence on Y via the other
two regressors, and there is no reason to request that it should be
allocated a share of zero. In model II, X2 and X1 have swapped
roles. Again, if the shaded arrow is deleted from the graph, the
coefficient β1 becomes zero. Now, it appears far more reasonable
that X1 should be allocated a share of zero.

As the linear regression model (1) is generally compatible with
many different causal models, among them also those models
for which exclusion is clearly unreasonable, exclusion does not
appear to be a reasonable requirement for relative importance
considerations, if causality considerations motivate the analysis.

Criteria (a) to (d) refer to properties of the theoretical quan-
tities estimated and can also be applied for the estimated quan-
tities, when replacing all theoretical values with their empirical
counterparts. In addition to these criteria, a reasonably low vari-
ability of the estimators in cases of moderate multicollinearity is
also an important aspect in assessing a method’s performance.

3. WHAT DO RELATIVE IMPORTANCE METRICS
ESTIMATE?

3.1 Estimated Quantities for LMG

As was mentioned before, LMG allocates to X1 the average
over allocations to X1 from all possible orderings of regressors.
In the simple case of two regressors, (2) simplifies to

β2
1v1 + 2β1β2

√
v1v2ρ12 + β2

2v2 + σ 2. (2*)

With n independent observations from the common distribution
of Y , X1, and X2, let y denote the n × 1-vector of centered
responses, x1 the n × 1-vector of centered values for regressor
X1, and the superscript T transposition and “−1” inversion. Then
the model SS for X1 in the role of the first and only regressor is

yTx1

(
xT

1 x1

)−1
xT

1 y =
(

xT
1 y

)T (
xT

1 x1

)−1 (
xT

1 y
)

,

which, when divided by n, is by simple considerations consistent
for

svar ({1}| ) = cov(Y, X1)
2

var(X1)
=

(
β1v1 + β2

√
v1v2ρ12

)2

v1

= β2
1v1 + 2β1β2

√
v1v2ρ12 + β2

2v2ρ
2
12. (5)

Note that—when alone in the model—the first regressor captures
the full mixed term of the variance (2*) plus some of the unique
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contribution of the second regressor in case of correlation. The
contribution of the second regressor can be determined by the
difference to the total model SS, which (divided by n) is consis-
tent for var(Y ) − σ 2. Thus, the variance attributed to X2 after
adjusting out X1 becomes svar({2}|{1}) = β2

2v2(1 − ρ2
12). By

analogy, svar({1}|{2}) = β2
1v1(1 − ρ2

12). Hence, the theoretical
allocation of variance to X1 estimated by LMG is the average
over the two orders, that is,

β2
1v1 + β1β2

√
v1v2ρ12 + 0.5

(
β2

2v2 − β2
1v1

)
ρ2

12. (6)

Each regressor receives half of the mixed term in (2*). In ad-
dition, for ρ12 = 0 the regressor with larger β2

j vj donates part

of its contribution to the regressor with smaller β2
j vj . This third

summand of (6) creates an equalization between correlated re-
gressors with unequal β2

j vj . In the light of the discussion of
Figure 1, this can be seen as a precaution that takes care of the
uncertainty regarding the underlying model structure. The third
summand of (6) also causes LMG’s violation of the exclusion
criterion for correlated regressors: if β1 = 0, β2 = 0, ρ12 = 0,
there will be a nonzero share allocated to X1.

For p regressors, the LMG share allocated to X1 is given as

LMG(1) = 1

p!

∑
rpermutation

svar({1}|S1(r))

= 1

p!

∑
S⊆{2,...,p}

n(S)!(p − n(S) − 1)!svar({1}|S).

(7)

All orders with the same S1(r) can be summarized into one sum-
mand. Thus, the computational burden is reduced from calcula-
tion of p! summands to calculation of 2p−1 summands which
are based on the 2p quantities evar(S) and evar(S ∪ {1}), S ⊆
{2, . . . , p}.

Some readers may find it more intuitive to think of LMG(1)
as the average over model sizes i of average improvements in
explained variance when adding regressor X1 to a model of size i
without X1 (see Christensen 1992), that is,

LMG(1) = 1

p

p−1∑
i=0


 ∑

S⊆{2,...,p}
n(S)=i

svar({1}|S)

/ (
p − 1

i

)
 . (7*)

We have already seen in the two-regressor case that LMG vio-
lates the exclusion criterion. The other three desirability criteria
are satisfied, as can be easily verified from (7), noticing that the
method averages non-negative contributions that sum to the total
variance. Since (7) can be calculated for various scenarios, inves-
tigations into the behavior of the estimand are possible without
simulation (see Section 3.4).

3.2 Estimated Quantities for PMVD

PMVD can be calculated as a weighted average of the same
contributions averaged in (7). Each order of regressors receives a
data-dependent weight. With weights p(r) that will be discussed
below, PMVD can be written as

PMVD(1) =
∑

r permutation

p(r)svar({1}|S1(r)). (8)

This formula is quite similar to (7), the difference lying in the
weights p(r), which preclude combining the summands with
the same S1(r) into one. Note that (8) is inefficient for compu-
tation (for more efficient computation see Feldman 2005, Ap-
pendix A).

Definition of the weights p(r) is as follows: If all regressors
have nonzero coefficients, the permutation r receives a weight
that is proportional to

L(r) =
p−1∏
i=1

svar
({

ri+1, . . . , rp
} | {r1, . . . , ri}

)−1

=
p−1∏
i=1

(evar ({1, . . . , p}) − evar ({r1, . . . , ri}))−1 ,

(9)

that is, the weights are p(r) =  L(r)/
∑

r L(r), where sum-
mation in the denominator is over all possible permutations r .
The factors in product (9) are increasing in size from i = 1
to i =  p − 1. Weights are large, if the first regressor al-
ready captures a large portion of the explained variance (so that
(evar({1, . . . , p}) − evar({r1}))−1 is already relatively large).
Also, if a set of regressors has a low explanatory value con-
ditional on all other regressors, weights are large if all regres-
sors from this set occur after the other regressors in the order. If
some coefficients are zero, limiting considerations (see Feldman
2002) show that weights become positive for orderings with all
0-coefficient variables last, while any other ordering receives a
weight of 0—in fact, the results for data with one or more co-
efficients estimated as 0 are identical to the results from models
with the 0-coefficient variables omitted and their shares fixed at
0. Thus, PMVD weights guarantee exclusion, as they were de-
signed to do. In addition, like any approach that can be written
as an average over orderings, PMVD also guarantees the other
three desirability criteria, using the same reasoning as for LMG.

For illustration of PMVD, let us apply (8) and (9) to a
scenario with two regressors X1 and X2 and nonzero coeffi-
cients. The L(r) consist of one factor only, with L((1, 2)) =
svar({2}|{1})−1, so that the weight p((1, 2)) becomes

p((1, 2)) = svar({1}|{2})
svar({1}|{2}) + svar({2}|{1}) = β2

1v1

β2
1v1 + β2

2v2
.

With p((1, 2)) and p((2, 1)) inserted in (8), using the sequential
variances calculated in Section 3.1, the variance allocated to X1
simplifies to

β2
1v1 + β2

1v1

β2
1v1 + β2

2v2
∗ 2β1β2

√
v1v2ρ12 (10)

This result for two regressors has several specific properties none
of which generalizes to p > 2: the share of the mixed term
that a regressor receives is proportional to its individual term
in the model. Also, the weight for order (1, 2) coincides with
the proportion of R2 allocated to X1, and the weights do not
depend on the correlation between the X’s. For more than two
regressors, the scenario investigations in Section 3.4 will shed
further light on the behavior of PMVD.
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Table 1. A few PMVD weight examples with corr(X1, X2) = corr(X2, X3) = ρ, corr(X1, X3) = ρ2

β1 = 1, β2 = 1, β3 = 1 β1 = 5, β2 = 4, β3 = 3 β1 = 4, β2 = 1, β3 = 0.3

Order r ρ = −0.5 ρ = 0 ρ = 0.5 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = −0.5 ρ = 0 ρ = 0.5

(1,2,3) 0.174 0.167 0.129 0.344 0.320 0.257 0.855 0.859 0.828
(2,1,3) 0.109 0.167 0.210 0.154 0.235 0.296 0.043 0.058 0.073
(2,3,1) 0.109 0.167 0.210 0.056 0.085 0.107 0.000 0.000 0.000
(1,3,2) 0.217 0.167 0.161 0.242 0.180 0.181 0.096 0.077 0.093
(3,1,2) 0.217 0.167 0.161 0.135 0.110 0.105 0.005 0.005 0.005
(3,2,1) 0.174 0.167 0.129 0.069 0.070 0.054 0.000 0.000 0.000

3.3 Discussion of Weight Approaches

As mentioned before, LMG simply gives each order of regres-
sors the same weight, that is, the weights are data-independent.
If a predetermined order of variables can be specified, we have
another situation of data-independent weights, for which one
order has weight one, all others weight 0. Applied researchers
facing a relative importance question often use an automated for-
ward or backward selection of variables (e.g., Janz et al. 2001) to
determine the order of regressors. This is an extreme case of data-
dependent weights (1 for one order, 0 for all other orders), which
guarantees exclusion in case of backward selection, but can de-
liver quite arbitrary allocations as is obvious from comparing
svar({1}| ) to svar({1}|{2}) for the two-regressor case (see (5)
and subsequent calculations). Selection-based approaches have
been criticized, for example, by Bring (1996) and references
therein. The PMVD weights p(r) can be seen as a compromise
between this extreme form of data-dependent weights and equal
weights for all regressors. They are concentrated on a few orders
in case of very unequal β’s and are more balanced between orders
for constant or very similar β’s. Table 1 shows a few examples
for three regressors.

3.4 Scenario Investigations Regarding the Estimated
Quantities

Trivially, LMG and PMVD coincide for uncorrelated regres-
sors, since variance allocation is order-independent. Further-
more, symmetry considerations imply that both methods allocate
equal shares for all regressors in case of equi-correlated regres-
sors if all βj

√
vj are identical. This is true for LMG because

all orders generally receive the same weight. For PMVD, iden-
tical weights for all orders are guaranteed by Feldman’s (2005)
anonymity axiom in this situation. Combining these two situa-
tions, LMG and PMVD also coincide for several uncorrelated
groups of equi-correlated regressors with group wise constant
βj

√
vj . For any other situation, the two methods will yield more

or less different results, as is exemplified in Figure 2.
Figure 2 depicts allocated shares according to LMG (thick

lines) and PMVD (thin lines) for a group of four regressors for
four different scenarios (a) to (d) (vj = var(Xj ) fixed at 1). As
was pointed out above, LMG and PMVD coincide for scenar-
io (a) (identical β’s with constant inter-regressor correlations).
For scenario (b) (identical β’s, corr(Xj , Xk) = ρ|j−k|), both
methods show a moderate dependence on the correlation pa-

rameter, where regressors X2 and X3 are ranked before X1 and
X4 for positive ρ and vice versa for negative ρ. In the two sce-
narios with very unequal β’s ((c) and (d)), LMG and PMVD
behave quite different: For LMG, increasing absolute values of
the correlation imply a substantial equalization of shares (note
that the highest disparity is observed not for ρ = 0 but for small
negative correlations). PMVD is far less sensitive to changes
in ρ, and negative correlation parameters attenuate rather than
reduce disparities between regressors.

Apparently, for scenarios with very similar β’s or correlations
close to 0, the difference between LMG and PMVD is small,
while it becomes large for scenarios with large differences be-
tween β’s or more extreme correlations. The ranking of regres-
sors in terms of allocated shares is often but not always the same
for both methods. In applications (positive correlations among
X’s, all β’s same sign), the numerical differences between a few
large and many smaller allocated shares have been observed to
be more distinct for PMVD than for LMG; however, because
of the higher variability of PMVD estimates (see next section),
this has not paid off in terms of more statistically significant
differences between allocated shares.

Note that the equalization of LMG shares for increasing pos-
itive correlation is caused by a continuity property of LMG: in
the limit case for which all regressors are perfectly correlated,
all regressors (reasonably) receive an equal share, since there
is no information whatsoever on potential differences between
regressors. LMG shares continuously approach this limit if the
correlation matrix approaches a matrix of ones, which can be
seen as a precaution taken because of increased model uncer-
tainty (see also Section 2.2). PMVD does not possess a compa-
rable continuity property; rather, the limit against which PMVD
converges depends on the model coefficients.

4. SIMULATIONS

Following the discussion of the theoretical quantities for
which the estimators are consistent, this section investigates the
sampling distributions of the estimators, with particular focus
on the dispersion of the estimators. For a multivariate normal
distribution of (Y, X1, . . . , Xp)T, the asymptotic distribution of
LMG is known [Budescu (1993) based on a result by Olkin and
Siotani (1976)]. This result cannot be applied to PMVD, since
the PMVD-weights are data-dependent. Also, it is desirable to
not restrict results to multivariate normal regressors. Therefore,
a simulation study has been conducted.
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Figure 2. Proportions of R2 allocated to each regressor for LMG (thick line) and PMVD (thin line).

Parameter vectors:  (a) and (b): βββ = (1, 1, 1, 1)T, (c) and (d): βββ = (4, 1, 1, 0.3)T.

Correlations among X1, . . . , X4: (a) and (c): corr(Xj , Xk) = ρ, j = k. (b) and (d): corr(Xj , Xk) = ρ|j−k|.

Table 2. Simulation settings

Factor Levels

Correlation structure ◦ corr(Xj , Xk) = ρ for j = k with ρ = −0.3 to 0.9 in steps of 0.1
of (X1, . . . , X4)∗) ◦ corr(Xj , Xk) = ρ|j−k| with ρ = −0.9 to 0.9 in steps of 0.1

Distribution of (X1, . . . , X4)∗∗) ◦ Multivariate normal (expectations 0, variances 1)
◦ Exponential (= linear combination of exponentials; expectations
depend on correlation structure, variances 1)

Coefficient vectors (β1, . . . , β4)T ◦ βββ1 = (4, 1, 1, 0.3)T ◦ βββ5 = (1.2, 1, 1, 0.3)T

◦ βββ2 = (1, 1, 1, 0.3)T ◦ βββ6 = (1, 1, 1, 0)T

◦ βββ3 = (4, 1, 0, 0)T ◦ βββ7 = (4, 3.5, 3, 2.5)T

◦ βββ4 = (1, 1, 1, 1)T

Sample sizes ◦ n = 100 independent observations
◦ n = 1000 independent observations

True R2 ◦ 0.25
(controlled through σ 2) ◦ 0.5

◦ 0.9

∗) Observations on different units are independent. The correlation structure refers to the four regressors within each independently observed unit.

∗∗) Note that the regressors in the exponential case have nonzero expectation, which is irrelevant, since it can be subsumed in an estimate of the intercept and does
not affect any conclusions about explained variance.
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4.1 The Simulation Set-ups

The simulations work with four regressors only, in order to
allow various patterns and keep simulation times manageable.
Each set-up has been replicated 500 times, which allows reason-
ably accurate estimates of the dispersion.

Table 2 shows the simulation settings. In the multivariate nor-
mal case, regressors have simply been simulated as indepen-
dent multivariate normal samples with expectation vector 0 and
covariance matrix as defined in the scenario, while the expo-
nential case simulates the regressors as linear combinations of
independent exponential random variables with expectation 1,
such that the covariance matrix is equal to the correlation struc-
ture. In all simulations, the response has been simulated as
β0 + X1β1 + · · · + X4β4 plus an independent normal error with
expectation 0.

4.2 Distribution of the Estimated R2 Percentages

Since the estimators are consistent for their respective true
quantities, the average estimates are closer to the true values
as discussed in Section 3 both with increasing sample size and
increasing R2. The simulations show no surprises here.

The most interesting outcome from the simulations is the as-
sessment of the variability behavior of the allocated proportions
of R2. Figure 3 shows the interquartile ranges for LMG and
PMVD for the most variable simulated scenario (lowest R2,
n = 100); although a discrete set of ρ values has been simulated,
lines have been drawn for visual clarity. It can be seen that PMVD
is most variable with positive correlations and sometimes with
strong negative correlations, while LMG is most variable for
small absolute values of correlations in most situations. PMVD
is distinctly more variable than LMG for positive correlations,
and sometimes also for strong negative correlations, while it is

Figure 3. Interquartile ranges from 500 allocated proportions of R2 for LMG (thick line) and PMVD (thin line).
Scenario: R2 = 0.25, n = 100, normally distributed X’s.

Correlations among X1, . . . , X4 : corr(Xj , Xk) = ρ|j−k| (ρ = −0.9 to 0.9 shown on horizontal axis for each βββ, dashed vertical lines indicate ρ = 0).

slightly less variable than LMG for moderate negative corre-
lations in most cases. For βββ-vectors with some zero elements
(βββ3, βββ6), PMVD variability is very low for the respective shares
(with a distinct advantage over LMG for scenarios with high R2,
not shown). This is in line with PMVD’s property to satisfy the
exclusion criterion. Also, PMVD shows lowest variability where
true differences between coefficients are large with some coef-
ficients relatively close to 0, while the variability disadvantage
versus LMG is higher for βββ-vectors with relatively similar coef-
ficients. Overall, since variability differences in favor of PMVD
are typically much smaller than those in favor of LMG, LMG is
preferable in terms of variation.

5. DISCUSSION

This article has investigated two ways of decomposing
R2 in linear regression, LMG and PMVD. LMG has been
reinvented numerous times by various researchers (see Section
1) and is based on the heuristic approach of averaging over
all orders. Feldman (2005) criticized that LMG violates
the exclusion criterion and designed PMVD specifically for
satisfying the exclusion criterion, by employing a special set
of data-dependent weights. While Feldman saw satisfaction
of the exclusion criterion as so desirable that it was worth the
price of increased computation efforts and increased variability
of estimates, it has been pointed out in Section 2.2 of this
article that exclusion is not a desirable criterion under all
circumstances. If exclusion is considered an indispensable
criterion for an application, PMVD must be used in spite of
its larger variation and higher implementation effort. On the
other hand, if a causal interpretation of the variance allocations
is intended, LMG’s equalizing behavior must be seen as a
natural result of model uncertainty, and LMG is to be pre-
ferred. Luckily, in many (not all) applications the two methods
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give similar answers at least in terms of ranking regressors. It can
be instructive to apply both methods and compare their results.

In many articles on relative importance, the methods are dis-
cussed in a purely descriptive fashion (also observed by Budescu
and Azen 2004), that is, there is no discussion of true quantities
estimated or statistical behavior of the variance contribution es-
timators. This is certainly at least partly due to a lack of under-
standing regarding the estimated quantities. This article provides
a step towards improving this situation. Nevertheless, further in-
vestigations are needed in order to achieve a full understanding of
variance decomposition in the sense of this article. Even though
estimation is not the focus of most articles on relative impor-
tance, various researchers have recognized the need of reporting
variability of assigned relative importances and have employed
the bootstrap for determining confidence intervals (Azen’s SAS
macro, Grömping’s R package). The bootstrap was also men-
tioned by Lipovetsky and Conklin (2001), Azen and Budescu
(2003), and Johnson (2004), for example. Although not pre-
sented here, some simulation studies regarding coverage prob-
abilities of bootstrap percentile confidence intervals for LMG
have shown a somewhat anti-conservative behavior, with error
levels up to about twice the nominal in some situations. Further
investigations into the behavior of bootstrap confidence intervals
are certainly needed.

Several authors—among them Ehrenberg (1990), Stufken
(1992), and Christensen (1992)—have expressed reservations
about the benefit of relative importance measures. Certainly, for
a thorough understanding of any phenomenon, a detailed in-
vestigation of adequate data based on theory-driven explanatory
models (e.g., path-analytical models in the spirit of Figure 1)
is far more useful than a simplistic assessment of relative im-
portance. In particular, a request for a decomposition of R2 is
often driven by a desire to prioritize intervention actions with
the intention to influence the response. It is important to notice
that any intervention bears the risk (or chance) of not only influ-
encing the targeted regressor(s) but also the correlation structure
among regressors. Thus, unexpected results may occur regarding
changes of the response’s variance. In this way, the benefit of the
concept of decomposing R2 is more limited than the typical user
might realize. Nevertheless, if an agreed theory-driven explana-
tory model is unavailable, variables with high allocated shares
of variability are natural candidates when trying to influence the
response.

[Received February 2006. Revised December 2006.]
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