
 

 

SOME PRINCIPLES OF UNSUPERVISED LEARNING AND 
APPLICATION IN EDUCATION1 

 
 
In the beginning of the 90’s the idea of using data stored by computers to 
inform business really emerged under the name “business intelligence”. Howard 
Dresner from Gartner has defined business intelligence in 1989 as “concepts 
and methods to improve business decision making by using fact-based support 
systems”. Fact-based support systems use data mining to find information 
hidden in data. The data mining cycle is depicted in Figure Fig. 1.  
 

 
Fig. 1. Process diagram showing the relationship between the different phases of data 

mining 
 source: [4] 

 
Once data have been understood and prepared, which constitutes a 

substantial amount of work, a number of methods or algorithms can be used for 
the modelling phase, which is the phase that actually finds patterns. Evaluated 
patterns give information that can be deployed or used to inform business. 

                                                             
1 Published in Varia Informatica 2013, M. Milosz (Ed.), Polish Information 

Processing Society Lublin (Poland), ISBN: 978-83-936692-0-2, 2013. p. 75 -100. 
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One distinguishes two categories of methods to discover or learn patterns: 
the supervised, and the unsupervised methods. The aim of supervised methods 
is to discover patterns in the data to predict values or labels which are known to 
exist. For example a bank knows that it has reliable customers who will 
reimburse their loan, and unreliable customers who will not reimburse their 
loan. The label reliable / unreliable exists. Supervised methods will be used to 
try to find the patterns in the data which characterize those customers that are 
reliable and allows predicting whether a new customer will be reliable or not. 
The aim of unsupervised methods is to discover labels that are not known in 
advance. For example a store would like to know whether it has different types 
of customers, and which ones, to send targeted advertisement. An unsupervised 
algorithm might discover labels such as „customers who buy mainly expensive 
dairy products and in-season vegetables” or „customers who buy mainly cheese 
and wines”.  

In this chapter we focus on unsupervised algorithms and present three of 
them that all belong to clustering: K-means clustering, agglomerative 
hierarchical clustering and Expectation-Maximisation (EM) clustering2.  

Further the idea of business intelligence may well be transferred to 
education. Thanks to the development of learning managements systems like 
Moodle and of various tutoring systems, a lot of educational data are available. 
Why not use data mining on educational data to discover information that might 
help improve teaching and learning? We complete this chapter by presenting 
works that use clustering with educational data. The ERAMIS network uses 
Moodle as a common system. Perhaps students’ projects in learning analytics or 
educational data mining will be conducted inside the network. 
This chapter is organized as follows: first it introduces Euclidean distance in the 
context of clustering. Then, the three clustering methods mentioned above are 
presented in turns. Further it is shown, with appropriate data sets, how they 
differ. Finally, research works applying clustering to data stored by learning 
systems, in particular Learning Management Systems, are presented. The 
conclusion summarizes this chapter and gives an outlook. The tool RapidMiner 
[13] has been used for all examples of this chapter. 

 

1. Euclidean Distance and Mean 

The aim of clustering is to group objects so that similar objects are put in the 
same group and dissimilar objects in different groups. Some algorithms, like K-
means clustering and agglomerative hierarchical clustering, do rely on the fact 

                                                             
2 Occasionally clustering is used as a supervised method. We will see such an 

example in section 6. 



SOME PRINCIPLES OF UNSUPERVISED LEARNING 3 
 

 

that the similarity or dissimilarity of two objects can be calculated. A distance is 
a way to calculate how dissimilar two objects are.  
     The Euclidean distance is well known from school mathematics to calculate 
the distance between two points in a two-dimensional Euclidean space. Let x 
and y be two points with coordinates (x1, x2) and (y1, y2) respectively. Their 
distance is given by the following formula that can de derived using 
Pythagoras’ theorem: 

2
22

2
11 )()(),( yxyxyxd −+−= . 

In data mining this notion is generalized to any object that can be described by a 
set of numerical features or attributes. Let us take, as an example, students who 
are described by their marks in three tests. We assume that the mark of Test 1 is 
out of 10 points, of Test 2 out of 30 points and of Test 3 out of 50 points. Table 
1 shows the marks obtained by three students s1, s2 and s3. 
 
Table 1. Three students and their marks in three tests 
 Test 1 Test 2 Test 3 

s1 8 27 45 
s2 9 24 35 
s3 7 21 40 

Source: own elaboration 
 
Applying the above formula to our students give the following distances: 

11010091)3545()2427()98(),( 222
21 =++=−+−+−=ssd  and

d(s1, s3) = (8− 7)2 + (27− 21)2 + (45− 40)2 = 62 . 
In the data mining context, a distance between two objects is always a number 
bigger or equal to 0. It is equal to 0 when two objects have exactly the same 
values for the considered set of attributes. In particular the distance between an 
object o and itself is 0: d(o, o) = 0. The Euclidean distance is sensitive to the 
order of magnitude of the attributes. Suppose that we scale the three tests above 
to have them all out of 10 points and that we calculate again the distances 
between the students. We obtain now the following: 

6411)79()89()98(),( 222
21 =++=−+−+−=ssd  and 

6141)89()79()78(),( 222
31 =++=−+−+−=ssd . 

With the scaling, the three students are equidistant from each other. Without the 
scaling, s3 is less distant from s1 than s2. 
There are other formulas to calculate the distance between objects and the 
objects do not have to be described by numerical attributes, see [7]. However, 
the most common case in business and also in education is to have objects that 
are described by numerical attributes and the distance used most commonly is 
the Euclidean distance. We will use Euclidean distance in the sequel. 
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A group or cluster is often represented by its centre. When Euclidean distance is 
used, the mean is the most common way to calculate a centre. Using the 
mean  the centre of the three students shown in Table 1 is  

µ= 8+ 9+ 7
3

, 27+ 24+ 21
3

, 45+35+ 40
3

!

"
#

$

%
&= (8, 24, 40).  

2. K-means Clustering 

K-means clustering is a partitional clustering method. The number K of desired 
clusters has to be fixed in advance. We first present the algorithm and then 
show a method to guess an appropriate K. 

Algorithm 

K-means clustering discovers or learns clusters by grouping objects of a data set 
around k centers. It is quite straightforward. 

 
Chose	  randomly	  K	  objects	  as	  the	  initial	  cluster	  centers	  
Repeat	  

(Re)assign	  each	  object	  to	  the	  cluster	  which	  center	  is	  
nearest	  
	  Update	  the	  cluster	  means	  

Until	  no	  change.	  
 

Let us illustrate how the algorithm works with the data set of points shown 
in Figure 2 when points A, D and G are chosen as initial random centers, which 
also means that we look for three clusters. Table 2 shows the first two iterations, 
the first iteration is shown by the three columns on the left and the second 
iteration by the three columns on the right of the table. Note that for the points 
A, D and G in the first iteration no calculation needs to be made in the first 
iteration, because d(o,o) = 0 for any object o. The Euclidean distances are 
squared because taking the square root has no impact to find the closest center. 
Further they are left as arithmetic expressions to make their derivation clearer. 
Consider the distance between B(2, 5) and the center µ1(2, 10) of the first 
cluster in the first iteration: 
𝑑(𝐵, 𝜇!)! = (2 − 2)! + (5 − 10)! = (0 + 25)!, which is written in the table. 
The values in bold show the smallest distance and, consequently, also the 
cluster a point belongs to. After the first iteration A is alone in the first cluster, 
while cluster with center µ3 contains B and G, and the second cluster contains 
the remaining points. The attributes of the centers for the next iteration are 
calculated taking the mean of the points in that cluster, the common way to 
proceed when Euclidean distance is used as already mentioned.  Let us take the 
third cluster as an example. µ3(x) = (B(x)+G(x))/2=(2+1)/2 = 1.5 and µ3(y)= 
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(B(y)+G(y))/2=(5+2)/2=3.5, see the new center µ3 in the rightmost column. In 
the second iteration H changes from cluster with center µ2 to cluster µ1. A quick 
calculation shows that C, D, E and F do not change their cluster in that iteration.  
In the third iteration, left as an exercise, center µ1 becomes (3, 8.5) and D will 
change to this cluster. After that, no change takes place. The final clustering 
generated with RapidMiner is shown in Figure 3.  

 

 
Fig. 2. Data set of points from [7]  

Source: own elaboration 
  
Table 2. The two first iterations to cluster the points of Figure 3 into 3 clusters 

First iteration Second iteration 
 µ1(2,10) µ2 (5,8) µ3 (1,2) µ1 (2,10) µ2 (6,6) µ3 (1.5,3.5) 
A(2,10) 0   0   
B(2,5) 0+25 9+9 1+9 0+25 16+1 0.25+2.25 
C(8,4) 36+36 9+16 49+4 36+36 4+4 42.25+0.25 
D(5,8)  0  9+4 1+4 12.25+20.25 
E(7,5) 25+25 4+9 36+9 25+25 1+1 30.25+2.25 
F(6,4) 16+36 1+16 25+5 16+36 0+4 20.25+0.25 
G(1,2)   0 1+64 25+16 0.25+2.25 
H(4,9) 4+1 1+1 9+49 4+1 4+9 6.25+30.25 
Source: own elaboration 

 

A, µ1 

D, µ2 

G, µ3 

B 

C 

E 

F 

H 
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Fig. 3. Points of Figure 2 in three clusters  
Source: own elaboration 

 
Usually clusters are interpreted using their centers. Table 3 shows the 

centers of the clusters depicted in Figure 3. One can interpret cluster 2 (C2) as 
the group of points with large x-coordinate and intermediate y-coordinate, 
cluster 3 (C3) ,has the points with small x- and y-coordinate, and cluster 1 (C1) 
as the points with intermediate x-coordinate and large y-coordinate. 

 
Table 3: Centres of the clusters depicted in Figure 3 

Attribute Cluster 1 Cluster 2 Cluster 3 
µ(x) 3.67 7.00 1.50 
µ(y) 9.00 4.33 3.50 

Source: own elaboration 
 

K-means always converges and terminates. This is due to the fact that the 
sum of squared errors (SSE) diminishes with each iteration. Sum of Squared 
error is defined as: 

∑∑
= ∈

k

i cx
i

i

xd
1

2),( µ  where µi is the center of cluster ci. 

In other words, the squared distance between each object and the center of 
its cluster is calculated and all distances are summed over all clusters. In our 
example at the end of the first iteration SSE is given by:  
d(A, µ1)2 + d(B, µ3)2 + d(C, µ2)2 + d(D, µ2)2 + d(E, µ2)2 + d(F, µ2)2 + d(G, µ3)2 +  
d(H, µ2)2 = 67,  
where µ1 = (2,1 0), µ2 = (5, 8) and µ3 = (1, 2),  
and at the end of the second iteration by:  

•
 µ1 

 

• µ3 

 

• µ2 

 

G -> C3 

B -> C3 

A -> C1 H -> C1 

D -> C1 

F -> C2 

E -> C2 

C -> C2 
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d(A, µ1)2 + d(B, µ1)2+ d(C, µ2)2 + d(D, µ2)2 + d(E, µ2)2 + d(F, µ2)2+ d(G, µ3)2 + 
d(H, µ1)2 = 30,  
where µ1 = (2, 10), µ2 = (6, 6) and µ3 = (1.5, 2.25).  
 
Between any two iterations we observe a drop of the sum of squared errors. 
Because SSE is a number bigger or equal to 0, at some point the iterations will 
stop. 

It should be noted that the result of K-means clustering, like EM-clustering 
in the next section, depends on the centers chosen initially. Different centers 
may give a different result. To overcome this drawback usually K-means is 
performed several times with several sets of initial centers. The best clustering, 
the one giving at the end the smallest sum of squared errors, is returned. Further 
K-means, as EM-clustering, is quite efficient as it contains a simple loop 
through the data. 

Determining the number of clusters 

Sometimes users know how many clusters they want to obtain, but most often 
they don’t. How can we choose K to fit best the data? There are several ways to 
do so. One way is to use the sum of squared errors again. K-means clustering is 
performed with several values of K. SSE is plotted against K. If the data do 
cluster naturally, this plot has an elbow form. The elbow gives the appropriate 
value for K. Figure 5 shows the plot obtained with K=2, 3 and 4 taking the data 
set of Figure 3 (note that SSE has been averaged which means divided by the 
number of objects). In this case 3 is the best choice for K. 

 
Fig. 4. The plot SSE (average) against k shows that 3 is the best number of clusters 

Source: own elaboration 
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3. Expectation Maximization Clustering 

Clustering with the Expectation Maximization (EM) Algorithm is similar to K-
means clustering, but in contrast to K-means distances are not calculated. 
Instead the probability that an object belongs to a cluster is calculated. The 
algorithm works with a continuous function –the Gaussian distribution – to 
calculate the probability of a cluster membership. 

The Gaussian distribution 

The Gaussian distribution describes the probability of an event. Most 
phenomena of the nature can be described with this function. It is possible to 
calculate phenomena that are dependent from many attributes (in that case x, µ 
and σ would be vectors) but to keep things simple, we are using the Gaussian 
distribution (figure one) in dependence of only one attribute for our explanation. 
The probability that x belongs to the Gaussian distribution with arithmetic mean 
µ and standard deviation σ is given by: 

𝑝 𝑥|𝜇,𝜎 =
1

𝜎 2𝜋
𝑒!  

!!! !

!!! = 𝒩 𝑥 𝜇,𝜎  

where the factor !
! !!

  guarantees that the area under the Gaussian 
distribution is always one.  

 

 
Fig. 5. A one dimensional Gaussian distribution 

Source: own elaboration 
 

 
Data is usually gathered by experiments or observations, in those cases 𝜇 and 

𝜎 are unknown, but if there are enough data points they can be estimated by the 
likelihood method. Let X be a set of N observations assumed to be independent. 
One looks for a Gaussian distribution with parameters µ and σ, so that the 

µ µ-σ µ+σ 

𝑝(𝑥) 

𝑥 
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probability that each observation can be described by this Gaussian distribution 
is maximized. Since the observations are independent, the probability that each 
observation belongs to the Gaussian distribution is the product of the 
probabilities. So one looks for µ and σ that maximize the following product: 

 

𝐿 𝑋 𝜇,𝜎 =
1

𝜎 2𝜋
𝑒!  

!!!! !

!!!
!

!!!

 

 
resulting in the following standard estimators: 
 

𝜇 =
𝑥!!

!!!
𝑁

 

and 

𝜎 =
   𝑥! − 𝜇 !!

!!!
𝑁

  

EM clustering applies this idea looking for K Gaussian distributions 
associated to K clusters. The aim of each iteration is to approximate better the K 
Gaussian distributions of the clusters. In each iteration the probability that the 
observation or element 𝑥!   belongs to the cluster ck :  𝑝(𝑥! , 𝑐!) is calculated. 

 
The calculation is based on the Bayes theorem: 
 

𝑝(𝑥! , 𝑐!) = 𝑝 𝑐! ∗ 𝑝 𝑥! 𝑐! ,   
𝑤ℎ𝑒𝑟𝑒  𝑐!   𝑖𝑠  𝑐𝑙𝑢𝑠𝑡𝑒𝑟  𝑘  𝑎𝑛𝑑  𝑥!   𝑖𝑠  𝑎  𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡   

 
Given  𝑝 𝑥! 𝑐! =   𝒩(𝑥!|𝜇! ,𝜎!), we get: 

𝑝(𝑥! , 𝑐!) = 𝑝 𝑐! ∗
1

𝜎! 2𝜋
𝑒
!  (!!!!)

!

!!!
!

 

Maximizing the likelihood of this function gives the following results:  
 

𝑝 𝑐! !"# =
𝑝(𝑥! , 𝑐!)

𝑁

!

!!!

 

𝜇!!"# =
𝑝(𝑥! , 𝑐!)𝑥!

𝑝(𝑥! , 𝑐!)!
!!!

!

!!!

 

𝜎!!"# =   
𝑝(𝑥! , 𝑐!) 𝑥! − 𝜇!!"#

!

𝑝(𝑥! , 𝑐!)!
!!!

!

!!!
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Algorithm 

For the EM algorithm, the same routine as in K-means is used: We randomly 
initialize K µ taking randomly K objects, K is the number of clusters, all σ are 
initialized with the same random value and  𝑝 𝑐! = 1/𝐾. Then we calculate the 
probability for each object given a cluster and use that to calculate new µ, 𝑝 𝑐  
and σ for each cluster with the given equations. This is done until the centers of 
the clusters are not changing anymore. The algorithm looks as follows:  

 
Chose	  randomly	  k	  objects	  as	  the	  initial	  cluster	  centers	  
Chose	  initial	  p(c),	  𝜎	  for	  each	  cluster	  
Repeat	  
	   For	  each	  cluster	  

	   Calculate	  the	  probability	  that	  an	  object	  belongs	  to	  
it	  
	  Update	  for	  each	  cluster	  p(c),	  𝜇,	  𝜎	  

Until	  no	  change.	  
	  
Table 4 gives an example calculation for the first iteration step of EM with the 
objects shown in Figure 6.  The result is shown in Figure 7. One can see that the 
curves begin to show the typical progression of the Gaussian distribution. 

 
Table 4. Probability that a given datapoint belongs to a cluster after the first iteration. 
Initial values are: p(c)=1/3,	   𝜎 = 1	   for all clusters and	   𝝁𝟏 = 𝟐,	   𝝁𝟐 = 𝟓,	  
𝝁𝟑 =1	  

x	   p(x,c1)	   p(x,c2)	   p(x,c3)	  
2	   0,1329 0,0014 0,0806 
2	   0,1329 0,0014 0,0806 
8	   2,0252*10-09 0,0014 3,0449*10-12 
5	   0,0014 0,1329 4,4610*10-05 
7	   4,955*10-07 0,01799 2,0252*10-09 
6	   4,4610*10-05 0,08065 4,9557*10-07 
1	   0,0806 4,4610*10-05 0,1329 
4	   0,01799 0,0806 0,0014 

Source: own elaboration 
	  
	  
	  
	  

 
Fig. 6. The datapoints 

Source: own elaboration 
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Fig. 7. The probabilities that the point belongs to the cluster 

Source: own elaboration 
 

4. Agglomerative Hierarchical Clustering 

The intuition behind agglomerative hierarchical clustering is to group clusters 
as long as the resulting groups are too distant. We first present common ways of 
defining a distance between groups and then the algorithm itself. 

Distance between clusters 

We present four common and efficient ways to calculate a distance between two 
clusters or groups of objects. These four definitions rely on using the distance 
between two objects. We use d both to denote the distance between two clusters 
and the distance between two objects. Let C1, and C2 be two clusters. 

 
• The minimum distance or single link calculates the distance between 

two clusters by taking the minimum of the distances between any two 
elements from each cluster: ),(min),( 212,21

211

oodCCd
CoCo ∈∈

=  

0	  

0.02	  

0.04	  

0.06	  

0.08	  

0.1	  

0.12	  

0.14	  

0	   1	   2	   3	   4	   5	   6	   7	   8	   9	  

p(x,	  c1)	   p(x,	  c2)	   p(x,	  c3)	  

𝑥 

𝑝(𝑥, 𝑐!) 
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• The maximum distance or complete link does just the opposite taking 
the maximum distance: ),(max),( 21,21

2211

oodCCd
CoCo ∈∈

=  

• The average distance calculates all distances between any two 
elements of each cluster and returns the average or mean distance: 

∑
∈∈×

=
2211 ,

21
21

21 ),(1),(
CoCo

ood
CC

CCd where S  denotes the 

cardinality of a set S. 
• The centre distance returns the distance between the centres of the 

two clusters: ),(),( 2121 µµdCCd =  where µ1 is the centre of C1 and 
µ2 the centre of C2.  

 
Consider the example of Figure 3 and two clusters C1 and C2 with C1 containing 
A and H and C2 containing B and G. Applying the four formulas above leads to 
the following. 

 
Minimum:  d(C1, C2) = min (d(A, B), d(A, G), d(H, B), d(H, G)) = d(H, B).  
Maximum: d(C1, C2) = max (d(A, B), d(A, G), d(H, B), d(H, G)) = d(A, G).  

Average:           d(C1, C2) = 
1
2×2

(d(A, B) + d(A, G) + d(H, B) + d(H, G)). 

Centre:     d(C1, C2) = d( (3, 9.5), (1.5, 3.5) ). 

Algorithm 

Agglomerative hierarchical clustering is rather straightforward too.  
	  
Compute	  the	  proximity	  matrix	  
Let	  each	  data	  point	  be	  a	  cluster	  
Repeat	  
	  Merge	  the	  two	  closest	  clusters	  
	  Update	  the	  proximity	  matrix	  

Until	  only	  a	  single	  cluster	  remains.	  
 

Let us illustrate how the algorithm works with our running dataset. The 
proximity matrix is shown in Table 6. As for K-means we do not take the 
square root of the distance and leave the expressions. We take the maximum 
distance or complete link to run the algorithm. There are three pairs of clusters 
with a squared distance of 2. The first in the alphabetical order, (C) and (E), will 
be merged as shown in Table 6.  
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Table 5. The proximity matrix for our running example 
 A(2,10) B(2,5) C(8,4) D(5,8) E(7,5) F(6,4) G(1,2) H(4,9) 

A(2,10) 0        
B(2,5) 0+25 0       
C(8,4) 36+36 36+1 0      
D(5,8) 9+4 9+9 9+16 0     
E(7,5) 25+25 25+0 1+1 4+9 0    
F(6,4) 16+36 16+1 4+0 1+16 1+1 0   
G(1,2) 1+64 1+9 49+4 16+36 36+9 25+4 0  
H(4,9) 4+1 4+16 16+25 1+1 9+16 4+25 9+49 0 

Source: own elaboration 
 
The matrix is updated as follows: the distance d(A, (C,E)) is the maximum 

(d(A,C), d(A,E)) therefore 36+36 in the table. This is repeated for all the 
remaining objects in the line and column (C,E). Next (D) und (H) will be 
merged at a squared distance of 2 again, see Table 8. In Table 8 we can see that 
next (C, E) and (F) will be merged at a squared distance of 4.This continues till 
all objects are in one cluster.  

 
Table 6. The proximity matrix update after the first merge 

 A(2,10) B(2,5) C,E D(5,8) F(6,4) G(1,2) H(4,9) 
A(2,10) 0       
B(2,5) 0+25 0      
C,E 36+36 25+0 0     
D(5,8) 9+4 9+9 9+16 0    
F(6,4) 16+36 16+1 4+0 1+16 0   
G(1,2) 1+64 1+9 49+4 16+36 25+4 0  
H(4,9) 4+1 4+16 16+25 1+1 4+25 9+49 0 
Source: own elaboration 
 

Table 7. The proximity matrix updated after the second merge 
 A(2,10) B(2,5) C,E D,H F(6,4) G(1,2) 
A(2,10) 0      
B(2,5) 0+25 0     
C,E 36+36 25+0 0    
D,H 9+4 4+16 16+25 0   
F(6,4) 16+36 16+1 4+0 4+25 0  
G(1,2) 1+64 1+9 49+4 9+49 25+4 0 
Source: own elaboration 

 
The result of an agglomerative hierarchical clustering is commonly shown 

as a dendrogram. Fig. 8 shows the dendrogram obtained with our running 
example. The height of the vertical lines is proportional to the distance while 
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merging. The dendrogram is cut when the merging distance becomes too big. 
One notices here that the dendrogram could be cut to yield exactly the same 
clustering as K-means.   

 

 
 

Fig. 8. Dendogram for the points of Figure 2  
Source: own elaboration 

 
It should be noted that the result of agglomerative hierarchical clustering 

depends on the chosen cluster-distance. Further is it less efficient than K-means 
or EM-clustering as it contains a nested loop through the data. The inner loop 
comes from updating the similarity matrix. 

5. Comparison and further Issues 

With our running example of Figure 2 the three clustering methods give the 
same result when agglomerative hierarchical clustering is run with complete 
link. We show, in this section, examples where these methods give different 
results. Further, we have seen that Euclidean distance is sensitive to the order of 
magnitude. So are the clustering methods and we illustrate this feature. Finally, 
can these methods return a clustering even if the data are randomly spread and 
do not cluster naturally? We finish this section tackling this last issue.  

Finding slim shapes 

K-means clustering finds round compact shapes with objects distributed around 
the cluster center. It has difficulties finding slim adjacent groups as Figure 9 
shows. Agglomerative hierarchical clustering run with single link can find slim 
adjacent shapes. The dendrogram Figure 10 is obtained with the dataset of 
Figure 9. First the three lines of points are found. EM-Clustering cannot find 

A D H B G F E C 
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these slim shapes either. It ends with all points in the same cluster but with a 
very low probability of 0.38 for each point. 

  
 

Fig. 9. K-means run with k=3 cannot find the three lines of points  
Source: own elaboration 

 
 

Fig. 10. Agglomerative hierarchical clustering with single link finds first the three 
lines of points depicted in Figure 7 

Source: own elaboration 
 

Scaled data 

Numerical attributes can be of different order of magnitude. A distance, such as 
Euclidean distance is sensitive to the order of magnitude of attributes as we 
have seen earlier. Therefore, K-means and agglomerative hierarchical 
clustering, which use a distance, but also EM-clustering are sensitive to the 
order of magnitude of numerical data as we show now. Consider the two data 
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sets shown in Table 9. The dataset on the left, used already in the previous 
section, is the same dataset as the one on the right, except that attribute y uses 
another unit so that the two attributes x and y have the same order of magnitude.  

 
Table 8. Two datasets: the y-attribute on the right has been scaled down in the dataset 
on the left 

x y 

 

x y 

2 10 2 100 

2 5 2 50 
8 4 8 40 
5 8 5 80 
7 5 7 50 
6 4 6 40 
1 2 1 20 

Source: own elaboration 
 

Using the tool RapidMiner, K-means and EM-clustering cluster each of these 
datasets the same way: exactly in 3 clusters (according to the sum of squared 
errors, 3 is in both cases the best number of clusters), but the 3 clusters differ: 
Figure 3 shows the clustering obtained with the dataset on the left, Figure 11 
shows it for the dataset on the right. The attribute y with the biggest order of 
magnitude in the dataset right has more impact on the clustering, and therefore 
the point (2, 50) belongs to cluster 1 containing points with similar y-
coordinates.  

 
Fig. 11. The 3 clusters of the dataset Table 5 right 

Source: own elaboration 

Just looking at the centres does not make any difference. Both clustering 
methods return centres that are easy to interpret and that can be interpreted in 

C1 
C1 

C1 C1 

C3 

C2 

C2 
C2 
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the same way, as can be seen in Tables 10 and 11: Cluster 1 contains points 
with high x-coordinate and intermediate y-coordinate, Cluster 2 contains points 
with small x- and y-coordinate, and Cluster3 contains points with intermediate 
x-coordinate and high y-coordinate. 

Table 9. Centers of the clusters Figure 3 
Attribute Cluster 1 Cluster 2 Cluster 3 

x 7 1.5 3.667 
y 4.333 3.5 9 

Source: own elaboration 
 

Table 10. Centers of the clusters Figure 11 
Attribute Cluster 1 Cluster 2 Cluster 3 

x 5.75 1 3.667 
y 45 20 90 

Source: own elaboration 
 
What is the best clustering? Should the data be transformed so that all 

attributes have the same order of magnitude, to avoid attributes with bigger 
order of magnitude to impact primarily the clustering? The answer depends on 
the context. If the bigger order of magnitude reflects well the bigger importance 
of the attributes, it might be advisable not to transform the data. Otherwise data 
should be transformed so that all values have the same order of magnitude. A 
usual way to proceed is to standardize the data. Weights proportional to their 
importance can be added to selected attributes.  

Random data 

Figure 12 addresses the issue of clustering random or uniformly distributed 
data, though it is not immediately apparent in the figure, as RapidMiner does 
not use the same scale for the x-axis and the y-axis. Note the difference with 
Figure 9 earlier, where the points lie on the vertical lines with x-coordinate 1, 3 
and 5, and not 1, 2 and 3 as it is the case here. However K-means run with 
RapidMiner returns 3 clusters when K is set to 3. Simply looking at the centres 
Table 12, the clusters are easy to interpret: Cluster_0 contains point with 
intermediate coordinates and small y-coordinates. Cluster_1 contains points 
with small x-coordinate and big y-coordinate and Cluster_2 contains both points 
with high x- and y-coordinates. The clusters are interpretable but arbitrary. The 
sum of square errors helps to find out whether the clustering might be arbitrary: 
the plot of Figure 4 does not display an elbow form, but a continuous decrease 
instead. Performing EM-clustering on the same dataset with K set to 3 returns 
only 1 non-empty cluster with the same low probability for all points (0.469). 
Probabilities for the two other clusters are lower. 
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Fig. 12. Arbitrary clusters returned by k_means with radom data 

 
Table 11. Centers of the clusters Figure above 
Attribute Cluster_0 Cluster_1 Cluster_2 

x 2 1.5 3 

y 1.5 4 4 
Source: own elaboration 

6. Clustering with Educational Data 

Education like any other sectors in our society relies more and more on software 
of different kinds. These software store usage data that can be mined or 
analysed to understand better how students learn with the goal of improving 
teaching and learning. This statement is the basis of two emerging fields: 
educational data mining [5] and learning analytics [9]. Works in those fields use 
a wide range of techniques to mine and analyse data [2]. Furthermore, a proper 
visualisation of the results is a crucial aspect in both fields. A common use of 
supervised techniques is to predict performance: is a student likely to answer an 
exercise correctly, to pass a course, to drop off a degree? A common use of 
unsupervised techniques is to find dependencies between attributes and to group 
objects. They are also combined with supervised or classification methods to 
obtain better prediction. In this section we give a flavour of how unsupervised 
methods are used in education by presenting selected works that use clustering.  

Some educational software applications, like tutoring systems or serious 
games, are topic specific. There is a myriad of tutoring systems to learn very 
specific subjects like algebra middle school, Chinese for beginners, logic proofs 
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to cite very few examples. The development of a tutoring system requires the 
help of domain experts and is laborious. The so called intelligent tutoring 
systems store users' data. Data Mining for this kind of systems consist in 
analysing usage data and learn from them to adapt to the learner better. For 
example, an intelligent tutoring system does not propose another exercise on a 
given topic if the system calculates that the student has already grasped the 
skills behind, or on the contrary, proposes a similar exercise to reinforce 
concepts when needed. The calculation of skills' mastery of students is not an 
easy task. Clustering is combined with classification in [14], [8] and [6] to 
better calculate skills’ mastery. Clustering is used in [11] to cluster students 
according to their skills’ mastery: students in one group master or do not master 
skills in a similar way. 

An important class of educational software is the one of Learning 
Management Systems (LMS) like Moodle. This kind of software is not topic 
specific, it is at a course level and, to some extend, degree level. LMS make the 
delivery of contents and the communication between students, teachers and, to 
some extend, study program managers easier. They store usage data about 
students' interactions with the contents or resources of a course. Analysing these 
interactions' data can provide hints and warnings early enough in a course or in 
a semester about how students are doing. This is especially important for the 
first semester of any degree where students' drop off is more likely. Analysing 
these interactions' data provides also valuable hints to improve the resources 
and the learning and teaching of a course in general, which is a key to students' 
success.  

Pechenizkiy et al. in [12] cluster students according to their results to 
exercises accessible in a learning management system in order to investigate 
whether there are groups of students not performing well. They also cluster 
exercises to investigate whether exercises are related in the following sense: if 
students fail, respectively succeed, one exercise of a cluster, they also fail, resp. 
succeed, the others of the same cluster. This can be important to build a well-
balanced exam for instance. For this, they use agglomerative hierarchical 
clustering. They measure the distance between two exercises c and r using 
conditional probabilities: d(c, r) is the probability of answering c correctly 
knowing that r has been answered correctly.  

Lopez et al. [10] use clustering as a supervised method to predict whether 
students will pass or fail a course. Interestingly they use only the behaviour of 
the students in forum for this prediction. They make the assumption that 
students active in forums will engage more with the material and, consequently, 
perform better. They get the best results using the following attributes that they 
calculate for each student: dCentrality: degree centrality, nMessages: number of 
messages sent, nReplies number of replies sent, nWords: number of words 
written, dPrestige: degree prestige, aEvaluation: average score of the messages. 
This means, each object, here a student, is described by six numerical attributes. 
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The two attributes dCentrality and dPrestige are known from Social Network 
Analysis. The degree of centrality is usually calculated by the number of 
messages sent and received, while the degree of prestige is calculated by the 
number of messages received. The attribute aEvaluation has been manually 
calculated by a teacher. They have used K-means, EM-clustering and several 
variants of those algorithms to cluster the students in exactly two groups. One 
group is expected to be the group of the students who fail the course and the 
other group the one of the students who pass. They got the best result using 
EM-clustering with 84% of the students predicted correctly. 

The proceedings of the conferences educational data mining (EDM) or 
learning analytics and knowledge (LAK) present each year works using 
clustering in an educational setting. 

7. Conclusions 

In this chapter we have presented the three most used clustering algorithms, K-
means, EM-clustering and agglomerative hierarchical clustering, explaining the 
ideas they rely on and how they might return different clustering results for the 
same data sets. We have also presented works that use clustering with 
educational data. 

Inside the ERAMIS network projects in data mining, more specifically in 
clustering could be conducted. Projects could have to do with the methods 
themselves: can we visualize how they perform differently on different data 
sets? Using a tool like RapidMiner it is not possible to see how the centers 
change with each iteration. A project could be implementing the algorithms in 
such a way that the centers are visualized after each iteration. Projects could 
have to do with educational data. In the ERAMIS network the same tests should 
be given to all students of all partner universities. This will generate data. Can 
we discover groups of exercises inside a course or even across several courses 
that students succeed in the same way, as investigated in [12]? Can we discover 
whether courses are related: students who perform well in course A perform 
also well in course B? And, of course, projects can be conducted with industrial 
partners with their own data to support them in improving their business.  
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