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Abstract—Combinatorial testing can be useful not only for 
large software-related testing efforts. While it seems worthwhile to 
evaluate its benefits for more general applications, lack of 
immediate availability of suitable arrays is a major impediment 
against its wider use by practitioners. This paper discusses 
requirements for making covering arrays (CAs), a key tool in 
combinatorial testing, accessible to practitioners of various 
application areas in a way that satisfies their needs. It is argued 
that, by fulfilling such requirements, the expert community also 
improves exchange of results among its members. The paper is 
thus intended as a call for action for the combinatorial testing 
community to improve the sharing of CA constructions. 
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I. INTRODUCTION 
The author first encountered covering arrays (CAs) in a 

request by an engineering quality manager, who brought up the 
need to cover all combinations for a set of factors in a large 
vehicle system. She had  to find out that – contrary to orthogonal 
arrays for which there are various catalogues as well as 
implemented construction algorithms in a variety of software 
tools – CAs are not as easily available to non-expert 
practitioners. This paper is a call for action to improve the 
availability of good CAs for practitioners who do not have the 
willingness and/or ability needed for obtaining an array given 
the current state of available resources. Such practitioners will 
be called “uninitiated practitioners” (UIPs). It is anticipated that 
catering for UIPs will also improve exchange and reuse of 
information within the combinatorial testing community. 

CAs are collections of N runs (rows) for k factors (columns) 
in v1, …, vk levels; if v1 = … = vk = v, a CA is called “uniform”, 
otherwise “mixed level” (MCA). The central property of a CA 
is its strength: A CA of strength t contains (covers) each 
conceivable tuple of any set of t columns at least once. Uniform 
CAs are denoted as CA(N, t, k, v), and the theoretically possible 
minimum size of a uniform CA of strength t for k columns in 
v levels is denoted as CAN(t, k, v); CAN(t, k, v) is often 
unknown. A CA is optimal, if its size N achieves the theoretical 
minimum, and it is best-known, if there is no currently known 
CA for the same setting that needs fewer runs. Tables curated by 
Colbourn ([1]) list the current best-known run sizes (i.e., upper 
bounds for CAN(t, k, v)) for many uniform settings, grouped by 
(t, v) combinations for t=2,…,6 and v=2,…,25. Unfortunately, 
the tables come without the best-known uniform CAs.  

There are mathematical constructions, mostly – but not only 
– for uniform CAs, and search strategies that are much more 

flexible and can create arbitrary MCAs; unfortunately, the latter 
are also much slower. Torres-Jiménez et al. [2] review 
mathematical methods, Leithner et al. [3] provide a 
comprehensive overview of search methods. Most mathematical 
constructions and search methods require mathematical and/or 
computational background and expertise and are thus not easily 
workable for UIPs. 

This paper aims for instigating activities that improve the 
availability of CAs for practitioners from all fields who are not 
themselves experts in CA creation. One part of the activities is 
an R package by the author that will implement mathematical 
CA constructions and various utilities for creating and using 
CAs. Comments on all aspects of this paper and the planned R 
package are invited. Section II describes the current status on 
CAs from the point of view of an interested non-expert and 
considers requirements that should be addressed, with special 
emphasis on supporting UIPs. Section III discusses activities 
around the accessible implementation of mathematical CA 
constructions. Section IV calls for community action in order to 
preserve and enhance the community knowledge base inherent 
in the Colbourn tables ([1]), including the provision of 
precomputed CAs, where adequate. 

II. STATUS AND DESIRABLE IMPROVEMENTS 
The idea of CAs is simple enough. In an ideal world, a UIP 

hears about CAs, thinks about a useful application and runs a 
web search. The search leads to a place or tool where a good or 
even optimal CA can be downloaded, or where there are pointers 
to constructing such an array with little effort and in short time 
using a familiar and readily available software.  

In the real world, the UIP will likely find the NIST [4] library 
of precomputed CAs – which were obtained via a search 
algorithm in 2008 – as well as the Colbourn [1] tables of current 
upper bounds for CAN(t, k, v). Frustration will arise when 
realising that a further catalogue of CAs referenced from the 
NIST website is unavailable (but see Section IV), and that the 
available CAs from the NIST library are often relevantly larger 
than the best-known CAs, which are neither directly available 
nor referenced in a way that can be understood by a UIP. The 
UIP will also find software tools for the creation of CAs through 
search algorithms, among them CAgen [5] with the possibility 
of free direct web access and JMPPro [6] as a commercial 
statistical software with a free academic license. A very 
persistent UIP may find a documentation page for CAs within 
version 10.5 of the open source SageMath system ([7]), which 
offers a limited selection of mathematical CA constructions (see 
also Section  III). None of the finds makes it easy for the UIP to 
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obtain a satisfactory array fast, although tools like CAgen or 
JMPPro (provided it is available) may cater to the more 
enthusiastic UIP, perhaps also SageMath for someone who 
already uses its development version. In summary, for relevant 
problem sizes, availability of CAs for UIPs is currently quite 
limited. Moreover, various best-known CAs behind the 
Colbourn tables ([1]) are not even easily available for experts. 

The most obvious immediate benefit for the UIP can be 
obtained by providing precomputed current-best – or at least 
“good” – CAs. The necessary actions for providing such 
precomputed CAs – and for keeping the Colbourn tables ([1]) 
up-to-date – are discussed in Section IV. It is not possible to 
store arrays for all conceivable needs, and in some cases, it may 
be much more efficient to code a mathematical construction than 
to store all conceivable arrays that can be constructed by it. Thus, 
implementing mathematical constructions is certainly 
worthwhile. Where they exist, mathematical constructions can 
yield much smaller CAs than search algorithms, and do so fast 
at the same time. For example, a CA(1051, 4, 1051, 3) from a 
mathematical construction (see Section III: cyclotomy 
construction type 1 with prime 1051) was matched by a 
CA(30777, 4, 1051, 3) constructed with JMPPro, the only 
search tool accessible to the author that yielded a result in 
reasonable time for that setting (given the available Windows 
computer). Activities for the implementation of mathematical 
constructions are discussed in Section III.  

Besides the specific aspects to be discussed in Sections III 
and IV, there are various further relevant aspects that are less 
universal but nevertheless important. Even a UIP may want a CA 
for a situation with mixed levels for which a precomputed array 
is not available and a search algorithm is – at least at present – 
the only option. It is therefore highly desirable to provide 
accessible tools with which a tailor-made CA can be created. As 
long as such a tool is easily available and provides an array with 
reasonable effort and within reasonable time – perhaps more 
important, within foreseeable time – a UIP can benefit from 
using it. The author has experience as a UIP attempting to use 
CAgen ([5]), JMPPro ([6]) and CTWedge ([8]). CAgen is the 
only tool that allows the creation of small but relevant designs 
directly on the web with immediate access for any interested 
user. CTWedge only runs extremely small requests on the web 
and defers larger requests to batch queues, which could be a 
good idea – because it is very annoying to close a browser 
window by mistake after substantial run time – but did not work 
well for the author (neither result nor error message, after many 
weeks). For free (web) versions of CA creation tools – which are 
of course a very friendly service by the groups who provide them 
– it would be very desirable to provide information that raises 
realistic expectations about the size of use cases covered and of 
run times to be expected. Without those, UIPs are likely to 
expect results too fast and for too large problems, and might 
waste resources in vain, or be so disillusioned that they abandon 
the intention of using CAs altogether. Besides informing UIPs 
about permissible problem sizes and expected run times, it 
would also be very useful to make sophisticated search tools like 
CAgen or CTWedge accessible via software familiar to UIPs, 
e.g., R or Python. This could be achieved via an API: If such 
APIs are reasonably standardized, third-party software can 
create search commands and ideally hand them over to the 

search tool and also receive the resulting CA. The assessment of 
the coverage properties of a CA is of substantial interest (see, 
e.g., [9]) and should be made available in any software that deals 
with CAs; for large CAs, it can be very computer-intensive. 
Various further aspects that are very relevant for the practical 
use of CAs (constraints, variable strength, don’t care values, …) 
are ignored in this paper, for the sake of brevity.  

III. IMPLEMENTATION OF MATHEMATICAL CONSTRUCTIONS 
The Colbourn tables ([1]) as the go-to place for the smallest 

known upper bounds for CAN(t, k, v) are a good starting point 
for choosing algorithms to be implemented. Torrez-Jiménez et 
al. ([2], their Section IX) give an overview of algorithms behind 
the table entries: important mathematical (as opposed to search 
type or metaheuristic / post-optimization) construction elements 
appear to be covering perfect hash families (CPHF, which 
themselves need to be constructed or available) for all kinds of 
strengths and numbers of levels, constructions based on 
cyclotomy, group-based constructions and constructions based 
on starter vectors, direct product and power-based constructions 
and other recursive constructions. It is natural to inspect which 
constructions either yield optimal CAs or achieve large improve-
ments over available catalogued arrays. The strength 2 
construction of [10] and [11] for 2-level CAs is proven to be 
optimal and easy to implement and thus a natural candidate for 
high priority implementation, e.g., most likely in JMPPro ([6]).  

Mathematical constructions should be implemented in 
software environments used by UIPs or their advisors. Open 
source implementations achieve the greatest impact. There are 
two ongoing activities for implementing mathematical CA 
constructions in open source software: the author’s R package 
CAs (on GitHub at https://github.com/ugroempi/CAs as an early 
development version), and SageMath version 10.5 and higher 
([7], current activities can be found on GitHub, e.g., 
https://github.com/sagemath/sage/issues/38603). Both already 
contain the optimal construction of [10] and [11]. A suitable 
software environment should also offer the appropriate 
infrastructure for CA constructions, for example, Galois field 
arithmetic or covering perfect hash families. The author is not 
aware of current efforts on implementing mathematical 
algorithms for CA constructions besides the recent efforts in 
SageMath and R, neither open source nor commercial (except 
for the afore-mentioned optimal 2-level CAs). It should be 
attempted to leverage synergies between the efforts in SageMath 
and R. Easy availability of CAs from mathematical 
constructions might also lead to improved search-based designs, 
if search algorithms can incorporate large math-based arrays. 

Beyond uniform CAs, it is desirable to also implement 
mathematical constructions for MCAs, e.g., by Akhtar et al. 
[12]. These would be valuable additions to the toolbox. Given 
that the availability of mathematical MCA constructions is likely 
limited, methods for obtaining MCAs by combining uniform 
CAs or by expanding a uniform CA are of interest. A few 
columns with fewer levels than the others can be obtained by 
changing selected levels in the respective columns. 

The rest of this section exemplifies the implementation of a 
mathematical construction, the cyclotomy-based CAs by 
Colbourn [13], which will also serve as an example in the 
discussion of useful enhancements for the Colbourn tables ([1]) 
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in Section  IV. Colbourn table entries with source “Cyclotomy 
(Colbourn)” or “Cyclotomy (Torres-Jimenez)” refer to 
“Constructions 4” from [13], which provides a total of eight 
related constructions: 1, 2, 3, 3a, 3b, 4, 4a, 4b. The conditions 
stated for coverage are expensive to check, and tables within [13] 
report check results. All eight cyclotomy constructions use 
Galois fields GF(q) = {0, 1, …, q – 1} based on a prime or prime 
power q with q mod v = 1, and a primitive ω ∈ GF(q). A 
primitive is an element for which {ω, ω2, …, ωq-1}={1, 2, …, 
q – 1}, i.e., for which the powers span all non-zero elements of 
GF(q); for example, in GF(5), 2 and 3 are primitives whereas 4 
is not. According to [13], it does not matter which primitive is 
used in cases where there is more than one possibility. R package 
CAs uses the Galois field implementation in the R package lhs 
[14], which is based on [15]. The cyclotomic vector xq,v = 
(x0, …, xq–1) has x0 = 0, and xi equals the logarithm of i w.r.t. base 
ω in GF(q), taken modulo v. This cyclotomic vector is then used 
for constructing a q × q matrix A, with rows and columns 
indexed by elements of GF(q), with aij = xj – i, where the differ-
ence is taken in GF(q). The constructions vary in how the matrix 
A is post-processed: Construction 1 uses A itself, construction 2 
adds v – 1 constant rows populated with the nonzero values 
1, …, v – 1, constructions 3 and 4 and their variants “develop” A 
by vertically juxtaposing A, A+1 mod v, …, A+v – 1 mod v, or 
variants where specific rows or columns are added to A before 
this developing step. Constructions imply different run size / 
column number combinations, except for a few cases which are 
compatible with constructions 3b and 4b, or even 3b, 4a or 4b 
for CA(24, 4, 12, 2); for all these, it is safe to use construction 
4b, whose conditions are implied by the others. After working 
out the construction types, selected designs were created and 
were checked by repeated random sampling for obvious 
violations of coverage. For each construction, at least two 
specimens, not both with v = 2, were checked brute force for the 
stated coverage, to make sure that the constructions were 
correctly programmed. For resource reasons, where possible, 
small examples from the paper were used for these checks, as 
the cyclotomy-based CAs from the Colbourn tables ([1]) are 
often quite large. This was complicated by some mistakes 
especially in Table 2 of the paper, which appears to make 
various erroneous claims (e.g., for strength 3 with 4-level 
columns, that construction 3b works for q = 41). For a 
CA(1051, 4, 1051, 3), the smallest CA with 3 levels by 
construction 1 in the Colbourn tables, a brute force check was 
done by Michael Wagner using an internal powerful version of 
CAMETRICS ([9]); even given this powerful tool, verifying the 
4-coverage of the CA took about 3.5 hours parallelized over 
30 kernels. For including the cyclotomy constructions into the 
planned R package, it is sufficient to provide the generating 
information with the package and to create each CA on the fly, 
when requested; the run time for the largest design (strength 4 
for 10009 variables at 8 levels each in 80072 runs) was about 
270 seconds on one kernel on a Windows 10 machine with a 
12th Gen Intel Core i7-12700T at 1.4 GHz and 32 GB RAM. 

IV. MAINTENANCE OF COLBOURN TABLES, AND STORAGE OF 
PRECOMPUTED CAS AND CA CONSTRUCTION DETAILS 

This section calls for action with the goal of securing the 
future of the Colbourn tables ([1]) and making them more useful 
by providing actual arrays and/or construction details. It is 

important that the community perpetuates and continues 
Colbourn’s tables beyond his active time as a researcher. The 
claim of representing the best-known CA sizes at any given point 
in time requires that the scientific community informs the 
curator(s) of relevant improvements and that the curator(s) 
react(s) in a timely fashion. At present, a few arrays in a hard-to-
find catalogue (Torres-Jiménez [16], URL on NIST website 
outdated) are better than their “best-known” counterparts in the 
Colbourn tables. This illustrates the difficulty of keeping such 
tables up-to-date. It would be desirable to provide versioning for 
the full table, and a date for each table entry. Implementing this 
via a personal website is very difficult. It might be easier to 
achieve with a platform like GitHub. Zenodo 
(https://zenodo.org/) could also be an option. 

Besides keeping the upper bounds for CAN(t, k, v) up-to-
date, it would be extremely useful to provide actual CAs and/or 
CA constructions, and the rest of this section discusses this goal. 
For CAs that have been found by a search algorithm after 
substantial search time, the obvious solution is to store the CA 
itself. For mathematical constructions, it might suffice to provide 
information on construction details. UIPs are likely served better 
by an actual array, while other parts of the community might be 
served better by construction details. Stored designs and/or 
construction details should be easily accessible and remain 
available permanently. At the same time, newly-found smaller 
arrays should be made available in a timely fashion, ideally 
without making their predecessors disappear. There should be a 
standardized strategy regarding file names, file formats and 
storage locations. It is important to choose a storage strategy that 
supports easy access to individual CAs. This implies storing 
individual CAs in separate files, and using a compression that 
can be handled by standard tools. Like for the table of upper 
bounds for CAN(t, k, v), GitHub comes to mind; Zenodo is 
presumably less suitable for a large number of individual files. 
However, the author is not an expert on permanent storage 
strategies.  

Regardless of stored CAs or stored construction parameters 
for a mathematical construction, it would often be very resource-
intensive to verify the claimed coverage. Trustworthiness of the 
catalogued CAs or CA construction parameters is therefore 
important, and the documentation in relation to table entries 
should contribute to building trust. In the following, desirable 
documentation components for table entries are discussed, using 
the cyclotomy-based arrays as examples. Their implementation 
required working out details that are not mentioned in the 
Colbourn tables ([1]), and writing code for the constructions. 
The ground work is in the Colbourn tables, which collect the 
settings, for which the paper [13] and additional undocumented 
efforts by Colbourn and Torres-Jiménez verified the 
assumptions from “Constructions 4” of [13]. The Colbourn table 
entries could be enhanced for providing better support for array 
creation, by (from least to most demanding):  

1) actual references for each entry, ideally by referring to 
identifiers from a separate list of references; 

2) details needed for applying constructions from that 
reference, e.g., construction type and prime or prime power; 

3) information on how the CA was obtained / verified when 
and by whom; 

298

https://zenodo.org/


4) the actual array, with information on how it was obtained 
(e.g., the algorithm or the code or the software from which it 
was created); 

5) pseudo code with a small easy to check test case (where 
possible). 

Items 1) and 2) are meant to help experts to construct arrays. 
Item 3) serves to improve trust that the array fulfils the stated 
properties, both for experts and UIPs. Item 4) aims to support 
UIPs who want to work with an array without needing to 
understand the construction. Item 5) could help experts (and 
perhaps even UIPs) who want to implement the construction 
within a tool chain of their own choice.  

Trust is now discussed in more detail for the cyclotomy 
constructions of Section III: All studied constructions are 
attributed either to Colbourn or to Torres-Jiménez. Many of 
those attributed to Colbourn are based on computations reported 
in [13] (e.g., 67, 71, 83 columns in strength 4 for 2-level columns 
based on Lemma 5.1 1., many CAs of strengths 4 and 5 for 3-
level columns based on Lemma 5.2); ideally, the source 
information under items 1) and 2) should be detailed enough to 
go back to an individual lemma, but that might be too much to 
ask. The devil is in the detail, however, and there is, e.g. a small 
mistake in Lemma 5.1 4. of [13], where the creation of a 
CA(24, 4, 12, 2) is claimed for construction 4a with prime 11, 
while in fact only construction 4b yields strength 4. For a small 
prime like 11, it is easy to observe that coverage is violated 
(1/9 of the quadruples are not completely covered). For larger 
situations, a mistake like that might go unnoticed, if sample 
coverage checks unluckily succeed a number of times. Some of 
the CAs attributed to Colbourn (e.g., strength 5 CAs for more 
than 1231 3-level columns) and all the arrays attributed to 
Torres-Jiménez must have been verified by these researchers; 
details on when or how the verifications were conducted have 
not been found. While it can be assumed that both researchers 
are respected authorities within the community, it would 
nevertheless contribute to building trust if information in the 
spirit of item 3) were publicly documented (and linked from the 
tables), e.g., in terms of a report, or the code that was used. 

The previous paragraph focused on the cyclotomy 
constructions. If one envisions enhanced Colbourn tables, it will 
be necessary to develop a structure that supports providing 
suitable information for all kinds of constructions, particularly 
also for CAs obtained from search algorithms. It would, in the 
author’s view, be of great benefit to the community to provide 
the Colbourn tables with (links to) precomputed CAs.  

The question of continuing the Colbourn tables can also be 
considered independently from providing collections of actual 
arrays. Continuing the table of known bounds will be useful even 
without a direct connection to actual designs, and it is also 
possible to provide collections of actual arrays separately from 
the Colbourn tables, like with the NIST tables ([4]). Regardless 
whether separate or together, such tools should be provided to 
the entire research and application community, in a stable 
location, with adequate documentation, and free of charge. 
While requirements for documentation are important, they 
should not be so demanding that researchers are deterred from 
submitting their contributions.  
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