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Abstract For symmetric arrays of two-level factors, a regular fraction is a well-
defined concept, which has been generalized in various ways to arrays of s-level
factors with s a prime or prime power, and also to mixed-level arrays with arbitrary
numbers of factor levels. This paper introduces three further related definitions of a
regular fraction for a general array, based on squared canonical correlations or the
commuting of projectors. All classical regularity definitions imply regularity under
the new definitions, which also permit further arrays to be considered regular. As
a particularly natural example, non-cyclic Latin squares, which are not regular un-
der several classical regularity definitions, are regular fractions under the proposed
definitions. This and further examples illustrate the different regularity concepts.

1 Introduction

An array is an N× n (N rows, n columns) table of symbols, for which the ith col-
umn contains si symbols. The columns are also called factors, the symbols are also
called levels. If s1 = · · · = sn, the array is called symmetric, otherwise mixed-level
or asymmetric. A full factorial would have (a multiple of) s1× ·· · × sn rows; we
consider a fraction with N rows. In a balanced array, each column contains each of
its symbols equally often. If in addition each pair of columns contains each of its
pairs of symbols equally often, the array is an orthogonal array (OA). We only con-
sider balanced arrays, and in most cases OAs. Now we consider three established
regularity definitions in more detail:
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Table 1 Two Latin squares: a cyclic one for 4-level factors and a non-cyclic one for 5-level factors;
entries show the level of factor C for each AB combination

4-level factors B 5-level factors B
0 1 2 3 0 1 2 3 4

A 0 0 1 2 3 A 0 0 1 2 3 4
1 1 2 3 0 1 1 0 3 4 2
2 2 3 0 1 2 2 3 4 0 1
3 3 0 1 2 3 3 4 1 2 0

4 4 2 0 1 3

Cyclic group regularity or Abelian group regularity refers to arrays for which the
si levels of the ith factor can be given in terms of the cyclic group Z/siZ or,
more generally, an Abelian group of order si, such that the fraction is a coset of
a subgroup of the direct product of all these groups (i.e., of the full factorial).

Pseudo-factor regularity refers to arrays created using defining relations among
prime-level pseudo-factors: any factor with non-prime number of levels is viewed
as a full factorial in so-called pseudo-factors whose numbers of levels are primes.
These arrays can also be characterized by the existence of a coding based on
pseudo-factors such that the rows form a coset of a subgroup of an Abelian group,
i.e., they are a special case of Abelian group regular arrays. Kobilinsky, Monod
and Bailey [12] recently described algorithms for creating such arrays; these are
implemented in the R package planor (Kobilinsky, Bouvier and Monod [11]).

GF regularity refers to symmetric arrays with all factors at q levels, q a prime
power, that can be created through defining equations for fractionating, also
called generators, based on additive contrasts in the Galois field GF(q). If q
is prime, addition in GF(q) coincides with addition modulo q, while it is differ-
ent otherwise, see e.g. Dey and Mukerjee [5]. Equivalently, GF regularity can be
characterized by labeling the q levels of each factor such that the rows form an
affine subspace of the n-dimensional affine space over GF(q). This is the concept
discussed by Bose [3] and implies all other types of regularity.

For symmetric 2-level or 3-level arrays, all these regularity types are equivalent.
With more than three levels, they need no longer coincide, not even for symmetric
arrays with number of levels a prime power. For example, the 4-level array, arranged
as a Latin square in Table 1, is Abelian group regular but not GF or pseudo-factor
regular. Latin squares also provide examples for which it appears anti-intuitive to
consider them non-regular, but which are not regular according to the classic crite-
ria: the 5-level array in Table 1 (the first array from Eendebak and Schoen [6]) is
neither GF regular nor pseudo-factor regular nor Abelian group regular (but will be
considered regular according to our proposed criteria).

Regularity is closely related to orthogonality. OAs are a widely known orthogonal
structure; an even weaker one was introduced by Tjur [15] and termed “Tjur block
structure” by Bailey [1]. Tjur block structures consist of factors orthogonal in the
sense that projectors onto the corresponding subspaces commute, with the trivial
1-level factor and the supremum of any pair of factors always included (see Table 4
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for an example of the supremum). All OAs are Tjur block structures, but the reverse
is not true (see e.g. Table 4). If the supremum is not included, it can be added without
destroying orthogonality, so that closure under suprema is a lesser issue, and we will
call a structure that requires addition of suprema a weak Tjur block structure. All
examples in this paper are at least weak Tjur block structures.

We propose a regularity definition based on commuting projectors, called “geo-
metric regularity”. The recent work by Grömping and Xu [9] offers the possibil-
ity for two further regularity definitions, based on model matrices but nevertheless
coding-invariant. One definition, called “CC-regularity”, is based on the individual
so-called squared canonical correlations (SCCs) for the main effect of each factor,
whereas a stricter definition (“R2 regularity”) requires that the average R2 value for
explaining each degree of freedom for a main effect be either 0 or 1. The building
blocks of CC-regularity and R2 regularity are introduced in the next section, before
the three new regularity definitions and their interrelations are presented in Sec-
tion 3. Section 4 summarizes the relations among the criteria and discusses practical
issues regarding their assessment.

2 Generalized Word Length Patterns, SCCs, and R2 values

Definition 1 defines notation regarding model matrices and projectors. Definition 2
defines concepts in connection with the generalized word length pattern (GWLP),
which was introduced by Xu and Wu [16] and generalizes the well-known word
length pattern (WLP) for symmetric 2-level arrays.

Definition 1. Consider an N×n array with the ith column at si levels for i= 1, . . . ,n.

(i) 1N denotes a column of ones.
(ii) For j = 0, . . . ,n, a j-factor set is a subset of j columns of the array, and

S j = {S⊆ {1, . . . ,n} : |S|= j} denotes the set of all j-factor sets.
(iii) For S ∈S j, XS denotes the N×cfull model matrix of a full model with all main

effects and interactions up to degree j, where cfull = ∏i∈S si; XS consists of
suitably assembled rows of the matrix that would be used in the full factorial.
The first column of XS is assumed to be 1N , and X{} = 1N .

(iv) PS = XS(X′SXS)
−X′S is the orthogonal projector onto the column span of XS.

(v) For factor i, X{i} denotes the N× si model matrix including 1N , and Xi denotes
the N× (si−1) sub-matrix without 1N . The columns of Xi are centered.

(vi) Factor i is said to be in normalized orthogonal coding if X′iXi = NIsi−1.
(vii) The full model matrix XS is said to be in normalized orthogonal coding, if all

individual factors are in normalized orthogonal coding and interaction columns
are constructed as products of main effects columns.

(viii) The matrix of the ∏i∈S (si−1) highest order interaction columns from XS in
normalized orthogonal coding is called XI (S). Thus XI ({i}) = Xi in normal-
ized orthogonal coding, and XI ({}) = 1N .
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Table 2 Non-regular 16×3 resolution 3 array from Eendebak and Schoen [6] (transposed)

The transposed array Squared canonical correlations

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 for A and B for C
A 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 first 0.5 1
B 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 second 0.5
C 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 third 0

Definition 2. Consider an N×n array with the ith column at si levels for i= 1, . . . ,n.

(i) For S ∈S j, a j(S) = (1′NXI (S))(1′NXI (S))
′ denotes the projected a j value.

(ii) The Generalized Word Length Pattern (GWLP) (A0,A1,A2, . . . ,An) of the array
is defined by A j = ∑S∈S j a j(S) for j = 0, . . . ,n.

(iii) The resolution R of the array is the smallest j such that j > 0 and A j > 0.
(iv) A j-factor subset with resolution j is called a full resolution subset.

All OAs have resolution at least 3. Therefore, the GWLP for OAs is usually
specified starting with A3. For resolution 3 arrays, main effects can be estimated
orthogonally to each other but may be confounded with interactions of two or more
factors. For resolution R > 3, main effects are also orthogonal to interactions among
up to R−2 factors. As one usually assumes lower order effects likely to be stronger
than higher order effects, the entry AR of the GWLP is the most important one. As
it is the sum of the projected aR values aR(S) over all R-factor sets S, these deserve
attention. Grömping and Xu [9] provided two statistical interpretations for these,
which are given below. Note that R without square always denotes the resolution,
while R2 denotes the coefficient of determination.

Lemma 1. Let S ∈SR. For a particular i ∈ S, aR(S) is the sum of

(i) the si− 1 SCCs between the main effects model matrix Xi and the full model
matrix XS−{i};

(ii) the si−1 R2 values from regressing the si−1 columns of Xi on XS−{i}, where
Xi is in normalized orthogonal coding.

While the sums in Lemma 1 are identical, no matter which factor i in S is chosen,
the individual summands can be different (see Table 2, where the sum is 1 for all
factors). The individual R2 values in (ii) also depend on the choice of normalized
orthogonal coding and are therefore not further considered. Note that the SCCs are
closely related to the canonical efficiency factors introduced by James and Wilkin-
son [10]; the latter are used in the literature on incomplete block designs and are
implemented in the R package dae by Brien [4].

According to [9], a factor i in a resolution R array is fully confounded within an
R-factor set S, if the respective aR(S) is equal to si− 1. This is the case exactly if
all SCCs are 1 for this factor singled out as the main effects factor, or, equivalently,
if all R2 values from explaining the columns of Xi through XS−{i} are 1. On the
other hand, if all SCCs are zero, or, equivalently, if all R2 values from explaining
the columns of Xi through XS−{i} are 0, the set S does not contribute anything to AR.
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Consider factor i in a j-factor set S. If all SCCs between Xi and XS−{i} are in
{0,1} then there is a coding for factor i such that each column of Xi is either fully
explained by or uncorrelated with XS−{i}. Contrary to most results stated in [9],
this insight applies to any j-factor set S regardless of its resolution. This makes the
idea of using the SCCs for the assessment of array regularity worth pursuing. Also,
the average R2 value from regressing the columns of Xi (regardless of coding) onto
those of XS−{i} is 1 or 0 exactly if the entire factor is fully explained or not explained
at all by the factors in S−{i}, i.e. this is a stricter variant of no partial confounding.
These two versions of regularity are now formally defined, along with geometric
regularity.

3 The New Regularity Definitions

Definition 3. A balanced N×n array is CC regular, if the following holds: for every
subset S of at least two of the n factors, for every i ∈ S, all SCCs between Xi and
XS−{i} are 0 or 1 only.

Definition 4. A balanced N×n array is R2 regular, if the following holds: for every
subset S of at least two of the n factors, for every i ∈ S, the R2 values obtained from
regressing the columns of Xi on XS−{i} are all 0 or all 1.

The expressions “CC regular” and “R2 regular” have been inspired by their cor-
respondence to 0/1 only SCC frequency tables and average R2 frequency tables, as
proposed in [7].

Theorem 1. The following relations hold.

(i) R2 regularity implies CC regularity.
(ii) For symmetric 2-level arrays, R2 regularity and CC regularity are equivalent.

Proof. Consider a set S⊆ {1, . . . ,n}, and a factor i ∈ S.
(i) R2 regularity implies that the span of Xi is either contained in the span of

XS−{i} (which implies that all SCCs are 1), or is orthogonal to that space
(which implies that all SCCs are 0).

(ii) The single R2 value equals the single SCC for each pair X{i} and XS−{i}. ut

Definition 4 is equivalent to each factor’s average R2 value being 0 or 1, respec-
tively. Note that R2 regularity is possible only for symmetric arrays, as the sum of
SCCs is the same for all factors in a set and coincides with the sum of R2 values
in the case of full resolution; this restriction does not hold for trivial cases, i.e. for
mixed-level arrays that are obtained by crossing or nesting R2 regular symmetric
arrays with different numbers of levels. Furthermore, note that CC regularity and
R2 regularity request the 0/1 property for all sets of factors, which is much more
than was investigated for generalized resolution (see [9]), where considerations for
resolution R arrays were restricted to R-factor sets. Table 3 gives an example of a
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Table 3 24×13 array of resolution 3 from Kuhfeld [13] (transposed)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
A 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
B 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2
C 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2
D 1 2 2 1 1 2 1 1 2 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2
E 2 1 1 1 2 2 1 2 2 1 1 2 1 2 2 1 1 2 1 1 2 2 2 1
F 1 1 2 2 2 1 2 1 2 1 1 2 1 2 2 1 2 1 2 1 1 1 2 2
G 1 2 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 1 2
H 2 1 2 2 1 1 1 2 1 1 2 2 1 1 2 2 1 2 2 2 1 1 2 1
J 1 2 1 2 1 2 2 2 1 1 1 2 1 2 2 2 1 1 1 2 1 2 1 2
K 2 2 1 2 1 1 1 1 2 2 1 2 1 2 1 1 2 2 2 2 1 2 1 1
L 2 2 1 1 2 1 2 1 1 1 2 2 1 1 2 2 2 1 2 1 2 2 1 1
M 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 1 2 2 1 2 1
N 7 6 3 5 2 11 8 4 12 9 10 1 1 10 9 12 4 8 11 2 5 3 6 7

Squared canonical correlations
for 3 factor sets for 4 factor sets of resolution 4

SCC frequency SCC frequency
0 1320 1/9 1980
1 198

resolution 3 array that has regular 3-factor sets only, but contains partial confound-
ing for 4-factor sets of resolution 4. Thus, it is not sufficient to restrict attention
to R-factor sets when assessing CC regularity. We conjecture that it is sufficient to
check all full resolution sets. For R2 regularity, the proof is straightforward: for a
full resolution set S and i ∈ S, all SCCs between Xi and XS−{i} are 1; moreover,
for T ⊃ S, all SCCs between Xi and XT−{i} are 1; for k ∈ T − S, either all SCCs
between Xk and XT−{k} are 0, or k is part of another full resolution set which is
independently assessed. For CC regularity, we have so far not found a proof for the
conjecture.

We now define geometric regularity, using the fact that two projectors commute
if and only if their column spans are are geometrically orthogonal in the sense of
[15]. It is a more lenient variant of the orthogonal block structures introduced by
Bailey [1].

Definition 5. A balanced N × n array is geometrically regular, if the following
holds: for any two subsets S and T of the n factors, PS and PT commute.

S ⊆ T implies PSPT = PT PS = PS, i.e., such pairs of sets need not be checked.
The following theorem, which follows from equivalence of 0/1 canonical correla-
tions to projector commuting, shows the close relationship between CC regularity
and geometric regularity.

Theorem 2. Let i ∈ {1, . . . ,n}, and /0 6= S,T ⊆ {1, . . .n}. A balanced N×n array

(i) is CC regular iff P{i} and PS commute for all pairs i and S with i /∈ S;
(ii) is R2 regular iff P{i}PS ∈ {0,P{i}} for all pairs i and S with i /∈ S;
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(iii) is geometrically regular iff all SCCs between XS and XT are in {0,1} for all
pairs S and T .

Proof. All parts of the theorem follow from two linear algebra results: projectors
commute iff the eigenvalues of their product are all in {0,1} (follows from Fact
3.9.16 in [2] and Prop. 18.11 in [14]), and the non-zero SCCs of two column-
centered matrices M and N coincide with the non-zero eigenvalues of the product
of the corresponding orthogonal projectors PMPN (also in Prop. 18.11 in [14]). ut

Theorem 2 shows that geometric regularity implies CC regularity. The reverse is
not true: geometric regularity is stricter than CC regularity in that it requires orthog-
onality (in the geometric or 0/1 canonical correlation sense) between all effects, not
only between main effects and other effects. For example, a CC regular (and even
R2 regular) but not geometrically regular array be constructed as a Latin cube from
the 5-level Latin square of Table 1 by crossing a 5-level height factor H (levels 0 to
4) with the Latin square and modifying the original Latin square factor C by taking
its sum with H modulo 5; for this Latin cube, the projectors P{H,A} and P{B,C} do not
commute, even though it is CC regular and R2 regular. For symmetric 2-level arrays,
however, geometric regularity is equivalent to the other regularity definitions.

Table 4 CC regular and projector commute regular resolution 2 array

The transposed array Squared canonical correlations

Run 1 2 3 4 5 6 7 8 SCC frequency
A 0 0 1 1 2 2 3 3 0 12
B 0 1 0 1 2 3 2 3 1 2
C 0 1 1 0 0 1 1 0

The supremum of factors A and B
H 0 0 0 0 1 1 1 1

The next example illustrates the generality of the proposed regularity concepts.
Table 4 shows an array that has resolution 2 only (no OA) and is a weak Tjur
block structure; the main effects of the two 4-level factors have one completely
confounded df each (0/1 vs 2/3 for A is confounded with 0/1 vs 2/3 for B); these
give rise to the two SCCs of 1. Thus, this array is CC regular and pseudo-factor reg-
ular. As the overlap between A and B main effects splits into a parallel portion and
a portion orthogonal to it, projectors onto the spaces spanned by A and B commute.
All other projectors commute as well so that the array is geometrically regular. It is
also Abelian group regular, but not R2 regular or GF regular.

4 Final Remarks

We have extended GF regularity, pseudo-factor regularity and cyclic / Abelian group
regularity with three new regularity definitions. The following hierarchy holds: GF
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regularity ⇒ pseudo-factor regularity ⇒ Abelian group regularity ⇒ geometric
regularity⇒ CC regularity. Furthermore, GF regularity⇒ R2 regularity⇒ CC reg-
ularity. The reverse is not true: this is obvious for GF regularity and pseudo-factor
regularity, or R2 regularity and CC regularity, and follows from the examples dis-
cussed throughout the paper for the other implications. The new proposals thus pro-
vide weaker regularity requirements than the established ones. Their weakness is
welcome, because it allows us to consider the 5-level Latin square of Table 1 as a
regular array. Whether or not one also wants to consider as regular the Latin cube
that can be constructed from it yields the distinction between CC or R2 regularity
on the one hand, and geometric regularity on the other hand.

All three new regularity definitions can be checked post-hoc without knowledge
of the array construction principle. However, even with a moderate number of fac-
tors, the effort can be tremendous; nevertheless, checking remains more manageable
than trying to verify construction-based regularity for unknown construction and
level labeling. We mentioned that R2 regularity can be established by considering
only full resolution sets, and conjectured the same to hold for CC regularity. For
feasibility reasons, the R package DoE.base [8] includes a check for R2 or CC reg-
ularity based on full resolution sets only. Should the conjecture prove wrong, this
check only provides for CC regularity within all lowest order factor sets. Checks
for geometric regularity have so far not been implemented. Work is in progress on
technical conditions, in addition to excluding pairs of subsets related by inclusion,
that would reduce the computational burden of checking all pairs of subsets.

Acknowledgements Ulrike Grömping’s initial work was supported by Deutsche Forschungsge-
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