
Towards Accessibility of Covering Arrays for
Practitioners of Combinatorial Testing

Ulrike Grömping
FB II

BHT - Berliner Hochschule für Technik
Berlin, Germany

ulrike.groemping@bht-berlin.de

Abstract—Combinatorial testing can be useful not only for
large software-related testing efforts. While it seems worthwhile to
evaluate its benefits for more general applications, lack of
immediate availability of suitable arrays is a major impediment
against its wider use by practitioners. This paper discusses
requirements for making covering arrays (CAs), a key tool in
combinatorial testing, accessible to practitioners of various
application areas in a way that satisfies their needs. It is argued
that, by fulfilling such requirements, the expert community also
improves exchange of results among its members. The paper is
thus intended as a call for action for the combinatorial testing
community to improve the sharing of CA constructions.

Keywords—Covering arrays, catalogue, mathematical
constructions

I. INTRODUCTION
The author first encountered covering arrays (CAs) in a

request by an engineering quality manager, who brought up the
need to cover all combinations for a set of factors in a large
vehicle system. She had to find out that – contrary to orthogonal
arrays for which there are various catalogues as well as
implemented construction algorithms in a variety of software
tools – CAs are not as easily available to non-expert
practitioners. This paper is a call for action to improve the
availability of good CAs for practitioners who do not have the
willingness and/or ability needed for obtaining an array given
the current state of available resources. Such practitioners will
be called “uninitiated practitioners” (UIPs). It is anticipated that
catering for UIPs will also improve exchange and reuse of
information within the combinatorial testing community.

CAs are collections of N runs (rows) for k factors (columns)
in v1, …, vk levels; if v1 = … = vk = v, a CA is called “uniform”,
otherwise “mixed level” (MCA). The central property of a CA
is its strength: A CA of strength t contains (covers) each
conceivable tuple of any set of t columns at least once. Uniform
CAs are denoted as CA(N, t, k, v), and the theoretically possible
minimum size of a uniform CA of strength t for k columns in
v levels is denoted as CAN(t, k, v); CAN(t, k, v) is often
unknown. A CA is optimal, if its size N achieves the theoretical
minimum, and it is best-known, if there is no currently known
CA for the same setting that needs fewer runs. Tables curated by
Colbourn ([1]) list the current best-known run sizes (i.e., upper
bounds for CAN(t, k, v)) for many uniform settings, grouped by
(t, v) combinations for t=2,…,6 and v=2,…,25. Unfortunately,
the tables come without the best-known uniform CAs.

There are mathematical constructions, mostly – but not only
– for uniform CAs, and search strategies that are much more

flexible and can create arbitrary MCAs; unfortunately, the latter
are also much slower. Torres-Jiménez et al. [2] review
mathematical methods, Leithner et al. [3] provide a
comprehensive overview of search methods. Most mathematical
constructions and search methods require mathematical and/or
computational background and expertise and are thus not easily
workable for UIPs.

This paper aims for instigating activities that improve the
availability of CAs for practitioners from all fields who are not
themselves experts in CA creation. One part of the activities is
an R package by the author that will implement mathematical
CA constructions and various utilities for creating and using
CAs. Comments on all aspects of this paper and the planned R
package are invited. Section II describes the current status on
CAs from the point of view of an interested non-expert and
considers requirements that should be addressed, with special
emphasis on supporting UIPs. Section III discusses activities
around the accessible implementation of mathematical CA
constructions. Section IV calls for community action in order to
preserve and enhance the community knowledge base inherent
in the Colbourn tables ([1]), including the provision of
precomputed CAs, where adequate.

II. STATUS AND DESIRABLE IMPROVEMENTS
The idea of CAs is simple enough. In an ideal world, a UIP

hears about CAs, thinks about a useful application and runs a
web search. The search leads to a place or tool where a good or
even optimal CA can be downloaded, or where there are pointers
to constructing such an array with little effort and in short time
using a familiar and readily available software.

In the real world, the UIP will likely find the NIST [4] library
of precomputed CAs – which were obtained via a search
algorithm in 2008 – as well as the Colbourn [1] tables of current
upper bounds for CAN(t, k, v). Frustration will arise when
realising that a further catalogue of CAs referenced from the
NIST website is unavailable (but see Section IV), and that the
available CAs from the NIST library are often relevantly larger
than the best-known CAs, which are neither directly available
nor referenced in a way that can be understood by a UIP. The
UIP will also find software tools for the creation of CAs through
search algorithms, among them CAgen [5] with the possibility
of free direct web access and JMPPro [6] as a commercial
statistical software with a free academic license. A very
persistent UIP may find a documentation page for CAs within
version 10.5 of the open source SageMath system ([7]), which
offers a limited selection of mathematical CA constructions (see
also Section III). None of the finds makes it easy for the UIP to

979-8-3315-3467-7/25 © 2025 IEEE

Accepted for publication by IEEE. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ICST Workshops 2025, Naples, Italy
IWCT 2025

296

obtain a satisfactory array fast, although tools like CAgen or
JMPPro (provided it is available) may cater to the more
enthusiastic UIP, perhaps also SageMath for someone who
already uses its development version. In summary, for relevant
problem sizes, availability of CAs for UIPs is currently quite
limited. Moreover, various best-known CAs behind the
Colbourn tables ([1]) are not even easily available for experts.

The most obvious immediate benefit for the UIP can be
obtained by providing precomputed current-best – or at least
“good” – CAs. The necessary actions for providing such
precomputed CAs – and for keeping the Colbourn tables ([1])
up-to-date – are discussed in Section IV. It is not possible to
store arrays for all conceivable needs, and in some cases, it may
be much more efficient to code a mathematical construction than
to store all conceivable arrays that can be constructed by it. Thus,
implementing mathematical constructions is certainly
worthwhile. Where they exist, mathematical constructions can
yield much smaller CAs than search algorithms, and do so fast
at the same time. For example, a CA(1051, 4, 1051, 3) from a
mathematical construction (see Section III: cyclotomy
construction type 1 with prime 1051) was matched by a
CA(30777, 4, 1051, 3) constructed with JMPPro, the only
search tool accessible to the author that yielded a result in
reasonable time for that setting (given the available Windows
computer). Activities for the implementation of mathematical
constructions are discussed in Section III.

Besides the specific aspects to be discussed in Sections III
and IV, there are various further relevant aspects that are less
universal but nevertheless important. Even a UIP may want a CA
for a situation with mixed levels for which a precomputed array
is not available and a search algorithm is – at least at present –
the only option. It is therefore highly desirable to provide
accessible tools with which a tailor-made CA can be created. As
long as such a tool is easily available and provides an array with
reasonable effort and within reasonable time – perhaps more
important, within foreseeable time – a UIP can benefit from
using it. The author has experience as a UIP attempting to use
CAgen ([5]), JMPPro ([6]) and CTWedge ([8]). CAgen is the
only tool that allows the creation of small but relevant designs
directly on the web with immediate access for any interested
user. CTWedge only runs extremely small requests on the web
and defers larger requests to batch queues, which could be a
good idea – because it is very annoying to close a browser
window by mistake after substantial run time – but did not work
well for the author (neither result nor error message, after many
weeks). For free (web) versions of CA creation tools – which are
of course a very friendly service by the groups who provide them
– it would be very desirable to provide information that raises
realistic expectations about the size of use cases covered and of
run times to be expected. Without those, UIPs are likely to
expect results too fast and for too large problems, and might
waste resources in vain, or be so disillusioned that they abandon
the intention of using CAs altogether. Besides informing UIPs
about permissible problem sizes and expected run times, it
would also be very useful to make sophisticated search tools like
CAgen or CTWedge accessible via software familiar to UIPs,
e.g., R or Python. This could be achieved via an API: If such
APIs are reasonably standardized, third-party software can
create search commands and ideally hand them over to the

search tool and also receive the resulting CA. The assessment of
the coverage properties of a CA is of substantial interest (see,
e.g., [9]) and should be made available in any software that deals
with CAs; for large CAs, it can be very computer-intensive.
Various further aspects that are very relevant for the practical
use of CAs (constraints, variable strength, don’t care values, …)
are ignored in this paper, for the sake of brevity.

III. IMPLEMENTATION OF MATHEMATICAL CONSTRUCTIONS
The Colbourn tables ([1]) as the go-to place for the smallest

known upper bounds for CAN(t, k, v) are a good starting point
for choosing algorithms to be implemented. Torrez-Jiménez et
al. ([2], their Section IX) give an overview of algorithms behind
the table entries: important mathematical (as opposed to search
type or metaheuristic / post-optimization) construction elements
appear to be covering perfect hash families (CPHF, which
themselves need to be constructed or available) for all kinds of
strengths and numbers of levels, constructions based on
cyclotomy, group-based constructions and constructions based
on starter vectors, direct product and power-based constructions
and other recursive constructions. It is natural to inspect which
constructions either yield optimal CAs or achieve large improve-
ments over available catalogued arrays. The strength 2
construction of [10] and [11] for 2-level CAs is proven to be
optimal and easy to implement and thus a natural candidate for
high priority implementation, e.g., most likely in JMPPro ([6]).

Mathematical constructions should be implemented in
software environments used by UIPs or their advisors. Open
source implementations achieve the greatest impact. There are
two ongoing activities for implementing mathematical CA
constructions in open source software: the author’s R package
CAs (on GitHub at https://github.com/ugroempi/CAs as an early
development version), and SageMath version 10.5 and higher
([7], current activities can be found on GitHub, e.g.,
https://github.com/sagemath/sage/issues/38603). Both already
contain the optimal construction of [10] and [11]. A suitable
software environment should also offer the appropriate
infrastructure for CA constructions, for example, Galois field
arithmetic or covering perfect hash families. The author is not
aware of current efforts on implementing mathematical
algorithms for CA constructions besides the recent efforts in
SageMath and R, neither open source nor commercial (except
for the afore-mentioned optimal 2-level CAs). It should be
attempted to leverage synergies between the efforts in SageMath
and R. Easy availability of CAs from mathematical
constructions might also lead to improved search-based designs,
if search algorithms can incorporate large math-based arrays.

Beyond uniform CAs, it is desirable to also implement
mathematical constructions for MCAs, e.g., by Akhtar et al.
[12]. These would be valuable additions to the toolbox. Given
that the availability of mathematical MCA constructions is likely
limited, methods for obtaining MCAs by combining uniform
CAs or by expanding a uniform CA are of interest. A few
columns with fewer levels than the others can be obtained by
changing selected levels in the respective columns.

The rest of this section exemplifies the implementation of a
mathematical construction, the cyclotomy-based CAs by
Colbourn [13], which will also serve as an example in the
discussion of useful enhancements for the Colbourn tables ([1])

297

https://github.com/ugroempi/CAs
https://github.com/sagemath/sage/issues/38603

in Section IV. Colbourn table entries with source “Cyclotomy
(Colbourn)” or “Cyclotomy (Torres-Jimenez)” refer to
“Constructions 4” from [13], which provides a total of eight
related constructions: 1, 2, 3, 3a, 3b, 4, 4a, 4b. The conditions
stated for coverage are expensive to check, and tables within [13]
report check results. All eight cyclotomy constructions use
Galois fields GF(q) = {0, 1, …, q – 1} based on a prime or prime
power q with q mod v = 1, and a primitive ω ∈ GF(q). A
primitive is an element for which {ω, ω2, …, ωq-1}={1, 2, …,
q – 1}, i.e., for which the powers span all non-zero elements of
GF(q); for example, in GF(5), 2 and 3 are primitives whereas 4
is not. According to [13], it does not matter which primitive is
used in cases where there is more than one possibility. R package
CAs uses the Galois field implementation in the R package lhs
[14], which is based on [15]. The cyclotomic vector xq,v =
(x0, …, xq–1) has x0 = 0, and xi equals the logarithm of i w.r.t. base
ω in GF(q), taken modulo v. This cyclotomic vector is then used
for constructing a q × q matrix A, with rows and columns
indexed by elements of GF(q), with aij = xj – i, where the differ-
ence is taken in GF(q). The constructions vary in how the matrix
A is post-processed: Construction 1 uses A itself, construction 2
adds v – 1 constant rows populated with the nonzero values
1, …, v – 1, constructions 3 and 4 and their variants “develop” A
by vertically juxtaposing A, A+1 mod v, …, A+v – 1 mod v, or
variants where specific rows or columns are added to A before
this developing step. Constructions imply different run size /
column number combinations, except for a few cases which are
compatible with constructions 3b and 4b, or even 3b, 4a or 4b
for CA(24, 4, 12, 2); for all these, it is safe to use construction
4b, whose conditions are implied by the others. After working
out the construction types, selected designs were created and
were checked by repeated random sampling for obvious
violations of coverage. For each construction, at least two
specimens, not both with v = 2, were checked brute force for the
stated coverage, to make sure that the constructions were
correctly programmed. For resource reasons, where possible,
small examples from the paper were used for these checks, as
the cyclotomy-based CAs from the Colbourn tables ([1]) are
often quite large. This was complicated by some mistakes
especially in Table 2 of the paper, which appears to make
various erroneous claims (e.g., for strength 3 with 4-level
columns, that construction 3b works for q = 41). For a
CA(1051, 4, 1051, 3), the smallest CA with 3 levels by
construction 1 in the Colbourn tables, a brute force check was
done by Michael Wagner using an internal powerful version of
CAMETRICS ([9]); even given this powerful tool, verifying the
4-coverage of the CA took about 3.5 hours parallelized over
30 kernels. For including the cyclotomy constructions into the
planned R package, it is sufficient to provide the generating
information with the package and to create each CA on the fly,
when requested; the run time for the largest design (strength 4
for 10009 variables at 8 levels each in 80072 runs) was about
270 seconds on one kernel on a Windows 10 machine with a
12th Gen Intel Core i7-12700T at 1.4 GHz and 32 GB RAM.

IV. MAINTENANCE OF COLBOURN TABLES, AND STORAGE OF
PRECOMPUTED CAS AND CA CONSTRUCTION DETAILS

This section calls for action with the goal of securing the
future of the Colbourn tables ([1]) and making them more useful
by providing actual arrays and/or construction details. It is

important that the community perpetuates and continues
Colbourn’s tables beyond his active time as a researcher. The
claim of representing the best-known CA sizes at any given point
in time requires that the scientific community informs the
curator(s) of relevant improvements and that the curator(s)
react(s) in a timely fashion. At present, a few arrays in a hard-to-
find catalogue (Torres-Jiménez [16], URL on NIST website
outdated) are better than their “best-known” counterparts in the
Colbourn tables. This illustrates the difficulty of keeping such
tables up-to-date. It would be desirable to provide versioning for
the full table, and a date for each table entry. Implementing this
via a personal website is very difficult. It might be easier to
achieve with a platform like GitHub. Zenodo
(https://zenodo.org/) could also be an option.

Besides keeping the upper bounds for CAN(t, k, v) up-to-
date, it would be extremely useful to provide actual CAs and/or
CA constructions, and the rest of this section discusses this goal.
For CAs that have been found by a search algorithm after
substantial search time, the obvious solution is to store the CA
itself. For mathematical constructions, it might suffice to provide
information on construction details. UIPs are likely served better
by an actual array, while other parts of the community might be
served better by construction details. Stored designs and/or
construction details should be easily accessible and remain
available permanently. At the same time, newly-found smaller
arrays should be made available in a timely fashion, ideally
without making their predecessors disappear. There should be a
standardized strategy regarding file names, file formats and
storage locations. It is important to choose a storage strategy that
supports easy access to individual CAs. This implies storing
individual CAs in separate files, and using a compression that
can be handled by standard tools. Like for the table of upper
bounds for CAN(t, k, v), GitHub comes to mind; Zenodo is
presumably less suitable for a large number of individual files.
However, the author is not an expert on permanent storage
strategies.

Regardless of stored CAs or stored construction parameters
for a mathematical construction, it would often be very resource-
intensive to verify the claimed coverage. Trustworthiness of the
catalogued CAs or CA construction parameters is therefore
important, and the documentation in relation to table entries
should contribute to building trust. In the following, desirable
documentation components for table entries are discussed, using
the cyclotomy-based arrays as examples. Their implementation
required working out details that are not mentioned in the
Colbourn tables ([1]), and writing code for the constructions.
The ground work is in the Colbourn tables, which collect the
settings, for which the paper [13] and additional undocumented
efforts by Colbourn and Torres-Jiménez verified the
assumptions from “Constructions 4” of [13]. The Colbourn table
entries could be enhanced for providing better support for array
creation, by (from least to most demanding):

1) actual references for each entry, ideally by referring to
identifiers from a separate list of references;

2) details needed for applying constructions from that
reference, e.g., construction type and prime or prime power;

3) information on how the CA was obtained / verified when
and by whom;

298

https://zenodo.org/

4) the actual array, with information on how it was obtained
(e.g., the algorithm or the code or the software from which it
was created);

5) pseudo code with a small easy to check test case (where
possible).

Items 1) and 2) are meant to help experts to construct arrays.
Item 3) serves to improve trust that the array fulfils the stated
properties, both for experts and UIPs. Item 4) aims to support
UIPs who want to work with an array without needing to
understand the construction. Item 5) could help experts (and
perhaps even UIPs) who want to implement the construction
within a tool chain of their own choice.

Trust is now discussed in more detail for the cyclotomy
constructions of Section III: All studied constructions are
attributed either to Colbourn or to Torres-Jiménez. Many of
those attributed to Colbourn are based on computations reported
in [13] (e.g., 67, 71, 83 columns in strength 4 for 2-level columns
based on Lemma 5.1 1., many CAs of strengths 4 and 5 for 3-
level columns based on Lemma 5.2); ideally, the source
information under items 1) and 2) should be detailed enough to
go back to an individual lemma, but that might be too much to
ask. The devil is in the detail, however, and there is, e.g. a small
mistake in Lemma 5.1 4. of [13], where the creation of a
CA(24, 4, 12, 2) is claimed for construction 4a with prime 11,
while in fact only construction 4b yields strength 4. For a small
prime like 11, it is easy to observe that coverage is violated
(1/9 of the quadruples are not completely covered). For larger
situations, a mistake like that might go unnoticed, if sample
coverage checks unluckily succeed a number of times. Some of
the CAs attributed to Colbourn (e.g., strength 5 CAs for more
than 1231 3-level columns) and all the arrays attributed to
Torres-Jiménez must have been verified by these researchers;
details on when or how the verifications were conducted have
not been found. While it can be assumed that both researchers
are respected authorities within the community, it would
nevertheless contribute to building trust if information in the
spirit of item 3) were publicly documented (and linked from the
tables), e.g., in terms of a report, or the code that was used.

The previous paragraph focused on the cyclotomy
constructions. If one envisions enhanced Colbourn tables, it will
be necessary to develop a structure that supports providing
suitable information for all kinds of constructions, particularly
also for CAs obtained from search algorithms. It would, in the
author’s view, be of great benefit to the community to provide
the Colbourn tables with (links to) precomputed CAs.

The question of continuing the Colbourn tables can also be
considered independently from providing collections of actual
arrays. Continuing the table of known bounds will be useful even
without a direct connection to actual designs, and it is also
possible to provide collections of actual arrays separately from
the Colbourn tables, like with the NIST tables ([4]). Regardless
whether separate or together, such tools should be provided to
the entire research and application community, in a stable
location, with adequate documentation, and free of charge.
While requirements for documentation are important, they
should not be so demanding that researchers are deterred from
submitting their contributions.

ACKNOWLEDGMENTS
The author thanks Rob Carnell for implementing Galois field

functionality in the R package lhs. Thanks also go to Michael
Wagner for the brute force check of CA(1051, 3, 1051, 3) with
the internal version of CAMETRICS, and to further members of
the MATRIS research group for helpful discussions.
Furthermore, thanks are due to anonymous reviewers for
comments that improved the focus of this paper.

REFERENCES
[1] C. J. Colbourn, "Covering array tables for t = 2, 3, 4, 5, 6". [Online].

Available: https://www.public.asu.edu/~ccolbou/src/tabby/ catable.html.
Accessed on 11 Feb. 2025.

[2] J. Torres-Jiménez, I. Izquierdo-Marquez, und H. Avila-George, "Methods
to construct uniform covering arrays", IEEE Access Pract. Innov. Open
Solut., Vol. 7, pp. 42774–42797, 2019, DOI:
10.1109/ACCESS.2019.2907057.

[3] M. Leithner, A. Bombarda, M. Wagner, A. Gargantini, und D. E. Simos,
"State of the CArt: evaluating covering array generators at scale", Int. J.
Softw. Tools Technol. Transf., Vol. 26, No. 3, pp. 301–326, 2024, DOI:
10.1007/s10009-024-00745-2.

[4] "NIST Covering Array Tables". 2008. [Online]. Available:
https://math.nist.gov/coveringarrays/.

[5] M. Wagner, K. Kleine, D. E. Simos, R. Kuhn, und R. Kacker, "CAGEN:
A fast combinatorial test generation tool with support for constraints and
higher-index arrays", in 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), Oct. 2020, pp.
191–200. DOI: 10.1109/ICSTW50294.2020.00041.

[6] JMP Statistical Discovery LLC, "Design of experiments guide", 2024.
[Online]. Available: https://www.jmp.com/support/help/en/18.1/
index.shtml#page/jmp/covering-arrays.shtml.

[7] A. Dwyer und B. Stevens, "Covering Arrays (CA)". 2022. [Online].
Available: https://doc.sagemath.org/html/en/reference/combinat/sage/
combinat/designs/covering_array.html#sage.combinat.designs.covering_
array.covering_array.

[8] A. Gargantini und M. Radavelli, "Migrating Combinatorial Interaction
Test Modeling and Generation to the Web", in 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), Vasteras: IEEE, Apr. 2018, pp. 308–317. DOI:
10.1109/ICSTW.2018.00066.

[9] M. Leithner, K. Kleine, und D. E. Simos, "CAMETRICS: A Tool for
Advanced Combinatorial Analysis and Measurement of Test Sets", in
2018 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), Apr. 2018, pp. 318–327. DOI:
10.1109/ICSTW.2018.00067.

[10] D. J. Kleitman und J. Spencer, "Families of k-independent sets", Discrete
Math., Bd. 6, Nr. 3, pp. 255–262, Jan. 1973, DOI: 10.1016/0012-
365X(73)90098-8.

[11] G. O. H. Katona, "Two applications (for search theory and truth functions)
of Sperner type theorems", Period. Math. Hung., Vol. 3, No. 1, pp. 19–
26, March 1973, DOI: 10.1007/BF02018457.

[12] Y. Akhtar, C. J. Colbourn, und V. R. Syrotiuk, "Mixed-level covering,
locating, and detecting arrays via cyclotomy", in Combinatorics, graph
theory and computing, F. Hoffman, S. Holliday, Z. Rosen, F. Shahrokhi,
und J. Wierman, Hrsg., Cham: Springer International Publishing, 2024,
pp. 37–50. DOI: 10.1007/978-3-031-52969-6_4.

[13] C. J. Colbourn, "Covering arrays from cyclotomy", Des. Codes Cryptogr.,
Vol. 55, No. 2, pp. 201–219, May 2010, DOI: 10.1007/s10623-009-9333-
8.

[14] R. Carnell, "lhs: Latin Hypercube Samples". R package version 1.2.0,
2024. DOI: 10.32614/CRAN.package.lhs.

[15] A. Owen, Orthogonal Arrays for Computer Experiments, Visualizations,
and Integration in high dimensions: A C library. (1994). [Online].
Avaiable: http://lib.stat.cmu.edu/designs/oa.c.

[16] J. Torres-Jiménez, „Covering Arrays". [Online]. Available:
https://www.tamps.cinvestav.mx/~oc/. Accessed on 6 February 2025.

299

	I. Introduction
	II. Status and desirable improvements
	III. Implementation of mathematical constructions
	IV. Maintenance of Colbourn Tables, and storage of precomputed CAs and CA construction details
	1) actual references for each entry, ideally by referring to identifiers from a separate list of references;
	2) details needed for applying constructions from that reference, e.g., construction type and prime or prime power;
	3) information on how the CA was obtained / verified when and by whom;
	4) the actual array, with information on how it was obtained (e.g., the algorithm or the code or the software from which it was created);
	5) pseudo code with a small easy to check test case (where possible).
	Acknowledgments
	References

