
Vivado Design Suite
Tutorial

High-Level Synthesis

UG871 (v2016.1) April 6, 2016UG871 (v2016.2) June 8, 2016

High-Level Synthesis www.xilinx.com 2
UG871 (v2016.1) April 6, 2016

Revision History
The following table shows the revision history for this document.

Date Version Revision

04/06/2016 2016.1 Updated the steps in the Lab 2: Viewing Trace Files in Vivado section.
Updated the figures in the following chapters:
• Chapter 2, High-Level Synthesis Introduction
• Chapter 3, C Validation
• Chapter 4, Interface Synthesis
• Chapter 5, Arbitrary Precision Types
• Chapter 6, Design Analysis
• Chapter 7, Design Optimization
• Chapter 8, RTL Verification
• Chapter 9, Using HLS IP in IP Integrator
• Chapter 10, Using HLS IP in a Zynq AP SoC Design

Send Feedback
UG871 (v2016.2) June 8, 2016

06/08/2016: Released with Vivado Design Suite 2016.2 without changes from the previous version.

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=2

Table of Contents
Revision History . 2

Chapter 1: Tutorial Description
Overview. 6
Software Requirements. 7
Hardware Requirements . 8
Locating the Tutorial Design Files . 8
Preparing the Tutorial Design Files . 8

Chapter 2: High-Level Synthesis Introduction
Overview. 9
Tutorial Design Description . 9
Lab 1: Creating a High-Level Synthesis Project . 10
Lab 2: Using the Tcl Command Interface . 27
Lab 3: Using Solutions for Design Optimization. 32
Conclusion . 45

Chapter 3: C Validation
Overview. 46
Tutorial Design Description . 46
Lab 1: C Validation and Debug . 47
Lab 2: C Validation with ANSI C Arbitrary Precision Types . 55
Lab 3: C Validation with C++ Arbitrary Precision Types. 59
Conclusion . 62

Chapter 4: Interface Synthesis
Overview. 63
Tutorial Design Description . 63
Lab 1: Block-Level I/O Protocols . 64
Lab 2: Port I/O Protocols . 72
Lab 3: Implementing Arrays as RTL Interfaces . 76
Lab 4: Implementing AXI4 Interfaces . 90
Conclusion . 98
High-Level Synthesis www.xilinx.com 3
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=3

Chapter 5: Arbitrary Precision Types
Overview. 99
Tutorial Design Description . 100
Lab 1: Arbitrary Precision . 100
Lab 2: Arbitrary Precision . 106
Conclusion . 111

Chapter 6: Design Analysis
Overview. 112
Tutorial Design Description . 113
Lab 1: Design Optimization . 113
Conclusion . 148

Chapter 7: Design Optimization
Overview. 149
Tutorial Design Description . 150
Lab 1: Optimizing a Matrix Multiplier. 150
Lab 2: C Code Optimized for I/O Accesses . 170
Conclusion . 172

Chapter 8: RTL Verification
Overview. 173
Tutorial Design Description . 173
Lab 1: RTL Verification and the C Test Bench . 174
Lab 2: Viewing Trace Files in Vivado. 181
Lab 3: Viewing Trace Files in ModelSim . 186
Conclusion . 191

Chapter 9: Using HLS IP in IP Integrator
Overview. 192
Tutorial Design Description . 192
Lab 1: Integrate HLS IP with a Xilinx IP Block . 193
Conclusion . 219

Chapter 10: Using HLS IP in a Zynq AP SoC Design
Overview. 220
Tutorial Design Description . 220
Lab 1: Implement Vivado HLS IP on a Zynq Device . 221
Lab 2: Streaming Data Between the Zynq CPU and HLS Accelerator Blocks 246
Conclusion . 265
High-Level Synthesis www.xilinx.com 4
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=4

Chapter 11: Using HLS IP in System Generator for DSP
Overview. 266
Tutorial Design Description . 266
Lab 1: Package HLS IP for System Generator . 266
Conclusion . 272

Appendix A: Additional Resources and Legal Notices
Xilinx Resources . 273
Solution Centers. 273
Documentation Navigator and Design Hubs . 273
References . 274
Training Resources. 274
Please Read: Important Legal Notices . 274
High-Level Synthesis www.xilinx.com 5
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=5

Chapter 1

Tutorial Description

Overview
This Vivado® tutorial is a collection of smaller tutorials that explain and demonstrate all
steps in the process of transforming C, C++ and SystemC code to an RTL implementation
using High-Level Synthesis. The tutorial shows how you create an initial RTL implementation
and then you transform it into both a low-area and high-throughput implementation by
using optimization directives without changing the C code.

High-Level Synthesis Introduction
This tutorial introduces Vivado High-Level Synthesis (HLS). You can learn the primary tasks
for performing High-Level Synthesis using both the Graphical User Interface (GUI) and Tcl
environments.

C Validation
This tutorial reviews the aspects of a good C test bench and demonstrates the basic
operations of the Vivado High-Level Synthesis C debug environment. The tutorial also
shows how to debug arbitrary precision data types.

Interface Synthesis
The interface synthesis tutorial reviews all aspect of creating ports for the RTL design. You
can learn how to control block-level I/O port protocols and port I/O protocols, how arrays
in the C function can be implemented as multiple ports and types of interface protocol
(RAM, FIFO, AXI4-Stream), and how AXI4 bus interfaces are implemented.

The tutorial completes with a design example in which the I/O accesses and the logic are
optimized together to create an optimal implementation of the design.

Arbitrary Precision Types
The lab exercises in this tutorial contrast a C design written in native C types with the same
design written with Vivado High-Level Synthesis arbitrary precision types, showing how the
latter improves the quality of the hardware results without sacrificing accuracy.
High-Level Synthesis www.xilinx.com 6
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=6

Chapter 1: Tutorial Description
Design Analysis
This tutorial uses a DCT function to explain the features of the interactive design analysis
features in Vivado High-Level Synthesis. The initial design takes you through a number of
analysis and optimization stages that highlight all the features of the analysis perspective
and provide the basis for a design optimization methodology.

Design Optimization
Using a matrix multiplier example, this tutorial reviews two-design optimization techniques.
The Design Optimization lab explains how a design can be pipelined, contrasting the
approach of pipelining the loops versus pipelining the functions.

The tutorial shows you how to use the insights learned from analyzing to update the initial
C code and create a more optimal implementation of the design.

RTL Verification
This tutorial shows how you can use the RTL cosimulation feature to automatically verify the
RTL created by synthesis. The tutorial demonstrates the importance of the C test bench and
shows you how to use the output from RTL verification to view the waveform diagrams in
the Vivado and Mentor Graphics ModelSim simulators.

Using HLS IP in IP Integrator
This tutorial shows how RTL designs created by High-Level Synthesis are packaged as IP,
added to the Vivado IP Catalog, and used inside the Vivado Design Suite.

Using HLS IP in a Zynq AP SoC Design
In addition to using an HLS IP block in a Zynq®-7000 APSoC design, this tutorial shows how
the C driver files created by High-Level Synthesis are incorporated into the software on the
Zynq Processing System (PS).

Using HLS IP in System Generator for DSP
This tutorial shows how RTL designs created by High-Level Synthesis can be packaged as IP
and used inside System Generator for DSP.

Software Requirements
This tutorial requires that the Vivado Design Suite 2016.1 release or later is installed.
High-Level Synthesis www.xilinx.com 7
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=7

Chapter 1: Tutorial Description
Hardware Requirements
Xilinx recommends a minimum of 2 GB of RAM when using the Vivado tools.

Locating the Tutorial Design Files
As shown in Figure 1-1, designs for the tutorial exercises are available as a zipped archive
on the Xilinx Website, tutorial documentation page.

IMPORTANT: All the tutorial examples for Vivado High-Level Synthesis are available at: Reference
Design Files

Preparing the Tutorial Design Files
Extract the zip file contents into any write-accessible location.

This tutorial assumes that you have placed the unzipped design files in the location
C:\Vivado_HLS_Tutorial.

IMPORTANT: If the Vivado_HLS_Tutorial directory is unzipped to a different location, or if it resides on
Linux, adjust the pathnames to the location at which you have placed the Vivado_HLS_Tutorial
directory.

X-Ref Target - Figure 1-1

Figure 1-1: High-Level Synthesis Tutorial Design Files
High-Level Synthesis www.xilinx.com 8
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://secure.xilinx.com/webreg/clickthrough.do?cid=419471
http://secure.xilinx.com/webreg/clickthrough.do?cid=419471
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=8

Chapter 2

High-Level Synthesis Introduction

Overview
This tutorial introduces Vivado® High-Level Synthesis (HLS). You can learn the primary
tasks for performing High-Level Synthesis using both the Graphical User Interface (GUI) and
Tcl environments.

The tutorial shows how use of optimization directives transforms an initial RTL
implementation into both a low-area and high-throughput implementation.

Lab 1 Description
Explains how to set up a High-Level Synthesis (HLS) project and perform all the major steps
in the HLS design flow:

° Validate the C code.

° Create and synthesize a solution.

° Verify the RTL and package the IP.

Lab 2 Description
Demonstrates how to use the Tcl interface.

Lab 3 Description
Shows you how to optimize the design using optimization directives. This lab creates
multiple versions of the RTL implementation and compares the different solutions.

Tutorial Design Description
To obtain the tutorial design file, see Locating the Tutorial Design Files.
High-Level Synthesis www.xilinx.com 9
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=9

Chapter 2: High-Level Synthesis Introduction
This tutorial uses the design files in the tutorial directory.
Vivado_HLS_Tutorial\Introduction.

The sample design used in this tutorial is a FIR filter. The hardware goal for this FIR design
project is:

• Create a version of this design with the highest throughput.

The final design must process data supplied with an input valid signal and produce output
data accompanied by an output valid signal. The filter coefficients are to be stored
externally to the FIR design, in a single port RAM.

Lab 1: Creating a High-Level Synthesis Project

Introduction
This lab shows how to create a High-Level Synthesis project, validate the C code, synthesize
the design to RTL, and verify the RTL.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial files are unzipped and placed in the location C:\Vivado_HLS_Tutorial.

Step 1: Creating a New Project
1. Open the Vivado® HLS Graphical User Interface (GUI):

° On Windows systems, open Vivado HLS by double-clicking the Vivado HLS 2016.1
desktop icon.

° On Linux systems, type vivado_hls at the command prompt.

TIP: You can also open Vivado HLS using the Windows menu Start > All Programs > Xilinx Design
Tools > Vivado 2016.1 > Vivado HLS > Vivado HLS 2016.1.

Vivado HLS opens with the Welcome Screen as shown below. If any projects were previously
opened, they are shown in the Recent Project pane, otherwise this window is not shown in
the Welcome screen.

X-Ref Target - Figure 2-1

Figure 2-1: The Vivado HLS Desktop Icon
High-Level Synthesis www.xilinx.com 10
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=10

Chapter 2: High-Level Synthesis Introduction
2. In the Welcome Page, select Create New Project to open the Project wizard.

3. As shown in Figure 2-3:

a. Enter the project name fir_prj.

b. Click Browse to navigate to the location of the lab1 (Introduction) directory.

c. Select the lab1 directory and click OK.

d. Click Next.

X-Ref Target - Figure 2-2

Figure 2-2: The Vivado HLS Welcome Page
High-Level Synthesis www.xilinx.com 11
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=11

Chapter 2: High-Level Synthesis Introduction
This information defines the name and location of the Vivado HLS project directory. In
this case, the project directory is fir_prj and it resides in the lab1 folder.

4. Enter the following information to specify the C design files:

a. Specify fir as the top-level function.

b. Click Add Files.

c. Select fir.c and click Open.

d. Click Next.

X-Ref Target - Figure 2-3

Figure 2-3: Project Configuration
High-Level Synthesis www.xilinx.com 12
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=12

Chapter 2: High-Level Synthesis Introduction
IMPORTANT: In this lab there is only one C design file. When there are multiple C files to be
synthesized, you must add all of them to the project at this stage. Any header files that exist in the local
directory lab1 are automatically included in the project. If the header resides in a different location,
use the Edit CFLAGS button to add the standard gcc/g++ search path information (for example,
-I<path_to_header_file_dir>).

Figure 2-5 shows the input window for specifying the test bench files. The test bench and
all files used by the test bench (except header files) must be included. You can add files one
at a time, or select multiple files to add using the Ctrl and Shift keys.

X-Ref Target - Figure 2-4

Figure 2-4: Project Design Files
High-Level Synthesis www.xilinx.com 13
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=13

Chapter 2: High-Level Synthesis Introduction
5. Click the Add Files button to include both test bench files: fir_test.c and
out.gold.dat.

6. Click Next.

Both C simulation (and RTL cosimulation) execute in subdirectories of the solution.

If you do not include all the files used by the test bench (for example, data files read by the
test bench, such as out.gold.dat), C and RTL simulation might fail due to an inability to
find the data files.

The Solution Configuration window (shown in Figure 2-6) specifies the technical
specifications of the first solution.

A project can have multiple solutions, each using a different target technology, package,
constraints, and/or synthesis directives.

X-Ref Target - Figure 2-5

Figure 2-5: Test Bench Files
High-Level Synthesis www.xilinx.com 14
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=14

Chapter 2: High-Level Synthesis Introduction
7. Accept the default solution name (solution1), clock period (10 ns), and clock
uncertainty (defaults to 12.5% of the clock period, when left blank/undefined).

8. Click the part selection button to open the part selection window.

9. Select Device xc7k160tfbg484-2 from the list of available devices. Select the following
from the drop-down filters to help refine the parts list:

a. Product Category: General Purpose

b. Family: Kintex®-7

c. Sub-Family: Kintex-7

d. Package: fbg484

e. Speed Grade: -2

f. Temp Grade: All

10. Select xc7k160tfbg484-2.

11. Click OK.

X-Ref Target - Figure 2-6

Figure 2-6: Solution Configuration
High-Level Synthesis www.xilinx.com 15
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=15

Chapter 2: High-Level Synthesis Introduction
In the Solution Configuration dialog box (shown in Figure 2-6, above), the selected part
name now appears under the Part Selection heading.

12. Click Finish to open the Vivado HLS project, as shown in Figure 2-7.

• The project name appears on the top line of the Explorer window.

• A Vivado HLS project arranges information in a hierarchical form.

• The project holds information on the design source, test bench, and solutions.

• The solution holds information on the target technology, design directives, and results.

• There can be multiple solutions within a project, and each solution is an
implementation of the same source code.

TIP: At any time, you can change project or solution settings using the corresponding Project Settings
and/or Solution Settings buttons in the toolbar.

X-Ref Target - Figure 2-7

Figure 2-7: Vivado HLS Project (DM: New Figure)
High-Level Synthesis www.xilinx.com 16
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=16

Chapter 2: High-Level Synthesis Introduction
Understanding the Graphical User Interface (GUI)

Before proceeding, review the regions in the Graphical User Interface (GUI) and their
functions. Figure 2-8 shows an overview of the regions, and describes each below.

Explorer Pane

Shows the project hierarchy. As you proceed through the validation, synthesis, verification,
and IP packaging steps, sub-folders with the results of each step are created automatically
inside the solution directory (named csim, syn, sim, and impl respectively).

When you create new solutions, they appear inside the project hierarchy alongside
solution1.

Information Pane

Shows the contents of any files opened from the Explorer pane. When operations complete,
the report file opens automatically in this pane.

X-Ref Target - Figure 2-8

Figure 2-8: Vivado HLS Graphical User Interface (DM: New Figure)
High-Level Synthesis www.xilinx.com 17
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=17

Chapter 2: High-Level Synthesis Introduction
Auxiliary Pane

Cross-links with the Information pane. The information shown in this pane dynamically
adjusts, depending on the file open in the Information pane.

Console Pane

Shows the messages produced when Vivado HLS runs. Errors and warnings appear in
Console pane tabs.

Toolbar Buttons

You can perform the most common operations using the Toolbar buttons.

When you hold the cursor over the button, a popup tool tip opens, explaining the function.
Each button also has an associated menu item available from the pull-down menus.

Perspectives

The perspectives provide convenient ways to adjust the windows within the Vivado HLS
GUI.

• Synthesis Perspective

The default perspective allows you to synthesize designs, run simulations, and package the
IP.

• Debug Perspective

Includes panes associated with debugging the C code. You can open the Debug Perspective
after the C code compiles (unless you use the Optimizing Compile mode as this disables
debug information).

• Analysis Perspective

Windows in this perspective are configured to support analysis of synthesis results. You can
use the Analysis Perspective only after synthesis completes.

Step 2: Validate the C Source Code
The first step in an HLS project is to confirm that the C code is correct. This process is called
C Validation or C Simulation.

In this project, the test bench compares the output data from the fir function with known
good values.

1. Expand the Test Bench folder in the Explorer pane.

2. Double-click the file fir_test.c to view it in the Information pane.
High-Level Synthesis www.xilinx.com 18
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=18

Chapter 2: High-Level Synthesis Introduction
3. In the Auxiliary pane, select main() in the Outline tab to jump directly to the main()
function.

Figure 2-9 shows the result of these actions

The test bench file, fir_test.c, contains the top-level C function main(), which in turn
calls the function to be synthesized (fir). A useful characteristic of this test bench is that it
is self-checking:

• The test bench saves the output from the fir function into the output file, out.dat.

• The output file is compared with the golden results, stored in file out.gold.dat.

• If the output matches the golden data, a message confirms that the results are correct,
and the return value of the test bench main() function is set to 0.

• If the output is different from the golden results, a message indicates this, and the
return value of main() is set to 1.

The Vivado HLS tool can reuse the C test bench to perform verification of the RTL.

If the test bench has the previously described self-checking characteristics, the RTL results
are automatically checked during RTL verification. Vivado HLS re-uses the test bench during
RTL verification and confirms the successful verification of the RTL if the test bench returns
a value of 0. If any other value is returned by main(), including no return value, it indicates
that the RTL verification failed. There is no requirement to create an RTL test bench. This
provides a robust and productive verification methodology.

X-Ref Target - Figure 2-9

Figure 2-9: Reviewing the Test Bench Code
High-Level Synthesis www.xilinx.com 19
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=19

Chapter 2: High-Level Synthesis Introduction
4. Click the Run C Simulation button, or use menu Project > Run C Simulation, to
compile and execute the C design.

5. In the C Simulation dialog box, click OK.

The Console pane (Figure 2-10) confirms the simulation executed successfully.

TIP: If the C simulation ever fails, select the Launch Debugger option in the C Simulation dialog box,
compile the design, and automatically switch to the Debug perspective. There you can use a C
debugger to fix any problems.

The C Validation tutorial module provides more details on using the Debug environment.

The design is now ready for synthesis.

Step 3: High-Level Synthesis
In this step, you synthesize the C design into an RTL design and review the synthesis report

X-Ref Target - Figure 2-10

Figure 2-10: Results of C Simulation
High-Level Synthesis www.xilinx.com 20
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=20

Chapter 2: High-Level Synthesis Introduction
1. Click the Run C Synthesis toolbar button or use the menu Solution > Run C Synthesis
> Active Solution.

When synthesis completes, the report file opens automatically. Because the synthesis
report is open in the Information pane, the Outline tab in the Auxiliary pane automatically
updates to reflect the report information.

2. Click Performance Estimates in the Outline tab (Figure 2-11).

3. In the Detail section of the Performance Estimates, expand the Loop view.

In the Performance Estimates pane, shown in Figure 2-12, you can see that the clock period
is set to 10 ns. Vivado HLS targets a clock period of Clock Target minus Clock Uncertainty
(10.00-1.25 = 8.75ns in this example).

The clock uncertainty ensures there is some timing margin available for the (at this stage)
unknown net delays due to place and routing.

The estimated clock period (worst-case delay) is 8.43 ns, which meets the 8.75 ns timing
requirement.

In the Summary section, you can see:

• The design has a latency of 78-clock cycles: it takes 78 clocks to output the results.

X-Ref Target - Figure 2-11

Figure 2-11: Performance Estimates
High-Level Synthesis www.xilinx.com 21
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=21

Chapter 2: High-Level Synthesis Introduction
• The interval is 79 clock cycles: the next set of inputs is read after 79 clocks. This is one
cycle after the final output is written. This indicates the design is not pipelined. The
next execution of this function (or next transaction) can only start when the current
transaction completes.

The Detail section shows:

• There are no sub-blocks in this design. Expanding the Instance section shows no
submodules in the hierarchy.

• All the latency delay is due to the RTL logic synthesized from the loop named
Shift_Accum_Loop. This logic executes 11 times (Trip Count). Each execution
requires 7 clock cycles (Iteration Latency), for a total of 77 clock cycles, to execute all
iterations of the logic synthesized from this loop (Latency).

• The total latency is one clock cycle greater than the loop latency. It requires one clock
cycle to enter and exit the loop (in this case, the design finishes when the loop finishes,
so there is no exit cycle).

4. In the Outline tab, click Utilization Estimates (Figure 2-12).

° The design uses a single memory implemented as LUTRAM (since it contains less
than 1024 elements), 4 DSP48s, and approximately 200 flip-flops and LUTs. At this
stage, the device resource numbers are estimates.

° The resource utilization numbers are estimates because RTL synthesis might be able
to perform additional optimizations, and these figures might change after RTL
synthesis.
High-Level Synthesis www.xilinx.com 22
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=22

Chapter 2: High-Level Synthesis Introduction
5. In the Detail section of the Utilization Estimates, expand the Instance view.

° The number of DSP48s seems larger than expected for a FIR filter. This is because
the data is a C integer type, which is 32-bit. It requires more than one DSP48 to
multiply 32-bit data values.

° The multiplier instance shown in the Instance view accounts for all the DSP48s.

° The multiplier is a pipelined multiplier. It appears in the Instance section indicating
it is a sub-block. Standard combinational multipliers have no hierarchy and are
listed in the Expressions section (indicating a component at this level of hierarchy).

In HLS: Lab 3: Using Solutions for Design Optimization, you optimize this design.

6. In the Outline tab, click Interface (Figure 2-13).

X-Ref Target - Figure 2-12

Figure 2-12: Utilization Estimates
High-Level Synthesis www.xilinx.com 23
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=23

Chapter 2: High-Level Synthesis Introduction
The Interface section shows the ports and I/O protocols created by interface synthesis:

• The design has a clock and reset port (ap_clk and ap_reset). These are associated
with the Source Object fir: the design itself.

• There are additional ports associated with the design as indicated by Source Object fir.
Synthesis has automatically added some block level control ports: ap_start,
ap_done, ap_idle, and ap_ready.

• The Interface Synthesis tutorial provides more information about these ports.

• The function output y is now a 32-bit data port with an associated output valid signal
indicator y_ap_vld.

• Function input argument c (an array) has been implemented as a block RAM interface
with a 4-bit output address port, an output CE port and a 32-bit input data port.

• Finally, scalar input argument x is implemented as a data port with no I/O protocol
(ap_none).

Later in this tutorial, HLS: Lab 3: Using Solutions for Design Optimization explains how to
optimize the I/O protocol for port x.

Step 4: RTL Verification
High-Level Synthesis can re-use the C test bench to verify the RTL using simulation.

X-Ref Target - Figure 2-13

Figure 2-13: Interface Report
High-Level Synthesis www.xilinx.com 24
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=24

Chapter 2: High-Level Synthesis Introduction
1. Click the Run C/RTL Cosimulation toolbar button or use the menu Solution > Run
C/RTL Cosimulation.

2. Click OK in the C/RTL Co-simulation dialog box to execute the RTL simulation.

The default option for RTL co-simulation is to perform the simulation using the Vivado
simulator and Verilog RTL. To perform the verification using a different simulator, VHDL, or
SystemC RTL use the options in the C/RTL Co-simulation dialog box.

When RTL co-simulation completes, the report opens automatically in the Information
pane, and the Console displays the message shown in Figure 2-14. This is the same
message produced at the end of C simulation.

• The C test bench generates input vectors for the RTL design.

• The RTL design is simulated.

• The output vectors from the RTL are applied back into the C test bench and the
results-checking in the test bench verify whether or not the results are correct.

• The Vivado HLS indicates that simulation passes if the test bench returns a value of 0. It
is the value of the return variable in the test bench, and this alone, which indicates if
the simulation was successful. It is important that the test bench returns a value of 0
only if the results are correct.

The Chapter 8, RTL Verification tutorial provides additional information.

Step 5: IP Creation
The final step in the High-Level Synthesis flow is to package the design as an IP block for
use with other tools in the Vivado Design Suite.

1. Click the Export RTL toolbar button or use the menu Solution > Export RTL.

2. Ensure the Format Selection drop-down menu shows IP Catalog.

3. Click OK.

X-Ref Target - Figure 2-14

Figure 2-14: RTL Verification Results
High-Level Synthesis www.xilinx.com 25
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=25

Chapter 2: High-Level Synthesis Introduction
The IP packager creates a package for the Vivado IP Catalog. (Other options available from
the drop-down menu allow you to create IP packages for System Generator for DSP, a
Synthesized Checkpoint format for Vivado, or a Pcore for Xilinx Platform Studio.)

4. Expand Solution1 in the Explorer.

5. Expand the impl folder created by the Export RTL command.

6. Expand the ip folder and find the IP packaged as a zip file, ready for adding to the
Vivado IP Catalog (Figure 2-15).

Note: In Figure 2-15, if you expand the Verilog or VHDL folders inside the impl folder, there is a
Vivado project ready for opening in the Vivado Design Suite.

RECOMMENDED: This Vivado project is provided only as a convenient way to analyze the design inside
the Vivado IDE. This project should not be used to implement your design: there are no top-level IO
buffers in this project. The recommended methodology for using the output of Vivado HLS in your own
design is to incorporate the IP package, or one of the other output formats, into your own Vivado

X-Ref Target - Figure 2-15

Figure 2-15: RTL Verification Results
High-Level Synthesis www.xilinx.com 26
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=26

Chapter 2: High-Level Synthesis Introduction
project. Additional tutorials in this guide demonstrate how to use the Vivado HLS output as IP in your
project.

Note: There is no project file created for devices synthesized by ISE (6 series or earlier devices).

At this stage, leave the Vivado HLS GUI open. You will return to this in the next lab exercise.

Lab 2: Using the Tcl Command Interface

Introduction
This lab exercise shows how to create a Tcl command file based on an existing Vivado HLS
project and use the Tcl interface.

Step 1: Create a Tcl file
1. Open the Vivado HLS Command Prompt.

° On Windows, use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 2-16).

° On Linux, open a new shell.
High-Level Synthesis www.xilinx.com 27
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=27

Chapter 2: High-Level Synthesis Introduction
When you create a Vivado HLS project, Tcl files are automatically saved in the project
hierarchy. In the GUI still open from Lab 1, a review of the project shows two Tcl files in
the project hierarchy (Figure 2-17).

2. In the GUI, still open from Lab 1, expand the Constraints folder in solution1 and
double-click the file script.tcl to view it in the Information pane.

X-Ref Target - Figure 2-16

Figure 2-16: The Vivado HLS Command Prompt
High-Level Synthesis www.xilinx.com 28
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=28

Chapter 2: High-Level Synthesis Introduction
• The file script.tcl contains the Tcl commands to create a project with the files
specified during the project setup and run synthesis.

• The file directives.tcl contains any optimizations applied to the design. No
optimization directives were used in Lab 1 so this file is empty.

In this lab exercise, you use the script.tcl from Lab 1 to create a Tcl file for the Lab 2
project.

3. Close the Vivado HLS GUI from Lab 1. This is project no longer needed.

4. In the Vivado HLS Command Prompt, use the following commands (also shown in
Figure 2-18) to create a new Tcl file for Lab 2.

a. Change directory to the Introduction tutorial directory
C:\Vivado_HLS_Tutorial\Introduction.

b. Use the command cp lab1\fir_prj\solution1\script.tcl
lab2\run_hls.tcl to copy the existing Tcl file to Lab 2. (The Windows command
prompt supports auto-completion using the Tab key: press the tab key repeatedly to
see new selections).

c. Use the command cd lab2 to change into the lab2 directory.

X-Ref Target - Figure 2-17

Figure 2-17: The Vivado HLS Project Tcl Files
High-Level Synthesis www.xilinx.com 29
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=29

Chapter 2: High-Level Synthesis Introduction
5. Using any text editor, perform the following edits to the file run_hls.tcl in the lab2
directory. The final edits are shown in Figure 2-19.

a. Add a –reset option to the open_project command. Because you typically run
Tcl files repeatedly on the same project, it is best to overwrite any existing project
information.

b. Add a –reset option to the open_solution command. This removes any existing
solution information when the Tcl file is re-run on the same solution.

c. Leave the source command commented. If the previous project contains any
directives you wish to re-use, you can copy the directives directly into this file.

d. Add the exit command.

e. Save and exit.

X-Ref Target - Figure 2-18

Figure 2-18: Copying the Lab 1 Tcl file to Lab 2
High-Level Synthesis www.xilinx.com 30
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=30

Chapter 2: High-Level Synthesis Introduction
You can run the Vivado HLS in batch mode using this Tcl file.

6. In the Vivado HLS Command Prompt window, type vivado_hls –f run_hls.tcl.

Vivado HLS executes all the steps covered in lab1. When finished, the results are available
inside the project directory fir_prj.

• The synthesis report is available in fir_prj\solution1\syn\report.

X-Ref Target - Figure 2-19

Figure 2-19: Updated run_hls.tcl file for Lab 2
High-Level Synthesis www.xilinx.com 31
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=31

Chapter 2: High-Level Synthesis Introduction
• The simulation results are available in fir_prj\solution\sim\report.

• The output package is available in fir_prj\solution1\impl\ip.

• The final output RTL is available in fir_prj\solution1\impl and then Verilog or
VHDL.

CAUTION! When copying the RTL results from a Vivado HLS project, you must use the RTL from the
impl directory. For designs using floating-point operators or AXI4 interfaces, the RTL files are the only
output from synthesis. Additional processing is performed by Vivado HLS during export_design
before you can use this RTL in other design tools.

Lab 3: Using Solutions for Design Optimization

Introduction
This lab exercise uses the design from Lab 1 and optimizes it.

Step 1: Creating a New Project
1. Open the Vivado HLS Command Prompt.

° On Windows, use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt.

° On Linux, open a new shell.

2. Change to the Lab 3 directory: cd
C:\Vivado_HLS_Tutorial\Introduction\lab3.

3. In the command prompt window, type: vivado_hls –f run_hls.tcl

This sets up the project.

4. In the command prompt window, type vivado_hls –p fir_prj to open the project
in the Vivado HLS GUI.

Vivado HLS opens, as shown in Figure 2-20, with the synthesis for solution1 already
complete.
High-Level Synthesis www.xilinx.com 32
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=32

Chapter 2: High-Level Synthesis Introduction
As stated earlier, the design goals for this design are:

• Create a version of this design with the highest throughput.

• The final design should be able to process data supplied with an input valid signal.

• Produce output data accompanied by an output valid signal.

• The filter coefficients are to be stored externally to the FIR design, in a single port
RAM.

Step 2: Optimize the I/O Interfaces
Because the design specification includes I/O protocols, the first optimization you perform
creates the correct I/O protocol and ports. The type of I/O protocol you select might affect
what design optimizations are possible. If there is an I/O protocol requirement, you should
set the I/O protocol as early as possible in the design cycle.

You reviewed the I/O protocol for this design in Lab 1 (Figure 2-13), and you can review the
synthesis report again by navigating to the report folder inside the solution1\syn folder.
The I/O requirements are:

X-Ref Target - Figure 2-20

Figure 2-20: Introduction Lab 3 Initial Solution
High-Level Synthesis www.xilinx.com 33
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=33

Chapter 2: High-Level Synthesis Introduction
• Port C must have a single port RAM access.

• Port X must have an input data valid signal.

• Port Y must have an output data valid signal.

Port C already is a single-port RAM access. However, if you do not explicitly specify the RAM
access type, High-Level Synthesis might use a dual-port interface. HLS takes this action if
doing so creates a design with a higher throughput. If a single-port is required, you should
explicitly add to the design the I/O protocol requirement to use a single-port RAM.

Input Port X is by default a simple 32-bit data port. You can implement it as an input data
port with an associated data valid signal by specifying the I/O protocol ap_vld.

Output Port Y already has an associated output valid signal. This is the default for pointer
arguments. You do not have to specify an explicit port protocol for this port, because the
default implementation is what is required, but if it is a requirement, it is a good practice to
specify it.

To preserve the existing results, create a new solution, solution2.

1. Click the New Solution toolbar button to create a new solution.

2. Leave the default solution name as solution2. Do not change any of the technology
or clock settings.

3. Click Finish.

This creates solution2 and sets it as the default solution. To confirm you can verify that
the current active solution2 is highlighted in bold in the Explorer pane.

To add optimization directives to define the desired I/O interfaces to the solution, perform
the following steps.

4. In the Explorer pane, expand the Source container (as shown in Figure 2-21).

5. Double-click fir.c to open the file in the Information pane.

6. Activate the Directive tab in the Auxiliary pane and select the top-level function fir to
jump to the top of the fir function in the source code view.
High-Level Synthesis www.xilinx.com 34
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=34

Chapter 2: High-Level Synthesis Introduction
The Directives tab, shown on the right side of Figure 2-21, lists all of the objects in the
design that can be optimized. In the Directive tab, you can add optimization directives to
the design. You can view the Directives tab only when the source code is open in the
Information pane.

Apply the optimization directives to the design.

7. In the Directive tab, select the c argument/port (green dot).

8. Right-click and select Insert Directive.

9. Implement the single-port RAM interface by performing the following:

a. Select RESOURCE from the Directive drop-down menu.

b. Click the core box.

c. Select RAM_1P_BRAM, as shown in Figure 2-22. Then select OK.

The steps above specify that array c be implemented using a single-port block RAM
resource. Because array c is in the function argument list, and hence is outside the function,
a set of data ports are automatically created to access a single-port block RAM outside the
RTL implementation.

Because I/O protocols are unlikely to change, you can add these optimization directives to
the source code as pragmas to ensure that the correct I/O protocols are embedded in the
design.

10. In the Destination section of the Directive Editor, select Source File.

X-Ref Target - Figure 2-21

Figure 2-21: Opening the Directives Tab
High-Level Synthesis www.xilinx.com 35
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=35

Chapter 2: High-Level Synthesis Introduction
11. To apply the directive, click OK.

TIP: If you wish to change the destination of any directive, double-click on the directive In the Directive
tab and modify the destination.

12. Next, specify port x to have an associated valid signal/port.

a. In the Directive tab, select input port x (green dot).

b. Right-click and select Insert Directive.

c. Select Interface from the Directive drop-down menu.

d. Select Source File from the Destination section of the dialog box.

e. Select ap_vld as the mode.

f. Click OK to apply the directive.

13. Finally, explicitly specify port y to have an associated valid signal/port.

a. In the Directive tab, select input port y (green dot).

b. Right-click and select Insert Directive.

X-Ref Target - Figure 2-22

Figure 2-22: Adding a Resource Directive
High-Level Synthesis www.xilinx.com 36
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=36

Chapter 2: High-Level Synthesis Introduction
c. Select Source File from the Destination section of the dialog box

d. Select Interface from the Directive drop-down menu.

e. Select ap_vld for the mode.

f. Click OK to apply the directive

When complete, verify that the source code and the Directive tab are correct as shown in
Figure 2-23. Right-click on any incorrect directive to modify it.

14. Click the Run C Synthesis toolbar button to synthesize the design.

15. When prompted, click Yes to save the contents of the C source file. Adding the
directives as pragmas modified the source code.

When synthesis completes, the report file opens automatically.

16. Click the Outline tab to view the Interface results, or simply scroll down to the bottom
of the report file.

Figure 2-24 shows that the ports now have the correct I/O protocols.

X-Ref Target - Figure 2-23

Figure 2-23: I/O Directives for solution2
High-Level Synthesis www.xilinx.com 37
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=37

Chapter 2: High-Level Synthesis Introduction
Step 3: Analyze the Results
Before optimizing the design, it is important to understand the current design. It was shown
in Lab 1 how the synthesis report can be used to understand the implementation. However,
the Analysis perspective provides greater detail in an inter-active manner.

While still in solution2, and as shown in Figure 2-25:

17. Click the Analysis perspective button.

18. Click the Shift_Accum_Loop in the Performance window to expand it.

• The red-dotted line in Figure 2-25 is used shortly in an explanation; it is not part of the
view.

• The Chapter 6, Design Analysis tutorial provides a more complete understanding of the
Analysis perspective, but the following explains what is required to create the smallest
and fastest RTL design from this source code.

• The left column of the Performance pane view shows the operations in this module of
the RTL hierarchy.

• The top row lists the control states in the design. Control states are the internal states
High-Level Synthesis uses to schedule operations into clock cycles. There is a close
correlation between the control states and the final states in the RTL Finite State
Machine (FSM), but there is no one-to-one mapping.

X-Ref Target - Figure 2-24

Figure 2-24: I/O Protocols for solution2
High-Level Synthesis www.xilinx.com 38
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=38

Chapter 2: High-Level Synthesis Introduction
The explanation presented here follows the path of the dotted red line in Figure 2-25. Some
of the objects here correlate directly with the C source code. Right-click the object to
cross-reference with the C code.

• The design starts in the first state with a read operation on port x.

• In the next state, it starts to execute the logic created by the for-loop
Shift_Accum_Loop. Loops are shown in yellow, and you can expand or collapse
them. Holding the cursor over the yellow loop body in this view shows the loop details:
7 cycles, 11 iterations for a total latency of 77.

• In the first state, the loop iteration counter is checked: addition, comparison, and a
potential loop exit.

• There is a two-cycle memory read operation on the block RAM synthesized from array
data (one cycle to generate the address, one cycle to read the data).

• There is a memory read on the c port.

• The multiplication operation takes 3 cycles to complete.

• The for-loop is executed 11 times.

• At the end of the final iteration, the loop exits in state c1 and the write to port y occurs.

You can also use the Analysis perspective to analyze the resources used in the design.

19. Click the Resource view, as shown in Figure 2-26.

20. Expand all the resource groups (also shown in Figure 2-26).

X-Ref Target - Figure 2-25

Figure 2-25: Solution2 Analysis Perspective: Performance
High-Level Synthesis www.xilinx.com 39
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=39

Chapter 2: High-Level Synthesis Introduction
Figure 2-27 shows:

• The reads on the ports x and y. Port c is reported in the memory section because this
is also a memory port.

• There are two multipliers being used in this design.

• There is a read and write operation on the memory shift_reg.

• None of the other resources are being shared because there is only one instance of
each operation on each row.

With the insight gained through analysis, you can proceed to optimize the design.

Before concluding the analysis, it is worth commenting on the multicycle multiplication
operations, which require multiple DSP48s to implement. The source code uses an int
data-type. This is a 32-bit data-type that results in large multipliers. A DSP48 multiplier is
18-bit and it requires multiple DSP48s to implement a multiplication for data widths greater
than 18-bit.

The Arbitrary Precision Types tutorial shows how you can create designs with more suitable
data types for hardware. Use of arbitrary precision types allows you to define data types of
any arbitrary bit size (more than the standard C/C++ 8-, 16-, 32- or 64-bit types).

X-Ref Target - Figure 2-26

Figure 2-26: Solution2 Analysis Perspective: Resource
High-Level Synthesis www.xilinx.com 40
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=40

Chapter 2: High-Level Synthesis Introduction
Step 4: Optimize for the Highest Throughput (Lowest Interval)
The two issues that limit the throughput in this design are:

• The for loop. By default loops are kept rolled: one copy of the loop body is
synthesized and re-used for each iteration. This ensures each iteration of the loop is
executed sequentially. You can unroll the for loop to allow all operations to occur in
parallel.

• The block RAM used for shift_reg. Because the variable shift_reg is an array in
the C source code, it is implemented as a block RAM by default. However, this prevents
its implementation as a shift-register. You should therefore partition this block RAM
into individual registers.

Begin by creating a new solution.

1. Click the Synthesis perspective button.

2. Click the New Solution button.

3. Leave the solution name as solution3.

4. Click Finish to create the new solution.

5. In the Project menu, select Close Inactive Solution Tabs to close any existing tabs from
previous solutions.

The following steps, summarized in Figure 2-27 explain how to unroll the loop.

6. Click in the fir.c file, then in the Directive tab, select loop Shift_Accum_Loop.

X-Ref Target - Figure 2-27

Figure 2-27: Unrolling FOR Loop
High-Level Synthesis www.xilinx.com 41
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=41

Chapter 2: High-Level Synthesis Introduction
IMPORTANT: Reminder: the source code must be open in the Information pane to see any code objects
in the Directive tab.

7. Right-click and select Insert Directive.

8. From the Directive drop-down menu, select Unroll.

Leave the Destination as the Directive File.

When optimizing a design, you must often perform multiple iterations of optimizations to
determine what the final optimization should be. By adding the optimizations to the
directive file, you can ensure they are not automatically carried forward to the next solution.
Storing the optimizations in the solution directive file allows different solutions to have
different optimizations. Had you added the optimizations as pragmas in the code, they
would be automatically carried forward to new solutions, and you would have to modify the
code to go back and re-run a previous solution.

Leave the other options in the Directives window unchecked and blank to ensure that the
loop is fully unrolled.

9. Click OK to apply the directive.

10. Apply the directive to partition the array into individual elements.

a. In the Directive tab, select array shift_reg.

b. Right-click and select Insert Directive.

c. Select Array_Partition from the Directive drop-down menu.

d. Specify the type as complete.

e. Select OK to apply the directive.

With the directives embedded in the code from solution2 and the two new directives just
added, the directive pane for solution3 appears as shown in Figure 2-28.

X-Ref Target - Figure 2-28

Figure 2-28: Solution3 Directives
High-Level Synthesis www.xilinx.com 42
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=42

Chapter 2: High-Level Synthesis Introduction
In Figure 2-28, notice the directives applied in solution2 as pragmas have a different
annotation (#HLS) than those just applied and saved to the directive file (%HLS). You can
view the newly added directives in the Tcl file, as shown next.

11. In the Explorer pane, expand the Constraint folder in Solution3 as shown in
Figure 2-29.

12. Double-click the solution3 directives.tcl file to open it in the Information pane.

13. Click the Synthesis toolbar button to synthesize the design.

When synthesis completes, the synthesis report automatically opens.

14. Compare the results of the different solutions. Click the Compare Reports toolbar
button.

Alternatively, use Project > Compare Reports.

15. Add solution1, solution2, and solution3 to the comparison.

16. Click OK.

Figure 2-30 shows the comparison of the reports. solution3 has the smallest initiation
interval and can process data much faster. As the interval is only 16, it starts to process a
new set of inputs every 16 clock cycles.

X-Ref Target - Figure 2-29

Figure 2-29: Solution3 Directives.tcl File
High-Level Synthesis www.xilinx.com 43
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=43

Chapter 2: High-Level Synthesis Introduction
It is possible to perform additional optimizations on this design. For example, you could use
pipelining to further improve the throughput and lower the interval. The Chapter 7, Design
Optimization tutorial provides details on using pipelining to improve the interval.

As mentioned earlier, you could modify the code itself to use arbitrary precision types. For
example, if the data types are not required to be 32-bit int types, you could use bit accurate
types (for example, 6-bit, 14-bit, or 22-bit types), provided that they satisfy the required
accuracy. For more details on using arbitrary precision type see the Chapter 5, Arbitrary
Precision Types tutorial.

X-Ref Target - Figure 2-30

Figure 2-30: Comparison of Lab3 Solutions
High-Level Synthesis www.xilinx.com 44
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=44

Chapter 2: High-Level Synthesis Introduction
Conclusion
In this tutorial, you learned how to:

• Create a Vivado High-Level Synthesis project in the GUI and Tcl environments.

• Execute the major steps in the HLS design flow.

• Create and use a Tcl file to run Vivado HLS.

• Create new solutions, add optimization directives, and compare the results of different
solutions.
High-Level Synthesis www.xilinx.com 45
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=45

Chapter 3

C Validation

Overview
Validation of the C algorithm is an important part of the High-Level Synthesis (HLS) process.
The time spent ensuring the C algorithm is performing the correct operation and creating
a C test bench, which confirms the results are correct, reduces the time spent analyzing
designs that are incorrect “by design” and ensures the RTL verification can be performed
automatically.

This tutorial consists of three lab exercises.

Lab 1 Description
Reviews the aspects of a good C test bench, the basic operations for C validation and the C
debugger.

Lab 2 Description
Validates and debugs a C design using arbitrary precision C types.

Lab 3 Description
Validates and debugs a design using arbitrary precision C++ types.

Tutorial Design Description
You can download the tutorial design file from the Xilinx website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\C_Validation.

The sample design used in this tutorial is a Hamming Window FIR. There are three versions
of this design:
High-Level Synthesis www.xilinx.com 46
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=46

Chapter 3: C Validation
• Using native C data types.

• Using ANSI C arbitrary precision data types.

• Using C++ arbitrary precision data types.

This tutorial explains the operation and methodology for C validation using High-Level
Synthesis. There are no design goals for this tutorial.

Lab 1: C Validation and Debug

Overview
This exercise reviews the aspects of a good C test bench and explains the basic operations
of the High-Level Synthesis C debug environment.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

° On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 3-1).

° On Linux, open a new shell.
X-Ref Target - Figure 3-1

Figure 3-1: Vivado HLS Command Prompt
High-Level Synthesis www.xilinx.com 47
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=47

Chapter 3: C Validation
2. Using the command prompt window (Figure 3-2), change the directory to the C
Validation tutorial, lab1.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado_hls
–f run_hls.tcl as shown in Figure 3-2.

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado_hls –p hamming_window_prj as shown in Figure 3-3.

Step 2: Review Test Bench and Run C Simulation
1. Open the C test bench for review by double-clicking hamming_window_test.c in the

Test Bench folder (Figure 3-4).

X-Ref Target - Figure 3-2

Figure 3-2: Setup the Tutorial Project

X-Ref Target - Figure 3-3

Figure 3-3: Initial Project for C Validation Lab 1
High-Level Synthesis www.xilinx.com 48
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=48

Chapter 3: C Validation
A review of the test bench source code shows the following good practices:

• The test bench:

° Creates a set of expected results that confirm the function is correct.

° Stores the results in array sw_result.

• The Design Under Test (DUT) is called to generate results, which are stored in array
hw_result. Because the synthesized functions use the hw_result array, it is this
array that holds the RTL-generated results later in the design flow.

• The actual and expected results are compared. If the comparison fails, the value of
variable err_cnt is set to a non-zero value.

• The test bench issues a message to the console if the comparison failed, but more
importantly returns the results of the comparison. If the return value is zero the test
bench validates the results are good.

This process of checking the results and returning a value of zero if they are correct
automates RTL verification.

You can execute the C code and test bench to confirm that the code is working as expected.

X-Ref Target - Figure 3-4

Figure 3-4: C Test Bench for C Validation Lab 1
High-Level Synthesis www.xilinx.com 49
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=49

Chapter 3: C Validation
2. Click the Run C Simulation toolbar button to open the C Simulation Dialog box, shown
in Figure 3-5.

3. Select OK to run the C simulation.

As shown in Figure 3-6, the following actions occur when C simulation executes:

• The simulation output is shown in the Console window.

• Any print statements in the C code are echoed in the Console window. This example
shows the simulation passed correctly.

• The C simulation executes in the solution subdirectory csim. You can find any output
from the C simulation in the build folder, which is the location at which you can see the
output file result.dat written by the fprintf command highlighted in Figure 3-6.

Because the C simulation is not executed in the project directory, you must add any data
files to the project as C test bench files (so they can be copied to the csim/build
directory when the simulation runs). Such files would include, for example, input data read
by the test bench.

X-Ref Target - Figure 3-5

Figure 3-5: Run C Simulation Dialog Box
High-Level Synthesis www.xilinx.com 50
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=50

Chapter 3: C Validation
Step 3: Run the C Debugger
A C debugger is included as part of High-Level Synthesis.

1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.

2. Select the Launch Debugger option as shown in Figure 3-7.

3. Click OK to run the simulation.

X-Ref Target - Figure 3-6

Figure 3-6: C Simulation Results
High-Level Synthesis www.xilinx.com 51
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=51

Chapter 3: C Validation
The Launch Debugger option compiles the C code and then opens the Debug environment,
as shown in Figure 3-8. Before proceeding, note the following:

• Highlighted at the top-right in Figure 3-8, you can see that the perspective has
changed from Synthesis to Debug. Click the perspective buttons to return to the
synthesis environment at any time.

• By default, the code compiles in debug mode. The Launch Debugger option
automatically opens the debug perspective at time 0, ready for debug to begin. To
compile the code without debug information, select the Optimizing Compile option in
the C Simulation dialog box.

X-Ref Target - Figure 3-7

Figure 3-7: C Simulation Dialog Box
High-Level Synthesis www.xilinx.com 52
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=52

Chapter 3: C Validation
You can use the Step Into button (Figure 3-9) to step through the code line-by-line.

4. Expand the Variables window to see the sw_results array.

5. Expand the sw_results array to the view shown in Figure 3-10.

6. Click the Step Into button (or key F5) repeatedly until you see the values being updated
in the Variables window.

X-Ref Target - Figure 3-8

Figure 3-8: The HLS Debug Perspective

X-Ref Target - Figure 3-9

Figure 3-9: The Debug Step Into Button
High-Level Synthesis www.xilinx.com 53
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=53

Chapter 3: C Validation
In this manner, you can analyze the C code and debug it if the behavior is incorrect.

For more detailed analysis, to the right of the Step Into button are the Step Over (F6), Step
Return (F7) and the Resume (F8) buttons.

7. Scroll to line 69 in the hamming_window_test.c file.

8. Place the cursor in the left-hand margin on line 69, right-click with the mouse button
and select Toggle Breakpoint. A breakpoint (blue dot) is indicated in the margin, as
shown in Figure 3-11.

9. Activate the Breakpoints tab, also shown in Figure 3-11, to confirm there is a breakpoint
set at line 69.

10. Click the Resume button (highlighted in Figure 3-11) or the F8 key to execute up to the
breakpoint.

X-Ref Target - Figure 3-10

Figure 3-10: Analysis of C Variables
High-Level Synthesis www.xilinx.com 54
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=54

Chapter 3: C Validation
11. Click the Step Into button (or key F5) multiple times to step into the hamming_window
function.

12. Click the Step Return button (or key F7) to return to the main function.

13. Click the red Terminate button to end the debug session.

You can use the Run C simulation button to restart the debug session from within the
Debug perspective.

14. Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: C Validation with ANSI C Arbitrary Precision
Types

Introduction
This exercise uses a design with arbitrary precision C types. You will review and debug the
design in the GUI.

X-Ref Target - Figure 3-11

Figure 3-11: Using Breakpoints
High-Level Synthesis www.xilinx.com 55
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=55

Chapter 3: C Validation
Step 1: Create and Open the Project
1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory, as

shown in Figure 3-12.

2. To create a new Vivado HLS project, type vivado_hls –f run_hls.tcl.

3. To open the Vivado HLS GUI project, type vivado_hls –p hamming_window_prj.

4. Open the Source folder in the Explorer pane and double-click hamming_window.c to
open the code, as shown in Figure 3-13.

5. Hold down the Ctrl key and click hamming_window.h on line 45 to open this header
file.

6. Scroll down to view the type definitions (Figure 3-14).

X-Ref Target - Figure 3-12

Figure 3-12: Setup for Interface Synthesis Lab 2

X-Ref Target - Figure 3-13

Figure 3-13: C Code for C Validation Lab 2
High-Level Synthesis www.xilinx.com 56
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=56

Chapter 3: C Validation
In this lab, the design is the same as Lab 1, however, the types have been updated from the
standard C data types (int16_t and int32_t) to the arbitrary precision types provided by
Vivado High-Level Synthesis and defined in header file ap_cint.h.

More details for using arbitrary precision types are discussed in the Chapter 5, Arbitrary
Precision Types tutorial. An example of using arbitrary precision types would be to change
this file to use 12-bit input data types: standard C types only support data widths on 8-bit
boundaries.

This exercise demonstrates how such types can be debugged.

Step 2: Run the C Debugger
1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.

2. Select the Launch Debugger option.

3. Click OK to run the simulation.

The warning and error message shown in Figure 3-15 appears.

The message in the console pane and log file indicate you cannot debug the arbitrary
precision types used for ANSI C designs in the debug environment.

IMPORTANT: When working with arbitrary precision types you can use the Vivado HLS debug
environment only with C++ or SystemC. When using arbitrary precision types with ANSI C,the debug
environment cannot be used. With ANSI C, you must instead use printf or fprintf statements for
debugging.

X-Ref Target - Figure 3-14

Figure 3-14: Type Definitions for C Validation Lab 2
High-Level Synthesis www.xilinx.com 57
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=57

Chapter 3: C Validation
4. Select the Explorer pane.

5. Expand the Test Bench folder in the Explorer pane.

6. Double-click the file hamming_window_test.c.

7. Scroll to line 78 and remove the comments in front of the printf statement (as shown
in Figure 3-16).

8. Save the file.

9. Select the Synthesis button.

X-Ref Target - Figure 3-15

Figure 3-15: C Simulation Dialog Box

X-Ref Target - Figure 3-16

Figure 3-16: Enable Printing of the Results
High-Level Synthesis www.xilinx.com 58
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=58

Chapter 3: C Validation
10. Click the Run C Simulation toolbar button or the menu Project > Run C Simulation to
open the C Simulation Dialog box.

11. Ensure the Launch Debugger option is not selected.

12. Click OK to run the simulation.

The results appear in the console window (Figure 3-17).

13. Exit the Vivado HLS GUI and return to the command prompt.

Lab 3: C Validation with C++ Arbitrary Precision
Types

Overview
This exercise uses a design with arbitrary precision C++ types. You will review and debug
the design in the GUI.

Step 1: Create and Open the Project
1. From the Vivado HLS command prompt used in Lab 2, change to the lab3 directory.

2. Create a new Vivado HLS project by typing vivado_hls –f run_hls.tcl.

3. Open the Vivado HLS GUI project by typing vivado_hls –p hamming_window_prj.

4. Open the Source folder in the Explorer pane and double-click hamming_window.cpp
to open the code, as shown in Figure 3-18.

X-Ref Target - Figure 3-17

Figure 3-17: C Validation Lab 2 Results
High-Level Synthesis www.xilinx.com 59
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=59

Chapter 3: C Validation
5. Hold down the Ctrl key down and click hamming_window.h on line 45 to open this
header file.

6. Scroll down to view the type definitions (Figure 3-19).

Note: In this lab, the design is the same as in Lab 1 and Lab 2, with one exception. The design is now
C++ and the types have been updated to use the C++ arbitrary precision types, ap_int<#N>,
provided by Vivado HLS and defined in header file ap_int.h.

Step 2: Run the C Debugger
1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.

2. Select the Launch Debugger option.

3. Click OK.

The debug environment opens.

4. Select the hamming_window.cpp code tab.

X-Ref Target - Figure 3-18

Figure 3-18: C++ Code for C Validation Lab 3

X-Ref Target - Figure 3-19

Figure 3-19: Type Definitions for C Validation Lab 3
High-Level Synthesis www.xilinx.com 60
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=60

Chapter 3: C Validation
5. Set a breakpoint at line 61 in the hamming_window.cpp file as shown in Figure 3-20.

6. Click the Resume button (or key F8) to execute the code up to the breakpoint.

7. Click the Step Into button (or press the F5 key) twice to see the view in Figure 3-21.

The variables in the design are now C++ arbitrary precision types. These types are defined
in header file ap_int.h. When the debugger encounters these types, it follows the
definition into the header file.

As you continue stepping through the code, you have the opportunity to observe in greater
detail how the results for arbitrary precision types are calculated.

A more productive methodology is to exit the ap_int.h header file and return to view the
results.

X-Ref Target - Figure 3-20

Figure 3-20: Debug Environment for C Validation Lab 3

X-Ref Target - Figure 3-21

Figure 3-21: Arbitrary Precision Header File
High-Level Synthesis www.xilinx.com 61
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=61

Chapter 3: C Validation
8. Click the Step Return button (or the F7 key) to return to the calling function.

9. Select the Variables tab.

10. Expand the outdata variable, as shown in Figure 3-22 to see the value of the variable
shown in the VAL parameter.

Arbitrary precision types are a powerful means to create high-performance, bit accurate
hardware designs. However, in a debug environment, your productivity can be reduced by
stepping through the header file definitions. Use breakpoints and the step return feature to
skip over the low-level calculations and view the value of variables in the Variables tab.

Conclusion
In this tutorial, you learned:

• The importance of the C test bench in the simulation process.

• How to use the C debug environment, set breakpoints and step through the code.

• How to debug C and C++ arbitrary precision types.

X-Ref Target - Figure 3-22

Figure 3-22: Arbitrary Precision Variables
High-Level Synthesis www.xilinx.com 62
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=62

Chapter 4

Interface Synthesis

Overview
Interface synthesis is the process of adding RTL ports to the C design. In addition to adding
the physical ports to the RTL design, interface synthesis includes an associated I/O protocol,
allowing the data transfer through the port to be synchronized automatically and optimally
with the internal logic.

This tutorial consists of four lab exercises that cover the primary features and capabilities of
interface synthesis.

Lab 1 Description
Review the function return and block-level protocols.

Lab 2 Description
Understand the default I/O protocol for ports and learn how to select an I/O protocol.

Lab 3 Description
Review how array ports are implemented and can be partitioned.

Lab 4 Description
Create an optimized implementation of the design and add AXI4 interfaces.

Tutorial Design Description
Download tutorial design file from the Xilinx website. See Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\Interface_Synthesis.
High-Level Synthesis www.xilinx.com 63
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=63

Chapter 4: Interface Synthesis
About the Labs

• The sample design used in the first two labs in this tutorial is a simple one, which helps
the focus to remain on the interfaces.

• The final two lab exercises use a multichannel accumulator.

• This tutorial explains how to implement I/O ports and protocols using High-Level
Synthesis.

• In Lab 4, you create an optimal implementation of the design used in Lab3.

Lab 1: Block-Level I/O Protocols

Overview
This lab explains what block-level I/O protocols are and how to control them.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

° On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 4-1).
High-Level Synthesis www.xilinx.com 64
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=64

Chapter 4: Interface Synthesis
° In Linux, open a new shell.

2. Using the command prompt window (Figure 4-2), change directory to the Interface
Synthesis tutorial, lab1.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado_hls
–f run_hls.tcl, as shown in Figure 4-2.

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado_hls –p adders_prj, as shown in Figure 4-3.

X-Ref Target - Figure 4-1

Figure 4-1: Vivado HLS Command Prompt

X-Ref Target - Figure 4-2

Figure 4-2: Setup the Tutorial Project

X-Ref Target - Figure 4-3

Figure 4-3: Initial Project for Interface Synthesis Lab 1
High-Level Synthesis www.xilinx.com 65
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=65

Chapter 4: Interface Synthesis
Step 2: Create and Review the Default Block-Level I/O Protocol
1. Double-click adders.c in the Source folder to open the source code for review

(Figure 4-4).

This example uses a simple design to focus on the I/O implementation (and not the logic in
the design). The important points to take from this code are:

• Directives in the form of pragmas have been added to the source code to prevent any
I/O protocol being synthesized for any of the data ports (inA, inB and inC). I/O port
protocols are reviewed in the next lab exercise.

• This function returns a value and this is the only output from the function. As seen in
later exercises, not all functions return a value. The port created for the function return
is discussed in this lab exercise.

2. Execute the Run C Synthesis command using the dedicated toolbar button or the
Solution menu.

When synthesis completes, the synthesis report opens automatically.

3. To review the RTL interfaces scroll to the Interface summary at the end of the synthesis
report.

The Interface summary and Outline tab are shown in Figure 4-5.

X-Ref Target - Figure 4-4

Figure 4-4: C Code for Interface Synthesis Lab 1
High-Level Synthesis www.xilinx.com 66
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=66

Chapter 4: Interface Synthesis
There are four types of ports to review:

• The design takes more than one clock cycle to complete, so a clock and reset have been
added to the design: ap_clk and ap_rst. Both are single-bit inputs.

• A block-level I/O protocol has been added to control the RTL design: ports ap_start,
ap_done, ap_idle and ap_ready. These ports will be discussed shortly.

• The design has four data ports.

° Input ports In1, In2, and In3 are 32-bit inputs and have the I/O protocol
ap_none (as specified by the directives in Figure 4-5).

° The design also has a 32-bit output port for the function return, ap_return.

The block-level I/O protocol allows the RTL design to be controlled by additional ports
independently of the data I/O ports. This I/O protocol is associated with the function itself,
not with any of the data ports. The default block-level I/O protocol is called ap_ctrl_hs.
Figure 4-6 shows this protocol is associated with the function return value (this is true even
if the function has no return value specified in the code).

Table 4-1 summarizes the behavior of the signals for block-level I/O protocol ap_ctrl_hs.

X-Ref Target - Figure 4-5

Figure 4-5: Interface Summary
High-Level Synthesis www.xilinx.com 67
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=67

Chapter 4: Interface Synthesis
Note: The explanation here uses the term “transaction”. In the context of high-level synthesis, a
transaction is equivalent to one execution of the C function (or the equivalent operation in the
synthesized RTL design).

You can observe the behavior of these signals by viewing the trace file produced by RTL
cosimulation. This is discussed in Chapter 8, RTL Verification tutorial, but Figure 4-6 shows
the waveforms for the current synthesis results.

Table 4-1: Block Level I/O protocol ap_ctrl_hs

Signals Description

ap_start This signal controls the block execution and must be
asserted to logic 1 for the design to begin operation.
It should be held at logic 1 until the associated output
handshake ap_ready is asserted. When ap_ready goes
high, the decision can be made on whether to keep
ap_start asserted and perform another transaction or
set ap_start to logic 0 and allow the design to halt at
the end of the current transaction.
If ap_start is asserted low before ap_ready is high,
the design might not have read all input ports and might
stall operation on the next input read.

ap_ready This output signal indicates when the design is ready for
new inputs.
The ap_ready signal is set to logic 1 when the design is
ready to accept new inputs, indicating that all input reads
for this transaction have been completed.
If the design has no pipelined operations, new reads are
not performed until the next transaction starts.
This signal is used to make a decision on when to apply
new values to the inputs ports and whether to start a new
transaction should using the ap_start input signal.
If the ap_start signal is not asserted high, this signal
goes low when the design completes all operations in the
current transaction.

ap_done This signal indicates when the design has completed all
operations in the current transaction.
A logic 1 on this output indicates the design has
completed all operations in this transaction. Because this
is the end of the transaction, a logic 1 on this signal also
indicates the data on the ap_return port is valid.
Not all functions have a function return argument and
hence not all RTL designs have an ap_return port.

ap_idle This signal indicates if the design is operating or idle (no
operation).
The idle state is indicated by logic 1 on this output port.
This signal is asserted low once the design starts
operating.
This signal is asserted high when the design completes
operation and no further operations are performed.
High-Level Synthesis www.xilinx.com 68
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=68

Chapter 4: Interface Synthesis
The waveforms in Figure 4-6 show the behavior of the block-level I/O signals.

• The design does not start operation until ap_start is set to logic 1.

• The design indicates it is no longer idle by setting port ap_idle low.

• Five transactions are shown. The first three input values (10, 20, and 30) are applied to
input ports In1, In2, and In3 respectively.

• Output signal ap_ready goes high to indicate the design is ready for new inputs on
the next clock.

• Output signal ap_done indicates when the design is finished and that the value on
output port ap_return is valid (the first output value, 60, is the sum of all three
inputs).

• Because ap_start is held high, the next transaction starts on the next clock cycle.

Note: In RTL cosimulation, all design and port input control signals are always enabled. For example,
in Figure 4-6 signal ap_start is always high.

In the 2nd transaction, notice on port ap_return, the first output has the value 70. The result
on this port is not valid until the ap_done signal is asserted high.

Step 3: Modify the Block-Level I/O protocol
The default block-level I/O protocol is the ap_ctrl_hs protocol (the Control Handshake
protocol). In this step, you create a new solution and modify this protocol.

X-Ref Target - Figure 4-6

Figure 4-6: RTL Waveforms for Block Protocol Signals
High-Level Synthesis www.xilinx.com 69
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=69

Chapter 4: Interface Synthesis
1. Select New Solution from the toolbar or Project menu to create a new solution.

2. Leave all settings in the new solution dialog box at their default setting and click Finish.

3. Select the C source code tab (adders.c) in the Information pane (or re-open the C source
code if it was closed).

4. Activate the Directives tab and select the top-level function adders, as shown in
Figure 4-7.

Because the block-level I/O protocols are associated with the function, you must specify
them by selecting the top-level function.

5. In the Directive tab, mouse over the top-level function adders, right-click, and select
Insert Directive.

The Directives Editor dialog box opens. Select the INTERFACE option from the Directive
pull-down list.

Figure 4-8 shows this dialog box with the drop-down menu for the interface mode
activated.

X-Ref Target - Figure 4-7

Figure 4-7: Top-Level Function Selected
High-Level Synthesis www.xilinx.com 70
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=70

Chapter 4: Interface Synthesis
The drop-down menu shows there are four options for the block-level interface protocol:

• ap_ctrl_none: No block-level I/O control protocol.

• ap_ctrl_hs: The block-level I/O control handshake protocol we have reviewed.

• ap_ctrl_chain: The block-level I/O protocol for control chaining. This I/O protocol is
primarily used for chaining pipelined blocks together.

X-Ref Target - Figure 4-8

Figure 4-8: Directive Dialog Box for ap_ctrl_none
High-Level Synthesis www.xilinx.com 71
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=71

Chapter 4: Interface Synthesis
• s_axilite: May be applied in addition to ap_ctrl_hs or ap_ctrl_chain to
implement the block-level I/O protocol as an AXI Slave Lite interface in place of
separate discrete I/O ports.

The block-level I/O protocol ap_ctrl_chain is not covered in this tutorial. This protocol
is similar to ap_ctrl_hs protocol but with an additional input signal, ap_continue,
which must be high when ap_done is asserted for the next transaction to proceed. This
allows downstream blocks to apply back-pressure on the system and halt further processing
when they are unable to continue accepting new data.

6. In the Destination section of the Directives Editor dialog box, select Source File.

By default, directives are placed in the directives.tcl file. In this example, the directive
is placed in the source file with the existing I/O directives.

7. From the mode options, select ap_ctrl_none from the drop-down menu.

8. Click OK.

The source file now has a new directive, highlighted in both the source code and directives
tab in Figure 4-9.

The new directive shows the associated function argument/port called return. All
interface directives are attached to a function argument. For block-level I/O protocols, the
return argument is used to specify the block-level interface. This is true even if the
function has no return argument in the source code.

9. Click the Run C Synthesis toolbar button or use the menu Solution > Run C Synthesis
to synthesize the design.

X-Ref Target - Figure 4-9

Figure 4-9: Block-Level Interface Directive ap_ctrl_none
High-Level Synthesis www.xilinx.com 72
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=72

Chapter 4: Interface Synthesis
Adding the directive to the source file modified the source file. Figure 4-9 shows the source
file name as *adders.c. The asterisk indicates that the file is modified but not saved.

10. Click Yes to accept the changes to the source file.

When the report opens, the Interface summary appears, as shown in Figure 4-10.

When the interface protocol ap_ctrl_none is used, no block-level I/O protocols are
added to the design. The only ports are those for the clock, reset and the data ports.

Note that without the ap_done signal, the consumer block that accepts data from the
ap_return port now has no indication when the data is valid.

In addition, the RTL cosimulation feature requires a block-level I/O protocol to sequence the
test bench and RTL design for cosimulation automatically. Any attempt to use RTL
cosimulation results in the following error message and RTL cosimulation with halt:

@E [SIM-345] Cosim only supports the following 'ap_ctrl_none' designs: (1)
combinational designs; (2) pipelined design with task interval of 1; (3) designs with
array streaming or hls_stream ports.
@E [SIM-4] *** C/RTL co-simulation finished: FAIL ***

Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: Port I/O Protocols

Overview
This exercise explains how to specify port I/O protocols.

X-Ref Target - Figure 4-10

Figure 4-10: Interface Summary for ap_ctrl_none
High-Level Synthesis www.xilinx.com 73
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=73

Chapter 4: Interface Synthesis
Step 1: Create and Open the Project
1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as

shown in Figure 4-11.

2. Type vivado_hls –f run_hls.tcl to create a new Vivado HLS project.

3. Type vivado_hls –p adders_io_prj to open the Vivado HLS GUI project.

4. Open the source code as shown in Figure 4-12.

The source code for this exercise is similar to the simple code used in Lab 1. For similar
reasons, it helps focus on the interface behavior and not the core logic.

This time, the code does not have a function return, but instead passes the output of the
function through the pointer argument *in_out1. This also provides the opportunity to
explore the interface options for bidirectional (input and output) ports.

The types of I/O protocol that you can add to C function arguments by interface synthesis
depends on the argument type. These options are fully described in the Vivado Design Suite
User Guide: High-Level Synthesis (UG902) [Ref 2].

The pointer argument in this example is both an input and output to the function. In the RTL
design, this argument is implemented as separate input and output ports.

X-Ref Target - Figure 4-11

Figure 4-11: Setup for Interface Synthesis Lab 2

X-Ref Target - Figure 4-12

Figure 4-12: C Code for Interface Sythesis Lab 2
High-Level Synthesis www.xilinx.com 74
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=74

Chapter 4: Interface Synthesis
For the code shown in Figure 4-12, the possible options for each function argument are
described in Table 4-2.

Note: The port directives applied in Lab 1 were not actually necessary because ap_none is the
default I/O protocol for these C arguments. The directives were provided to avoid addressing any I/O
port protocol behavior in that exercise, default behavior or not.

In this exercise, you implement a selection of I/O protocols.

Step 2: Specify the I/O Protocol for Ports
1. Ensure that you can see the C source code in the Information pane.

2. Activate the Directives tab and select input in1, as shown in Figure 4-13.

Table 4-2: Port Level I/O Protocol Options for Lab 2

Function Argument I/O Protocol Options

In1 and In2 These are pass-by-value arguments that can be
implemented with the following I/O protocols:
• ap_none: No I/O protocol. This is the default for inputs.
• ap_stable: No I/O protocol.
• ap_ack: Implemented with an associated output

acknowledge port.
• ap_vld: Implemented with an associated input valid

port.
• ap_hs: Implemented with both input valid and output

acknowledge ports.

in_out1 This is a pass-by-reference output that can be
implemented with the following I/O protocols:
• ap_none: No I/O protocol. This is the default for inputs.
• ap_stable: No I/O protocol.
• ap_ack: Implemented with an associated input

acknowledge port.
• ap_vld: Implemented with an associated output valid

port. This is the default for outputs.
• ap_ovld: Implemented with an associated output valid

port (no valid port for the input part of any inout
ports).

• ap_hs: Implemented with both input valid port and
output acknowledge ports

• ap_fifo: A FIFO interface with associated output write
and input FIFO full ports.

• ap_bus: A Vivado HLS bus interface protocol.
High-Level Synthesis www.xilinx.com 75
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=75

Chapter 4: Interface Synthesis
3. Right-click and select Insert Directive.

4. When the Directives Editor opens leave the Directive drop-down menu as INTERFACE.

a. Leave the destination at the default value. This time, the directives are stored in the
directives.tcl file.

b. Select ap_vld from the mode drop-down menu

c. Click OK.

5. Select argument in2 and add an interface directive to specify the I/O protocol ap_ack.

6. Select argument in_out1 and add an interface directive to specify the I/O protocol
ap_hs.

7. In the Explorer pane, expand the Constraints folder and double-click the
directives.tcl file to open it, as shown in Figure 4-14.

8. Synthesize the design.

9. Review the Interface summary when the report file opens (Figure 4-15).

X-Ref Target - Figure 4-13

Figure 4-13: Adding Port I/O Protocols

X-Ref Target - Figure 4-14

Figure 4-14: Directives for Lab 2
High-Level Synthesis www.xilinx.com 76
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=76

Chapter 4: Interface Synthesis
• The design has a clock and reset.

• The default block-level I/O protocol signals are present.

• Port in1 is implemented with a data port and an associated input valid signal.

• The data on port in1 is only read when port in1_ap_vld is active-High.

• Port in2 is implemented with a data port and an associated output acknowledge signal.

• Port in2_ap_ack will be active-High when data port in2 is read.

• The inout_i identifies the input part of argument inout1. This has associated input
valid port inout1_i_ap_vld and output acknowledge port inout1_i_ap_ack.

• The output part of argument inout1 is identified as inout_o. This has associated output
valid port inout1_o_ap_vld and input acknowledge port inout1_o_ap_ack.

10. Exit the Vivado HLS GUI and return to the command prompt.

Lab 3: Implementing Arrays as RTL Interfaces

Introduction
This exercise shows how array arguments on the top-level function interface can be
implemented as a number of different types of RTL port.

X-Ref Target - Figure 4-15

Figure 4-15: Interface Summary for Lab 2
High-Level Synthesis www.xilinx.com 77
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=77

Chapter 4: Interface Synthesis
Step 1: Create and Open the Project
1. From the Vivado HLS command prompt window used in the previous lab, change to the

lab3 directory.

2. Create a new Vivado HLS project by typing vivado_hls –f run_hls.tcl.

3. Open the Vivado HLS GUI project by typing vivado_hls –p array_io_prj.

4. Open the source code as shown in Figure 4-16.

This design has an input array and an output array. The comments in the C source explain
how the data in the input array is ordered as channels and how the channels are
accumulated. To understand the design, you can also review the test bench and the input
and output data in file result.golden.dat.

Step 2: Synthesize Array Function Arguments to RAM Ports
In this step, you review how array ports are synthesized to RAM ports.

1. Synthesize the design and review the Interface summary when the report opens
(Figure 4-17).

The interface summary shows how array arguments in the C source are by default
synthesized into RTL RAM ports.

• The design has a clock, reset, and the default block-level I/O protocol ap_ctrl_hs
(noted on the clock in the report).

• The d_o argument has been synthesized to a RAM port (I/O protocol ap_memory).

X-Ref Target - Figure 4-16

Figure 4-16: C Code for Interface Synthesis Lab 3
High-Level Synthesis www.xilinx.com 78
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=78

Chapter 4: Interface Synthesis
• A data port (d_o_d0).

• An address port (d_o_address0).

• Control ports for a chip-enable (d_o_ce0) and a write-enable port (do_we0).

• The d_i argument has been synthesized to a similar RAM interface, but has an input
data port (d_i_q0) and no write-enable port because this interface only reads data.

In both cases, the data port is the width of the data values in the C source (16-bit integers
in this case) and the width of the address port has been automatically sized to match the
number of addresses that must be accessed (5-bit for 32 addresses).

Synthesizing array arguments to RAM ports is the default. You can control how these ports
are implemented using a number of other options. The remaining steps in Lab 3
demonstrate these options:

• Using a single-port or dual-port RAM interface.

• Using FIFO interfaces.

• Partitioning into discrete ports.

Step 3: Using Dual-Port RAM and FIFO Interfaces
High-Level Synthesis allows you to specify a RAM interface as a single-port or dual-port. If
you do not make such a selection, Vivado HLS automatically analyzes the design and selects
the number of ports to maximize the data rate.

X-Ref Target - Figure 4-17

Figure 4-17: Interface Summary for Initial Lab 3 Design
High-Level Synthesis www.xilinx.com 79
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=79

Chapter 4: Interface Synthesis
Step 2 used a single-port RAM interface because the for-loop in the source code is by
default left rolled: each iteration of the loop is executed in turn:

• Read the input port.

• Read the accumulated result from the internal RAM.

• Sum the accumulated and new data and write into the internal RAM.

• Write the result to the output port.

• Repeat for the next iteration of the loop.

This ensures only a single input read and output write is ever required. Even if multiple input
and outputs are made available, the internal logic cannot take advantage of any additional
ports.

Note: If you specify a dual-port RAM and Vivado HLS can determine only a single port is required,
it uses a single-port and over-ride the dual-port specification.

In this design, if you want to implement an array argument using multiple RTL ports, the
first thing you must do is unroll the for-loop and allow all internal operations to happen in
parallel, otherwise there is no benefit in multiple ports: the rolled for-loop ensure only one
data sample can be read (or written) at a time.

1. Select New Solution from the toolbar or Project menu to create a new solution.

2. Accept the defaults, and click Finish.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab select For_Loop, and right-click to open the Directives Editor
dialog box.

a. In the Directives Editor dialog box activate the Directive drop-down menu at the top
and select UNROLL.

b. With the Directives Editor as shown in Figure 4-18, click OK.
High-Level Synthesis www.xilinx.com 80
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=80

Chapter 4: Interface Synthesis
5. Next, specify a dual-port RAM for input reads. The Resource directive indicates the type
of RAM connected to an interface.

a. In the Directive tab, select port d_i and right-click to open the Directives Editor
dialog box.

b. In the Directives Editor activate the Directive drop-down menu at the top and select
RESOURCE.

c. Click the core options box and select RAM_2P_BRAM.

d. Verify that the settings in the Directives Editor dialog box are as shown in
Figure 4-19 and click OK.

X-Ref Target - Figure 4-18

Figure 4-18: Directives Editor to Unroll For_Loop
High-Level Synthesis www.xilinx.com 81
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=81

Chapter 4: Interface Synthesis
6. Implement the output port using a FIFO interface.

a. In the Directive tab, select port d_o and right-click to open the Directives Editor
dialog box.

b. In the Directives Editor, ensure the directive is Interface.

c. From the Mode drop-down menu, select ap_fifo.

d. Click OK.

The Directive tab shows the directives now applied to the design (Figure 4-20).

X-Ref Target - Figure 4-19

Figure 4-19: Directives Editor for Specifying a Dual-port RAM
High-Level Synthesis www.xilinx.com 82
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=82

Chapter 4: Interface Synthesis
7. Synthesize the design.

When the report opens in the Information pane, the Interface summary is as shown in
Figure 4-21.

• The design has the standard clock, reset, and block-level I/O ports.

• Array argument d_o has been implemented as a FIFO interface with a 16-bit data port
(d_o_din) and associated output write (d_o_write) and input FIFO full
(d_o_full_n) ports.

• Argument d_i has been implemented as a dual-port RAM interface.

X-Ref Target - Figure 4-20

Figure 4-20: Directives Summary for Lab 2 Solution

X-Ref Target - Figure 4-21

Figure 4-21: Dual-Port BRAM and FIFO Interfaces
High-Level Synthesis www.xilinx.com 83
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=83

Chapter 4: Interface Synthesis
By using a dual-port RAM interface, this design can accept input data at twice the rate of
the previous design. Because the for-loop was unrolled, the logic in the loop is able to
consume data at this rate. By default, each loop iteration is executed in turn. This
implementation code limits the logic to one read on d_i in each iteration. Unrolling the
loops allows more reads to be performed (but creates N copies of the logic). However, by
using a single-port FIFO interface on the output the output data rate is the same as before.

Step 4: Partitioned RAM and FIFO Array interfaces
In this step, you learn how to partition an array interface into any arbitrary number of ports.

1. Select New Solution from the toolbar or the Project menu and create a new solution.

2. Accept the defaults, and click Finish. This includes copying existing directives from
solution2.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab, select d_o and right-click to open the Insert Directives Editor
dialog box.

a. In the Directives Editor dialog box activate the Directive drop-down menu at the top
and select ARRAY_PARTITION.

b. Activate the options type drop down to partition the array into blocks. Set Type to
Block.

c. In the Factor dialog box, set the factor (optional) to 4.

d. With the Directives Editor as shown in Figure 4-22, click OK.
High-Level Synthesis www.xilinx.com 84
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=84

Chapter 4: Interface Synthesis
Now, partition the input array into two blocks (not four).

5. In the Directive tab, select d_i and repeat the previous step, but this time partition the
port with a factor of 2.

The directives tab shows the directives now applied to the design (Figure 4-23).

X-Ref Target - Figure 4-22

Figure 4-22: Directives Editor for Partitioning Array d_o

X-Ref Target - Figure 4-23

Figure 4-23: Directives Summary for Lab 2 Solution3
High-Level Synthesis www.xilinx.com 85
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=85

Chapter 4: Interface Synthesis
6. Synthesize the design.

When the report opens in the Information pane, the Interface summary is as shown in
Figure 4-24.

• The design has the standard clock, reset, and block-level I/O ports.

• Array argument d_o has been implemented as a four separate FIFO interfaces.

• Argument d_i has been implemented as a two separate RAM interfaces, each of which
uses a dual-port interface. (If you see four separate RAM interfaces, confirm a partition
factor for d_i is two and not four).

X-Ref Target - Figure 4-24

Figure 4-24: Interface Report for Partitioned Interfaces
High-Level Synthesis www.xilinx.com 86
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=86

Chapter 4: Interface Synthesis
If input port d_i was partitioned into four, only a single-port RAM interface would be
required for each port. Because the output port can only output four values at once, there
would be no benefit in reading eight inputs at once.

The final step in this tutorial is to partition the arrays completely.

Step 5: Fully Partitioned Array Interfaces
This step shows you how to partition an array interface into individual ports.

1. Select New Solution from the toolbar and create a new solution.

2. Click Finish and accept the defaults. This includes copying existing directives from
solution3.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab, select the existing partition directive for d_o as shown in
Figure 4-25.

5. Right-click and select Modify Directive.

6. In the Directives Editor dialog box:

a. In the Factor dialog box, delete the value 4. Since this array will be completely
partitioned into registers, the partitioning factor is no longer relevant. (If you leave
it there, it will be ignored).

b. Activate the type (optional) drop down and modify the partitioning type to
Complete.

c. With the Directives Editor as shown in Figure 4-26, click OK.

X-Ref Target - Figure 4-25

Figure 4-25: Modifying the Directive for d_o
High-Level Synthesis www.xilinx.com 87
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=87

Chapter 4: Interface Synthesis
7. In the Directive tab, select d_i and repeat the previous step to completely partition the
d_i array.

8. In the Directive tab, select the RESOURCE directive on d_i, right-click with the mouse
and select Remove Directive. If the array is partitioned into individual elements, it
cannot be assigned to a block RAM.

The Directives tab shows the directives now applied to the design (Figure 4-27).

X-Ref Target - Figure 4-26

Figure 4-26: Directives Editor for Partitioning Array d_o
High-Level Synthesis www.xilinx.com 88
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=88

Chapter 4: Interface Synthesis
9. Synthesize the design.

10. When the report opens in the Information pane, review the interface summary. Note the
following:

• The design has the standard clock, reset, and block-level I/O ports.

• Array argument d_o has been implemented as 32 separate FIFO interfaces.

• Argument d_i has been implemented as 32 separate scalar ports. Because the default
interface for input scalars is not in the I/O protocol, they have the I/O protocol
ap_none.

Although this tutorial has focused exclusively on the I/O interfaces, at this point it is worth
examining the differences in performance across all four solutions.

11. Select Compare Reports from the toolbar or the Project menu to open a comparison of
the solutions.

12. In the Solution Selection dialog box, add each of the four solutions to the Selected
Solutions pane (Figure 4-28).

13. Click OK.

X-Ref Target - Figure 4-27

Figure 4-27: Directives Summary for Lab 2 Solution4
High-Level Synthesis www.xilinx.com 89
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=89

Chapter 4: Interface Synthesis
When the solutions comparison report opens (Figure 4-29), it shows that solution4, using a
unique port for each array element, is much faster than the previous solutions. The internal
logic can access the data as soon as it is required. (There is no performance bottleneck due
to port accesses.)

Scroll further down the comparison report (Figure 4-30) and note that solutions with more
I/O ports (solutions 2, 3, and 4), allows more parallel processing, but also use considerably
more resources.

X-Ref Target - Figure 4-28

Figure 4-28: Compare All Solutions for Lab 3

X-Ref Target - Figure 4-29

Figure 4-29: Performance Comparisons for All Lab 3 Solutions
High-Level Synthesis www.xilinx.com 90
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=90

Chapter 4: Interface Synthesis
In the next exercise, you implement this same design with an optimum balance between the
ports and resources. In addition to this more optimal implementation, the next exercise
shows how to add AXI4 interfaces to the design.

14. Exit the Vivado HLS GUI and return to the command prompt.

Lab 4: Implementing AXI4 Interfaces

Introduction
This exercise explains how to specify AXI4 bus interfaces for the I/O ports. In addition to
adding AXI4 interfaces this exercise also shows how to create an optimal design by using
interface and logic directives together.

Step 1: Create and Open the Project
1. From the Vivado HLS command prompt window used in the previous lab, change to the

lab4 directory.

2. Create a new Vivado HLS project by typing vivado_hls –f run_hls.tcl.

3. Open the Vivado HLS GUI project by typing vivado_hls –p axi_interfaces_prj.

4. Open the source code as shown in Figure 4-31.

X-Ref Target - Figure 4-30

Figure 4-30: Resource Comparisons for All Lab 3 Solutions
High-Level Synthesis www.xilinx.com 91
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=91

Chapter 4: Interface Synthesis
This design uses similar source C code as Lab 3: with the design renamed to
axi_interfaces.

Step 2: Create an Optimized Design with AXI4-Stream Interfaces
In the optimal performance implementation of this design, the data for each channel would
be processed in parallel, with dedicated hardware for each channel.

The key to understanding how best to perform this optimization is to recognize that the
channels in the input and output arrays lend themselves to cyclic partitioning. Cyclic
partitioning is fully explained in the Vivado Design Suite User Guide: High-Level Synthesis
(UG902) [Ref 2], but basically means each array element is, in turn, sorted into a different
partition.

In this exercise, you specify the array arguments to be implemented as AXI4-Stream
interfaces. If the arrays are partitioned into channels, you can stream the samples for each
channel through the design in parallel.

Finally, if the I/O ports are configured to supply and consume individual streams of channel
data, partial unrolling of the for-loop can ensure dedicated hardware processes each
channel.

First, partition the arrays:

1. Ensure the C source code is visible in the Information pane.

X-Ref Target - Figure 4-31

Figure 4-31: Source Code for Lab 4
High-Level Synthesis www.xilinx.com 92
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=92

Chapter 4: Interface Synthesis
2. In the Directive tab, select d_o and right-click to open the Insert Directives Editor dialog
box.

a. Select the Type drop-down menu at the top and select ARRAY_PARTITION.

b. Click the Type (optional) drop-down menu to specify cyclic partitioning.

c. In the Factor (optional) box, enter the value 8, to create eight separate partitions.
(This results in eight ports.)

d. With the Directives Editor dialog box filled in as shown in Figure 4-32, click OK.

3. In the Directive tab, select d_o again and right-click to open the Insert Directives Editor
dialog box.

a. Activate the Directive drop-down menu at the top and select INTERFACE.

b. Click the Mode drop-down menu to specify an axis interface.

c. Click OK.

4. In the Directive tab, select d_i and repeat steps 2 and 3 above.

a. Apply Array Partition.

X-Ref Target - Figure 4-32

Figure 4-32: Directives Editor for Cyclic Partitioning
High-Level Synthesis www.xilinx.com 93
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=93

Chapter 4: Interface Synthesis
b. Apply Cyclic with a factor of 8.

c. Apply Interface.

d. Apply an axis interface.

5. Next, partially unroll and pipeline the for-loop:

a. In the Directive tab, select For_Loop and right-click to open the Insert Directives
Editor dialog box.

b. Select Activate the Directive drop-down menu at the top and select UNROLL.

Select a factor of 8 to partially unroll the for-loop. This is equivalent to re-writing the
C code to execute eight copies of the loop-body in each iteration of the loop (where
the new loop only executes for four iterations in total, not 32).

Click OK.

c. In the Directive tab, select For_Loop again and right-click to open the Insert
Directives Editor dialog box.

Activate the Directive drop-down menu at the top and select PIPELINE. Leave the
interval (II) blank and let it default to 1.

d. Select enable loop rewinding.

e. Click OK.

When the top-level of the design is a loop, you can use the pipeline rewind option. This
informs Vivado HLS that when implemented in RTL, this loop runs continuously (with no
end of function and function re-start cycles).

After performing the above steps, the Directives tab should be as shown in Figure 4-33. Be
sure to check all options are correctly applied. If not, double-click the directive to re-open
the Directives Editor.
High-Level Synthesis www.xilinx.com 94
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=94

Chapter 4: Interface Synthesis
6. Synthesize the design.

When the report opens in the information pane, confirm both d_i and d_o are implemented
as eight separate AXI4-Stream ports.

7. In the performance section of the report, confirm that the for-loop processes one
sample every clock cycle (Interval 1) with a latency of 3 (and max 4), and that the design
has less area than solutions 2, 3, or 4 in Lab 3 (Figure 4-33).

Cyclic partitioning of the array interfaces and partial for-loop unrolling has allowed
implementation of this C code as eight separate channels in the hardware.

Pipelining the for-loop allows the logic in each channel to process 1 sample per clock.
Varying the partitioning and loop unrolling allows you to create a design which is the
optimal balance of area and performance to satisfy your particular requirements.

Step 3: Implementing an AXI4-Lite Interfaces
In this exercise, you group block-level I/O protocol ports into a single AXI4-Lite interface,
which allows these block-level control signals to be controlled and accessed from a CPU.

1. Select New Solution from the toolbar or the Project menu to create a new solution.

2. Accept the defaults and click Finish. This includes copying existing directives from
solution1.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab, select the top-level function axi_interfaces and right-click to open
the Insert Directives Editor dialog box.

a. Select the Directive drop-down menu at the top and select INTERFACE.

X-Ref Target - Figure 4-33

Figure 4-33: Directives Tab for Lab 4 Solution1
High-Level Synthesis www.xilinx.com 95
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=95

Chapter 4: Interface Synthesis
b. Select the mode drop-down menu and select s_axilite. This specifies that the ports
associated with the function return (the block-level I/O ports) are implemented as an
AXI4-Lite interface. Since the default mode for the function return is ap_ctrl_hs, there
is no requirement to specify this I/O protocol.

c. Click OK.

The Directives tab appears, as shown in Figure 4-34.

5. Synthesize the design.

When the report opens, review the interface summary to confirm the block-level I/O
protocol ports (ap_start, ap_done, etc.) have been replaced with an AXI4Lite interface
and that the output interrupt signal has been added to the design. The source of the
interrupt can be selected through the AXI-Lite interface.

6. Select Export RTL from the toolbar or the Solution menu to create an IP package.

7. Leave the Format Selection as IP Catalog and click OK.

You can see the IP package in the solution2/impl folder. Because you used the Vivado
IP Catalog format, the package is in the ip folder.

The ip folder includes the drivers subfolder, as shown in Figure 4-35.

When you add an AXI4-Lite interface to the design, the IP packaging process also creates
software driver files to enable an external block, typically a CPU, to control this block (start
it, stop it, set port values, review the interrupt status).

X-Ref Target - Figure 4-34

Figure 4-34: Directives for Specifying AXI4-Lite Interfaces
High-Level Synthesis www.xilinx.com 96
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=96

Chapter 4: Interface Synthesis
8. Double-click the xaxi_interfaces_hw.h file to open it in the Information pane.

This shows the addresses to access and control the block-level interface signals. For
example, setting control register 0x0 bit 0 to the value 1 will enable the ap_start port, or
alternatively, setting bit 7 will enable the auto-restart and the design will re-start
automatically at the end of each transaction.

The remaining C driver files are used to integrate control of the AXI4 Slave Lite interface
into the code running on a CPU or microcontroller and are included in the packaged IP.

X-Ref Target - Figure 4-35

Figure 4-35: IP Package with AXI4 Interfaces
High-Level Synthesis www.xilinx.com 97
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=97

Chapter 4: Interface Synthesis
Conclusion
In this tutorial, you learned:

• What block-level I/O protocols are and how to control them.

• How to specify and apply port-level I/O protocols.

• How to specify array ports as RAM and FIFO interfaces.

• How to partition RAM and FIFO interfaces into sub-ports.

• How to use both I/O directives and optimization directives to create an optimal design
with AXI4 interfaces.

X-Ref Target - Figure 4-36

Figure 4-36: IP Software Driver Files
High-Level Synthesis www.xilinx.com 98
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=98

Chapter 5

Arbitrary Precision Types

Overview
C/C++ provided data types are fixed to 8-bit boundaries:

• char (8-bit)

• short (16-bit)

• int (32-bit)

• long long (64-bit)

• float (32-bit)

• double (64-bit)

• Exact width integer types such as int16_t (16-bit) and int32_t (32-bit)

When creating hardware, it is often the case that more accurate bit-widths are required.
Consider, for example, a case in which the input to a filter is 12-bit and the accumulation of
the results only requires a maximum range of 27 bits. Using standard C data types for
hardware design results in unnecessary hardware costs. Operations can use more LUTs and
registers than needed for the required accuracy, and delays might even exceed the clock
cycle, requiring more cycles to compute the result.

Vivado High-Level Synthesis (HLS) provides a number of bit accurate or arbitrary precision
data-types, allowing you to model variables using any (arbitrary) width.

This tutorial consists of a two lab exercises:

Lab 1 Description
Synthesize a design using floating-point types and review the results. The design uses
standard C++ floating-point types.

Lab 2 Description
Synthesize the same function used in Lab 1 using arbitrary precision fixed-types
highlighting the benefits in accuracy and results. This exercise shows how this same design
High-Level Synthesis www.xilinx.com 99
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=99

Chapter 5: Arbitrary Precision Types
can be converted to the Vivado HLS ap_fixed types, retaining the required accuracy but
creating a more optimal hardware implementation.

Tutorial Design Description
Download the tutorial design file from the Xilinx website. See the information in Locating
the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\Arbitary_Precision.

Lab 1: Arbitrary Precision
Arbitrary Precision Lab 1: Review a Design using Standard C/C++ types.

In this lab, you synthesize a design using standard C types. You use this design as a
reference for the design using arbitrary precision types, which is the basis for Lab 2.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 5-1).

b. On Linux, open a new shell.
High-Level Synthesis www.xilinx.com 100
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=100

Chapter 5: Arbitrary Precision Types
2. In the command prompt window (Figure 5-2), change the directory to the Arbitrary
Precision tutorial, lab1.

3. Execute the Tcl script to setup the Vivado HLS project, using the command as shown in
Figure 5-2:

vivado_hls –f run_hls.tcl

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado_hls –p window_fn_prj as shown in Figure 5-3.

X-Ref Target - Figure 5-1

Figure 5-1: Vivado HLS Command Prompt

X-Ref Target - Figure 5-2

Figure 5-2: Setup the Tutorial Project

X-Ref Target - Figure 5-3

Figure 5-3: Initial Project for Arbitrary Precision Lab1
High-Level Synthesis www.xilinx.com 101
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=101

Chapter 5: Arbitrary Precision Types
Step 2: Review Test Bench and Run C Simulation
1. Open the Source folder in the Explorer pane and double-click window_fn_top.cpp to

open the code as shown in Figure 5-4.

2. Hold down the Control key and click the window_fn_top.h on line 45 to open this
header file.

3. Scroll down to view the type definitions (Figure 5-5).

This design uses standard C/C++ floating-point types for all data operations. Vivado
High-Level Synthesis can synthesize floating-point types directly into hardware, provided
the operations are standard arithmetic operations (+, -, *, %).

When using math functions from math.h or cmath.h, see the Vivado Design Suite User
Guide: High-Level Synthesis (UG902) [Ref 2] for details on which math functions are
supported for synthesis.

X-Ref Target - Figure 5-4

Figure 5-4: C Code for C Validation Lab 3

X-Ref Target - Figure 5-5

Figure 5-5: Type Definitions for C Validation Lab 3
High-Level Synthesis www.xilinx.com 102
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=102

Chapter 5: Arbitrary Precision Types
4. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.

5. Accept the default setting (no options selected) and click OK.

The Console pane shows that the design simulates with the expected results.

Step 3: Synthesize the Design and Review Results
1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens automatically. Figure 5-6 shows the
synthesis report.
High-Level Synthesis www.xilinx.com 103
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=103

Chapter 5: Arbitrary Precision Types
Instances in the top-level design account for most of the area used.

2. Scroll down the report and expand the Instances in the Details section of the Utilization
Estimates (Figure 5-7).

X-Ref Target - Figure 5-6

Figure 5-6: Synthesis Report for Floating Point Design
High-Level Synthesis www.xilinx.com 104
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=104

Chapter 5: Arbitrary Precision Types
The details show this is a floating-point multiplier (fmul). Floating-point operations are
costly in terms of area and clock cycles. The Analysis perspective (Figure 5-8) shows this
operator is also responsible for most of the clock cycles (It takes five of the eight states to
execute the logic created by loop winfn).

More details on using the Analysis perspective are available in the Chapter 6, Design
Analysis tutorial. For the purposes of understanding this design, two of the operations in
the first state are two-cycle read-from-memory operations, and the operation in the final
state is a write-to-memory operation.

X-Ref Target - Figure 5-7

Figure 5-7: Area Details for Floating Point Design
High-Level Synthesis www.xilinx.com 105
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=105

Chapter 5: Arbitrary Precision Types
3. Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: Arbitrary Precision
Review a Design using Arbitrary Precision types.

Introduction
This lab exercise uses the same design as Lab 1, however, the data types are now arbitrary
precision types. You first review the design and then examine the synthesis results.

Step 1: Create and Simulate the Project
1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as

shown in Figure 5-9.

2. Create a new Vivado HLS project by typing vivado_hls –f run_hls.tcl.

X-Ref Target - Figure 5-8

Figure 5-8: Performance Details for Floating Point Design

X-Ref Target - Figure 5-9

Figure 5-9: Setup for Interface Synthesis Lab 2
High-Level Synthesis www.xilinx.com 106
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=106

Chapter 5: Arbitrary Precision Types
3. Open the Vivado HLS GUI project by typing vivado_hls –p window_fn_prj.

4. Open the Source folder in the Explorer pane and double-click window_fn_top.cpp to
open the code as shown in Figure 5-10.

5. Hold the Control key down and click window_fn_top.h on line 45 to open this header
file.

6. Scroll down to view the type definitions (Figure 5-11).

This header file, window_fn_top.h, is the only file that is different from Lab 1. The data
types have been changed to ap_fixed point types, which are similar to float and double
types in that they support integer and fractional bit representations. These data types are
defined in the header file ap_fixed.h. The definitions in the header file define sizes of
the data types:

X-Ref Target - Figure 5-10

Figure 5-10: C Code for Arbitrary Precision Lab 2

X-Ref Target - Figure 5-11

Figure 5-11: Type Definitions for Arbitrary Precision Lab 2
High-Level Synthesis www.xilinx.com 107
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=107

Chapter 5: Arbitrary Precision Types
• The first term defines the total word length.

• The second term defines the number of integer bits.

• The number of fractional bits is therefore the first term minus the second.

When you revise C code to use arbitrary precision types instead of standard C types, one of
the most common changes you must make is to reduce the size of the data types. In this
case, you change the design to use 8-bit, 24-bit, and 18-bit words instead of 32-bit float
types. This results in smaller operators, reduced area, and fewer clock cycles to complete.

Similar optimizations help when you change more common C types such as int, short, and
char. For example, changing a data type that only needs to be 18-bit from int (32-bit)
ensures that only a single DSP48 is required to perform any multiplications.

In both cases, you must confirm that the design still performs the correct operation and
that it does so with the required accuracy. The benefit of the arbitrary precision types
provided with Vivado High-Level Synthesis is that you can simulate the updated C code to
confirm its function and accuracy.

7. Open the Test Bench folder in the Explorer pane and double-click window_fn_test.cpp
to open the code.

8. Scroll down to see the view shown in Figure 5-12.

The test bench for this design contains code to check the accuracy of the results. The
expected results are still generated using float types. The result checking verifies that the
results are within a specified range of accuracy (in this case, within 0.001 of the expected
result).

This allows the updated design to be validated quickly and efficiently in C, with fast compile
and run times.

X-Ref Target - Figure 5-12

Figure 5-12: Test Bench for Arbitrary Precision Lab 2
High-Level Synthesis www.xilinx.com 108
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=108

Chapter 5: Arbitrary Precision Types
9. Click the Run C Simulation toolbar button to open the C Simulation dialog box.

10. Accept the default setting (no options selected) and click OK.

The Console pane shows the results of the C simulation. With the updated data types, the
results are no longer identical to the expected results. However, they are within tolerance.

Step 2: Synthesize the Design and Review Results
1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens automatically. Figure 5-14 shows the
synthesis report.

X-Ref Target - Figure 5-13

Figure 5-13: C Simulation Results for Fixed Point Types
High-Level Synthesis www.xilinx.com 109
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=109

Chapter 5: Arbitrary Precision Types
Note that through use of arbitrary precision types, you have reduced both the latency and
the area (by 50% and 80% respectively), and the operations in the RTL hardware are no
larger than necessary. Since the total number of bits in the memory is now less than
1024-bit, it is now automatically implemented with LUTs and FFs rather than with a block
RAM.

2. Scroll down the report to the Interface summary (Figure 5-15).

Figure 5-15 shows the data ports are now 8-bit and 24-bit.

X-Ref Target - Figure 5-14

Figure 5-14: Synthesis Report for Fixed Point Design
High-Level Synthesis www.xilinx.com 110
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=110

Chapter 5: Arbitrary Precision Types
3. Exit the Vivado HLS GUI and return to the command prompt.

Conclusion
In this tutorial, you learned:

• How to update the existing standard C types to Vivado High-Level Synthesis arbitrary
precision types.

• The advantages in terms of hardware performance and area of using bit accurate
data-types.

X-Ref Target - Figure 5-15

Figure 5-15: Fixed Point Interface Summary
High-Level Synthesis www.xilinx.com 111
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=111

Chapter 6

Design Analysis

Overview
The general design methodology for creating an RTL implementation from C, C++, or
SystemC includes the following tasks:

• Synthesizing the design.

• Reviewing the results of the initial implementation.

• Applying optimization directives to improve performance.

You can repeat the steps above until the required performance is achieved. Subsequently,
you can revisit the design to improve area.

A key part of this process is the analysis of the results. This tutorial explains how to use the
reports and the GUI Analysis perspective to analyze the design and determine which
optimizations to apply.

This tutorial consists of a single lab exercise that:

• Demonstrates the HLS interactive analysis feature.

• Takes you through one design from the initial implementation through six steps and
multiple optimizations to produce the final optimized design.

As demonstrated throughout the tutorial, performing these steps in a single project gives
you the ability to compare the different solutions.

Lab 1 Description
Synthesize and analyze a DCT design. Use the insights from the design analysis to apply
optimizations and judge the effectiveness of the optimization.
High-Level Synthesis www.xilinx.com 112
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=112

Chapter 6: Design Analysis
Tutorial Design Description
You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\Design_Analysis.

The sample designs used in the lab exercise is a 2-D DCT function. To highlight the design
analysis feature, your goal is to have this design operate with an interval of 125 or less. The
design should be able to process a new set of input data at least every 125 clock cycles.

Lab 1: Design Optimization
This exercise explains the basic operations of the GUI Analysis perspective and how you can
use it to drive design optimization.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or if it is on a Linux system, adjust the few pathnames
referenced to the location at which you placed the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

° On Windows click Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 6-1).

° On Linux, open a new shell.
High-Level Synthesis www.xilinx.com 113
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=113

Chapter 6: Design Analysis
2. Using the command prompt window (Figure 6-2), change the directory to the Design
Analysis tutorial, lab1.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado_hls
–f run_hls.tcl, as shown in Figure 6-2.

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado_hls –p dct_prj as shown in Figure 6-3.

Step 2: Review the Source Code and Create the Initial Design
1. Double-click the file dct.cpp in the Source folder to open the source code for review.

This example uses a DCT function. Figure 6-4 shows an overview of this code.

X-Ref Target - Figure 6-1

Figure 6-1: Vivado HLS Command Prompt

X-Ref Target - Figure 6-2

Figure 6-2: Setup the Design Analysis Tutorial Project

X-Ref Target - Figure 6-3

Figure 6-3: Open Design Analysis Project for Lab 1
High-Level Synthesis www.xilinx.com 114
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=114

Chapter 6: Design Analysis
• The left side of Figure 6-4 shows the code hierarchy.

° Top-level function dct has three sub-functions: read_data, dct_2d and write_data.

° Function dct_2d has a single sub-function dct_1d.

• The center of Figure 6-4 shows loops inside each of the functions.

• The right side of Figure 6-4 shows the how the data is processed through the functions
and loops.

° The read_data function executes, and the data is processed through loop
RD_Loop_Row, which has a sub-loop RD_Loop_Col.

° After the read_data function completes, function dct_2d executes.

° In function dct_2d, Row_DCT_Loop processes the data. Row_DCT_Loop has two
nested loops inside it: DCT_output_loop and DCT_inner_loop.

° DCT_inner_loop calls function dct_1d.

And so on, until the function write_data processes the data.

• Click the Run C Synthesis toolbar button to synthesize the design to RTL.

X-Ref Target - Figure 6-4

Figure 6-4: Overview of the DCT Design
High-Level Synthesis www.xilinx.com 115
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=115

Chapter 6: Design Analysis
Step 3: Review the Performance Using the Synthesis Report
When synthesis completes, the synthesis report opens automatically. Figure 6-5 shows the
performance section of the report.

Figure 6-5 highlights the following information.

• The clock frequency of 8 ns has been met.

• The top-level design takes 3959 clock cycles to write all the outputs.

• You can apply new inputs after 3960 clock cycles. This is one clock cycle after the
output data has been written. This immediately reveals that the design is not pipelined,
but this fact is also noted in the report: type is set to none and not pipelined.

• The top level has a single instance, which has a latency and initiation interval of 3668.

° This block also has no pipelining and accounts for most of the clock cycles.

• Notice that the functions read_data and write_data are not noted here as
instances of the top level.

° Figure 6-6 shows that, during synthesis, these blocks were automatically inlined
(the hierarchy was removed).

X-Ref Target - Figure 6-5

Figure 6-5: Report for Initial DCT Design
High-Level Synthesis www.xilinx.com 116
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=116

Chapter 6: Design Analysis
° High-level synthesis might automatically inline small functions to improve the
quality of results (QoR). You can prevent this by adding the Inline directive with the
-off option to any function being automatically inlined.

• The loops in the read_data and write_data functions are therefore implemented at the
top level and are reported as loops in the top-level function (Figure 6-5).

• Each loop has a latency of 144 clock cycles. (Because the loops are not pipelined, there
is no initiation interval.)

• Using RD_Loop_Row as an example, you can see why the loop latency is 144.

° Sub-loop RD_Loop_Col has a latency of 2 cycles for each iteration of the loop
(iteration latency) and a tripcount of 8: 2 x 8 = 16 clock cycles total latency for the
loop.

° From RD_Loop_Row, it takes 1 clock to enter loop RD_Loop_Col and 1 clock cycle to
return to RD_Loop_Row. The iteration latency for RD_Loop_Row is therefore (1 + 16
+1) 18 clock cycles.

° RD_Loop_Row has a tripcount of 8 so the total loop latency is 8 x 18 = 144 clock
cycles.

• The total latency for the dct block is therefore:

° 144 clocks for RD_Loop_Row.

° Plus 3668 clock cycles for dct_2d.

° Plus 144 clock cycles for WR_Loop_Row.

° Plus a clock cycle to enter each block.

To review the details of the instantiated sub-blocks dct_2d and dct_1d, open their respective
reports from the syn/report folder under solution1 in the Explorer pane.

You can also use the design analysis perspective to review these details in a more interactive
manner.

Step 4: Review the Performance Using the Analysis Perspective
Invoke the Analysis perspective any time after synthesis completes.

X-Ref Target - Figure 6-6

Figure 6-6: Automatic Optimization Reporting
High-Level Synthesis www.xilinx.com 117
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=117

Chapter 6: Design Analysis
1. Click the Analysis perspective button (Figure 6-7) to begin interactive design analysis.

The Analysis perspective consists of five panes, each of which is highlighted in Figure 6-8.
You use all of these in the tutorial. The module and loops hierarchies are shown expanded
(by default, they are shown collapsed).

Use the Module Hierarchy pane to navigate through the hierarchy. The Module Hierarchy
pane shows both the performance and area information for the entire design. The
Performance Profile pane shows the performance details for this level of hierarchy. The
information in these two panes is similar to the information you reviewed earlier in the
report (for the top-level dct block).

X-Ref Target - Figure 6-7

Figure 6-7: Opening the Analysis Perspective

X-Ref Target - Figure 6-8

Figure 6-8: Overview of the Analysis Perspective
High-Level Synthesis www.xilinx.com 118
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=118

Chapter 6: Design Analysis
The Performance view is also shown (on the right side of Figure 6-9). This view shows how
the operations in this particular block are scheduled into clock cycles.

• The left column lists the resources.

° Sub-blocks are green.

° Operations resulting from loops in the source code are yellow.

° Standard operations are purple.

• Notice that the dct has three main resources:

° A loop called RD_Loop_Row. The plus symbol (+) indicates that the loop has
hierarchy and that you can expand the loop to view it.

° A sub-block called dct_2d.

° A loop called WR_Loop_Row.

The top row lists the control states in the design. Control states are the internal states
High-Level Synthesis uses to schedule operations into clock cycles. There is a close
correlation between the control states and the final states in the RTL Finite State Machine
(FSM), but there is no one-to-one mapping.

2. Click loop RD_Loop_Row and sub-loop RD_Loop_Col to fully expand the loop hierarchy
(Figure 6-9).

From this, you can see that in the first state (C1) of the RD_Loop_Row, the loop exit
condition is checked and an add operation performed. This addition is likely the counter for
the loop iterations, and we can confirm this.

3. Select the adder in state C1, right-click and select Go to Source (Figure 6-10).

X-Ref Target - Figure 6-9

Figure 6-9: Expanded View of RD_Loop_Row
High-Level Synthesis www.xilinx.com 119
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=119

Chapter 6: Design Analysis
a. When the dialog box opens, press OK to select item 0.

This opens the C source code to highlight the operation in the C source that created this
adder. From the details on screen (also shown in Figure 6-10), you can determine it is
indeed the loop counter. It is the only addition on this line, and the variable is named “r”.

In the next state of loop RD_Loop_Row (state C2), loop RD_Loop_Col starts to execute.

4. Click any of the operations in the RD_Loop_Col to see the source code highlighting
update.

X-Ref Target - Figure 6-10

Figure 6-10: C Source Code View
High-Level Synthesis www.xilinx.com 120
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=120

Chapter 6: Design Analysis
This should help confirm your understanding of how the operations in the C source code
are implemented in the RTL.

• The loop exit condition is checked.

• This is an adder for loop count variable “c”.

• A read from a RAM performed (one cycle to generate the address, one cycle to read the
data).

• A write operation is performed to a RAM.

Loops in the Performance view mean that the design iterates around these states multiple
times. The number of iterations is noted as the loop tripcount and shown in the
Performance Profile.

To improve performance, these loops should be pipelined. You can review the rest of the
design for other performance optimization opportunities.

5. Click the X in the C Source pane tab to close this window.

6. In the Module Hierarchy pane, click the function dct_dct_2d to navigate into the view
for this function (Figure 6-11).

X-Ref Target - Figure 6-11

Figure 6-11: DCT_2D Performance View
High-Level Synthesis www.xilinx.com 121
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=121

Chapter 6: Design Analysis
Again, you can see a number of loops (shown in yellow in Figure 6-12). Loops ensure the
design will have small area but the design will take multiple iterative states to complete:
each iteration of the loop will complete before the next iteration starts.

You can pipeline the loops to improve the performance. The details in the Performance
Profile show that most of the latency is caused by loops Row_DCT_Loop and Col_DCT_Loop.

7. Click loops Row_DCT_Loop and Col_DCT_Loop in the performance viewer to fully
expand them, as shown in Figure 6-12.

Expanding these loops in Performance view shows both loops call function dct_dct_1d2.
Unless this function itself is pipelined, there is no benefit in pipelining the loop. TheModule
Hierarchy shows the interval for dct_1d is 210 clock cycles, which means it can only accept
a new input every 210 clock cycles.

8. In the Module Hierarchy, click function dct_dct_1d2 to navigate into the view for this
function.

9. Expand the loops in the Performance Profile and Performance view to see the view
shown in Figure 6-12.
High-Level Synthesis www.xilinx.com 122
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=122

Chapter 6: Design Analysis
In Figure 6-12 you can see a series of nested loops that can be pipelined.

You can choose to do one of the following:

X-Ref Target - Figure 6-12

Figure 6-12: DCT_1D Performance View
High-Level Synthesis www.xilinx.com 123
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=123

Chapter 6: Design Analysis
• You can pipeline the function and then pipeline the loop that calls it. (Because the
function is pipelined, the loop can take advantage of using a pipelined part.)

• You can pipeline the loops within this function and simply make this function execute
faster.

Pipelining the function unrolls all the loops within it, and thus greatly increases the area. If
the objective is to get the highest possible performance with no regard for area, this may be
the best optimization to perform.

You can find more details on pipelining loops and functions in the Chapter 7, Design
Optimization tutorial. For this case, the approach is to optimize the loops and keep the area
at a minimum.

10. Click the Synthesis perspective button to return to the main synthesis view.

Step 5: Apply Loop Pipelining and Review for Loop Optimization
In this step, you create a new solution and add pipelining directives to the loops.

When pipelining nested loops, it is generally best to pipeline the inner-most loop. Typically,
High-Level Synthesis can generally flatten the loop nest automatically (allowing the outer
loop to simply feed the inner loop). For more information on why it is better to perform
certain loop optimizations rather than others, see the Chapter 7, Design Optimization
tutorial.

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution.

2. Click Finish and accept the defaults.

3. Ensure that you can see the C source code in the Information pane.

4. In the Directive tab, add a pipeline directive to loop DCT_Inner_Loop in function dct_1d.

a. Right-click DCT_Inner_Loop in the Directive pane and select Insert Directive.

b. In the Directives Editor dialog box activate the Directive drop-down menu at the top
and select PIPELINE.

c. Click OK to select the default maximum pipeline rate (II=1).

X-Ref Target - Figure 6-13

Figure 6-13: Re-Opening the Synthesis Perspective
High-Level Synthesis www.xilinx.com 124
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=124

Chapter 6: Design Analysis
5. Repeat step 4 for the following loops:

a. In function dct_2d loop Xpose_Row_Inner_Loop

b. In function dct_2d loop Xpose_Col_Inner_Loop

c. In function read_data loop RD_Loop_Col

d. In function write_data loop WR_Loop_Col

The Directive pane shows the following (highlighted) optimization directives applied.

6. Click the Run C Synthesis toolbar button to synthesize the design to RTL. If a file was
modified, please select YES.

7. When synthesis completes, use the Compare Reports toolbar button or the menu
Project > Compare Reports to compare solutions 1 and 2.

Figure 6-15 shows the results of comparing solution1 and solution2. Pipelining the loops
has improved the latency of the design with an almost 50% reduction in solution2.

X-Ref Target - Figure 6-14

Figure 6-14: Optimization Directive for DCT Loop Pipelines
High-Level Synthesis www.xilinx.com 125
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=125

Chapter 6: Design Analysis
Next, you once again open the Analysis perspective, analyze the results, and determine
whether or not there are more opportunities to for optimization.

8. Click the Analysis perspective button to begin interactive design analysis.

When the Analysis perspective opens, you can see that the majority of the latency is still
due to block dct_2d. Before proceeding to analyze further, you can review how the loops at
this level have been optimized.

The Performance Profile (Figure 6-16) shows that the latency of both loops has been
reduced from 144 clock cycles in solution1 to only 64 clock cycles.

Pipelining loops transforms the latency from

Latency = iteration latency * (tripcount * interval)

to

Latency = iteration latency + (tripcount * interval)

X-Ref Target - Figure 6-15

Figure 6-15: DCT Solution1 and Solution2 Comparison

X-Ref Target - Figure 6-16

Figure 6-16: DCT Solution2 Performance of Top-Level Loops
High-Level Synthesis www.xilinx.com 126
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=126

Chapter 6: Design Analysis
Vivado HLS also made this possible by automatically performing loop flattening (there is no
longer any loop hierarchy). You can see this by reviewing the Console pane, or log file, for
solution2. Figure 6-17 shows the loops that have been automatically optimized.

9. In the Module Hierarchy, click function dct_dct_2d to navigate into the view for
this function.

In the Performance Profile you can see that the latency of all the loops has been
substantially reduced (Row_DCT_Loop and Col_DCT_loop have been approximately halved
from the earlier report in Figure 6-11). However, the majority of the latency is still due to
these two loops, each of which calls the dct_1b block.

10. In the Module Hierarchy, click function dct_dct_1d to navigate into the view for
this function.

The Performance Profile (Figure 6-18) shows the loop latencies have been reduced, but
there is still a loop hierarchy here. (There is still loop DCT_Outer_Loop, shown in
Figure 6-18, so no loop flattening occurred).

Viewing these loops in Performance view shows why this loop was not optimized further.

11. In the Performance view, click loops DCT_Outer_Loop and DCT_Inner_Loop to view
the loop hierarchy (Figure 6-19).

12. Select the write operation in state C3.

13. Right-click and select Go to Source.

X-Ref Target - Figure 6-17

Figure 6-17: DCT Solution2 Loop Flattening

X-Ref Target - Figure 6-18

Figure 6-18: DCT Solution2 Performance of dct_1d Loops
High-Level Synthesis www.xilinx.com 127
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=127

Chapter 6: Design Analysis
Figure 6-19 shows that this loop was not flattened because additional operations outside of
DCT_Inner_Loop, at the level of DCT_Outer_Loop, prevented loop flattening. One of the
operations that prevented loop flattening is highlighted in Figure 6-19, below.

The write to the array cannot be flattened into the inner loop. To achieve an interval of 1 on
DCT Outer Loop you will need to pipeline the output loop - there is no benefit in simply
pipelining the inner loop itself.

You should pipeline the outer loop instead. This causes the inner loop to be completely
unrolled. An increase in area results, but you are still far from the throughput goal of 125

X-Ref Target - Figure 6-19

Figure 6-19: DCT Solution2 dct_1d Performance View
High-Level Synthesis www.xilinx.com 128
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=128

Chapter 6: Design Analysis
and not yet ready to pipeline the entire function (and see an even greater area increase, as
the outer loop is also completely unrolled).

14. Click the Synthesis perspective button to return to the main synthesis view.

Step 6: Apply Loop Optimization and Review for Bottlenecks
1. Select the New Solution toolbar button or use the menu Project > New Solution to

create a new solution.

2. Click Finish and accept the defaults to create solution3.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab

a. In function dct_1d, select the pipeline directive on loop DCT_Inner_Loop.

b. Right-Click and select Remove Directive.

c. Still in function dct_1d, select loop DCT_Outer_Loop.

d. Right-click and select Insert Directive.

e. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select PIPELINE.

f. Click OK to select the default maximum pipeline rate (II=1).

The Directive pane should show the following (highlighted) optimization directives applied.
High-Level Synthesis www.xilinx.com 129
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=129

Chapter 6: Design Analysis
5. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

6. When synthesis completes, click the Compare Reports toolbar button to compare
solutions 2 and 3.

Figure 6-21 shows the results of comparing solution2 and solution3. Pipelining the
outer-loop has in fact resulted in an increase to the performance and the area.

The significant latency benefit is achieved because multiple loops in the design call the
dct_1d function multiple times. Saving latency in this block is multiplied because this
function is used inside many loops.

X-Ref Target - Figure 6-20

Figure 6-20: Updated Optimization Directives for DCT Loop Pipelines
High-Level Synthesis www.xilinx.com 130
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=130

Chapter 6: Design Analysis
In this case, the report indicates the clock period for solution3 cannot be achieved. Vivado
HLS will sometimes create a design in which the estimated clock period fails to meet the
required clock period. Typically, the design will meet timing after RTL synthesis - in this
case, you can confirm this by using the Export RTL feature and selecting Evaluate. In the
event you encounter a case where the design fails to meet timing after RTL synthesis, use
LATENCY directive in conjunction with regions in the C code to force Vivado HLS to register
intermediate points on the failing RTL path.

Now that all the loops are pipelined, it is worthwhile to review the design to see if there are
performance-limiting “bottlenecks.” Bottlenecks are limitations in the flow of data that can
prevent the logic blocks from working at their maximum data rate.

Such limitations in the data flow can come from a number of sources, for example, I/O ports
and arrays implemented as block RAM. In both cases, the finite number of ports (on the I/O
or block RAM) limits the rate at which data can be read or written.

Another source of bottlenecks is data dependencies in the original source code. In some
cases, these data dependencies are inherent in how the algorithm operates, as when a
calculation cannot be performed until an earlier calculation has completed. Sometimes,
however, the use of an optimization directive or a minor change to the C code can remove
them.

X-Ref Target - Figure 6-21

Figure 6-21: DCT Solution2 and Solution3 Comparison
High-Level Synthesis www.xilinx.com 131
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=131

Chapter 6: Design Analysis
The first task is to identify such issues in the RTL design. There are a number of approaches
you can take:

• Start with the largest latency of interval in the Module Hierarchy report and navigate
down the hierarchy to find the source of any large latency or interval.

7. Click the Resource Profile to examine I/O and memory usage.

8. Use the power of the graphical viewer and look for patterns in the Performance view
which indicate a limitation in data flow.

In this case, you will use the latter approach. You can use the Analysis perspective to
identify such places in the design quickly.

9. Click the Analysis perspective button to begin interactive design analysis.

10. In the Module Hierarchy, ensure module dct is selected.

11. In the Performance view, expand the first loop in the design as shown in Figure 6-22,
RD_Loop_Row_RD_Loop_Col (these loops were flattened and the name is now a
concatenation of both loops).

This loop is implemented in two states. The red arrow in Figure 6-22 shows the path from
the start of the loop to the end of the loop: the arrow is almost vertical (everything happens
in two clock cycles) and this loop is well implemented in terms of latency.

X-Ref Target - Figure 6-22

Figure 6-22: Analysis of DCT RD_Loop_Row
High-Level Synthesis www.xilinx.com 132
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=132

Chapter 6: Design Analysis
12. In the Performance view, expand the WR_Loop_Row and perform similar analysis. It is
similarly well optimized for latency.

13. Double-click function dct_2d and navigate into the dct_2d function.

You can use same analysis process down through the hierarchy. If you perform this analysis
you will discover that all the function blocks and loops have a similar optimal (few cycles)
implementation, until the dct_1d block is examined.

14. In the Performance view, double-click function dct_1d and navigate into the dct_1d
function.

15. Expand the DCT_Outer_Loop to see the view shown in Figure 6-23.

Figure 6-23 shows a very different view from the earlier loop schedules (which had only a
few cycles of latency). The schedule shows a long drift from input to output (as shown by
the red arrow).

Figure 6-23 shows the analysis of dct_1d RD_Loop_Row.
High-Level Synthesis www.xilinx.com 133
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=133

Chapter 6: Design Analysis
There are typically two things that cause this type of schedule: data dependencies in the
source code and limitations due to I/O or block RAM. You will now examine the resources
sharing in this block.

16. In the Performance view, click the Resource tab at the bottom of the window.

X-Ref Target - Figure 6-23

Figure 6-23: Analysis of dct_1d RD_Loop_Row
High-Level Synthesis www.xilinx.com 134
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=134

Chapter 6: Design Analysis
17. Expand the Memory Ports, as shown in Figure 6-24.
+-

The Resource view shows how the resources in the design are used in different control
states.

The rows list the resources in the design. In Figure 6-24, the memory resources are
expanded.

The columns show the control states in which the resource is used. If a resource is active in
multiple states, the resource is being re-used in different clock cycles.

Figure 6-24 shows the memory accesses on block RAM src are being used to the maximum
in every clock cycle. (At most, a block RAM can be dual-port and both ports are being used).
This is a good indication the design may be bandwidth-limited by the memory resource. To
determine if this really is the case, you can examine further.

18. Select one of the read operations for the src block RAM.

19. Right-click and select Goto Source to see the view shown in Figure 6-25.

X-Ref Target - Figure 6-24

Figure 6-24: Resource Sharing of Memory Ports in DCT_1d
High-Level Synthesis www.xilinx.com 135
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=135

Chapter 6: Design Analysis
Figure 6-25 shows this read on the src variable is from the read operation inside loop
DCT_Inner_Loop. This loop was automatically unrolled when DCT_Outer_Loop was
pipelined and all operations in this loop can occur in parallel (if data dependencies allow).

The eight reads are being forced to occur over multiple cycles because the array src is
implemented as a block RAM in the RTL and a block RAM can only allow two reads
(maximum) in any one clock cycle. In Figure 6-25, the read operations take 2 clocks cycles:
a cycle to generate the address for the block RAM and a cycle to read the data. Only the

X-Ref Target - Figure 6-25

Figure 6-25: Memory Resource SRC and Source Code
High-Level Synthesis www.xilinx.com 136
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=136

Chapter 6: Design Analysis
launch (address generation cycle) is shown because it overlaps with the operation in the
next clock cycle.

You can optimize the block RAM accesses using optimization directives to partition the
block RAM. The array that function dct_1d accesses is defined as an input argument to the
function and therefore resides outside this block.

• The input array to the first instance of dct_1d is buf_2d_in in function dct.

• The input array to the second instance of dct_1d is col_inbuf in function dct_2d.

In both cases, the arrays are 2-dimensional of size DCT_SIZE by DCT_SIZE (8x8). By default,
this results in a single block RAM with 64 elements. Because the arrays are configured in the
code in the form of Row by Column, we can partition the second dimension and create eight
separate Block RAMs: one for each row, allowing the row data to be accessed in parallel.

20. Click the Synthesis perspective button to return to the main synthesis view.

Step 7: Partition Block RAMs and Analyze Concurrency
1. Select the New Solution toolbar button or use the menu Project > New Solution to

create a new solution, solution4.

2. Click Finish and accept the defaults to create solution4.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab:

a. In function dct, select array buf_2d_in.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box, activate the Directive drop-down menu at the
top and select ARRAY_PARTITION.

d. Leave the type as Complete.

e. Change the dimension setting to 2 to partition the array along the second
dimension.

f. Click OK.

5. Repeat this process for array col_inbuf in function dct_2d.

The Directive pane displays optimization directives, as shown in Figure 6-26 (the two new
directives are highlighted).
High-Level Synthesis www.xilinx.com 137
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=137

Chapter 6: Design Analysis
6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

7. When synthesis completes, use the Compare Reports toolbar button to compare
solutions 3 and 4.

Figure 6-27 shows the results of comparing solution3 and solution4. Improving access to
the data in the src block RAM in the dct_1d block has improved the overall performance
because the dct_1d block executes frequently.

X-Ref Target - Figure 6-26

Figure 6-26: Optimization Directives for Array Partitioning
High-Level Synthesis www.xilinx.com 138
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=138

Chapter 6: Design Analysis
You can review the impact of the partitioning directive on the device resource.

8. Click the Analysis perspective button to begin interactive design analysis.

9. In the Module Hierarchy, ensure module dct is selected.

10. Select the Resource Profile tab in the lower-left.

11. Expand the Memories and Expressions see the view in Figure 6-28.

X-Ref Target - Figure 6-27

Figure 6-27: DCT Solution3 and Solution4 Comparison
High-Level Synthesis www.xilinx.com 139
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=139

Chapter 6: Design Analysis
The Resource Profile shows the resources being using at the current level of hierarchy (the
block selected in the Module Hierarchy pane). Figure 6-28 shows:

• This block has two I/O ports.

• Most of the area is due to instances (sub-blocks) within this block.

• There are nine memories, eight of which are the partitioned buf_2d_in block RAM. Since
they are less than 1024 bits they are automatically implemented as LUTRAM.

• Most of the logic (expressions) at this level of hierarchy is due to adders, with some due
to comparators and selectors.

The important point from the previous optimization is that you can see there are now
additional memories due to the array partitioning optimization.

You still have a goal to ensure that the design can accept a new set of samples every 125
clock cycles. Figure 6-28, however, shows that you can only accept new data every 525

X-Ref Target - Figure 6-28

Figure 6-28: DCT Resource Profile
High-Level Synthesis www.xilinx.com 140
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=140

Chapter 6: Design Analysis
clocks. This is much better than the original, pre-optimized design (approx. 3700 clock
cycles), but further optimization is required.

Up to this point, you have focused on improving the latency and interval of each of the
individual loops and functions in the design. You must now apply the dataflow
optimization, which enables the individual loops and functions to execute in parallel, thus
improving the overall design interval.

12. Click the Synthesis perspective button to return to the main synthesis view.

Step 8: Partition Block RAMs and Apply Dataflow optimization
1. Select the New Solution toolbar button or use the menu Project > New Solution to

create a new solution, solution5.

2. Click Finish and accept the defaults to create solution5.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab

a. Select the top-level function dct.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box activate the Directive drop-down menu and
select DATAFLOW.

d. Click OK.

The Directive pane now displays the following optimization directives (the new directive is
highlighted).
High-Level Synthesis www.xilinx.com 141
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=141

Chapter 6: Design Analysis
5. Click the Click the Run C Synthesis toolbar button to synthesize the design to RTL.

6. When synthesis completes, use the Compare Reports toolbar button or the menu
Project > Compare Reports to compare solutions 4 and 5.

Figure 6-30 shows the results of comparing solution4 and solution5, and you can see the
interval has improved. The design takes 525 clocks cycles to produce the outputs but can
now accept new inputs every 374 clocks.

X-Ref Target - Figure 6-29

Figure 6-29: Dataflow Optimization for the DCT Design
High-Level Synthesis www.xilinx.com 142
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=142

Chapter 6: Design Analysis
This is still greater than the 125 cycles required, so you must analyze the current
performance.

7. Click the Analysis perspective button to begin interactive design analysis.

8. In the Module Hierarchy, you can see dct_dct_2d accounts for most of the interval.
Ensure module dct_2d is selected to see the view in Figure 6-31.

Here, you can see two things:

• The interval of the dct block is less than the sum of the individual latencies (for
read_data, dct_2d and write_data). This means the blocks are operating in
parallel.

X-Ref Target - Figure 6-30

Figure 6-30: DCT Solution4 and Solution5 Comparison

X-Ref Target - Figure 6-31

Figure 6-31: DCT Analysis View after Dataflow Optimization
High-Level Synthesis www.xilinx.com 143
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=143

Chapter 6: Design Analysis
• The interval of dct is the same as the interval for sub-block dct_2d. The dct_2d
block is therefore the limiting factor.

Because the dct_2d block is selected in the Module Hierarchy and the Performance Profile
shows the details for this block. Figure 6-32 shows the interval is the same as the latency, so
none of these blocks operate in parallel.

One way to have the blocks in dct_2d operate in parallel would be to pipeline the entire
function. This, however, would unroll all the loops, which can sometimes lead to a large area
increase. An alternative is use dataflow optimization on function dct_2d.

Another alternative is to use a less obvious technique: raise these loops up to the top-level
of hierarchy, where they will be included in the dataflow optimization already applied to the
top-level. This can be achieved by using an optimization directive to remove the dct_2d
hierarchy: inline the dct_2d function.

Before performing this optimization, review the area increase caused by using dataflow
optimization.

9. In the Module Hierarchy, ensure module dct is selected.

10. Activate the Resource Profile view.

11. Expand the memories to see the view in Figure 6-32.
X-Ref Target - Figure 6-32

Figure 6-32: DCT Resource Profile
High-Level Synthesis www.xilinx.com 144
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=144

Chapter 6: Design Analysis
12. Click the Synthesis perspective button to return to the main synthesis view.

Step 9: Optimize the Hierarchy for Dataflow
1. Select the New Solution toolbar button to create a new solution, solution6.

2. Click Finish and accept the defaults to create solution6.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab:

a. Select function dct_2d.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select INLINE.

d. Click OK.

The Directive pane now shows the following optimization directives (the new directive is
highlighted).
High-Level Synthesis www.xilinx.com 145
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=145

Chapter 6: Design Analysis
5. Click the Run C Synthesis toolbar button to synthesizes the design to RTL.

6. When synthesis completes, use the Compare Reports toolbar button or the menu
Project > Compare Reports to compare solutions 5 and 6.

Figure 6-34 shows the results of comparing solution5 and solution6. You can see the
interval has improved substantially.

X-Ref Target - Figure 6-33

Figure 6-33: Dataflow Optimization for the DCT Design
High-Level Synthesis www.xilinx.com 146
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=146

Chapter 6: Design Analysis
The interval is now below the 125 clock target. This design can accept a new set of inputs
data every 106 clock cycles.

X-Ref Target - Figure 6-34

Figure 6-34: DCT Solution5 and Solution6 Comparison

X-Ref Target - Figure 6-35

Figure 6-35: DCT Solution6 Module Hierarchy
High-Level Synthesis www.xilinx.com 147
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=147

Chapter 6: Design Analysis
Conclusion
In this tutorial, you learned:

• How to analyze a design using the analysis perspective.

• How to cross-link operations in the views with the C code.

• How to apply and judge optimizations.

• A methodology for taking the initial design results and creating an implementation
which satisfies the design goals.
High-Level Synthesis www.xilinx.com 148
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=148

Chapter 7

Design Optimization

Overview
A crucial part of creating high quality RTL designs using High-Level Synthesis is having the
ability to apply optimizations to the C code. High-Level Synthesis always tries to minimize
the latency of loops and functions.To achieve this, within the loops and functions, it tries to
execute as many operations as possible in parallel. At the level of functions, High-Level
Synthesis always tries to execute functions in parallel.

In addition to these automatic optimizations, directives are used to:

• Execute multiple tasks in parallel, for example, multiple executions of the same function
or multiple iterations of the same loop. This is pipelining.

• Restructure the physical implementation of arrays (block RAMs), functions, loops and
ports to improve the availability of data and help data flow through the design faster.

• Provide information on data dependencies, or lack of them, allowing more
optimizations to be performed.

The final optimization technique is to modify the C source code to remove unintended
dependencies in the code that may limit the performance of the hardware.

This tutorial consists of two lab exercises. You may perform the analysis in these lab
exercises using the Analysis perspective. A prerequisite for this tutorial is completion of the
Chapter 6, Design Analysis tutorial.

Lab 1 Description
Contrast the uses of loop and function pipelining to create a design that can process one
sample per clock. This lab includes examples that give you the opportunity to analyze the
two most common causes for designs failing to meet performance requirements: loop
dependencies and data flow limitations or bottlenecks.

Lab 2 Description
This lab shows how modifications to the code from Lab 1 can help overcome some
performance limitations inherent, but unintended, in the code.
High-Level Synthesis www.xilinx.com 149
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=149

Chapter 7: Design Optimization
Tutorial Design Description
You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

For this tutorial you use the design files in the tutorial directory
Vivado_HLS_Tutorial\Design_Optimization.

The sample design you use in the lab exercise is a matrix multiplier function. The design
goal is to process a new sample every clock period and implement the interfaces as
streaming data interfaces.

Lab 1: Optimizing a Matrix Multiplier
This exercise uses a matrix multiplier design to show how you can fully optimize a design
heavily based on loops. The design goal is to read one sample per clock cycle using a FIFO
interface, while minimizing the area.

The analysis includes a comparison of a methodology that optimizes at the loop level with
one that optimizes at the function level.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

° On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 7-1).

° On Linux, open a new shell.
High-Level Synthesis www.xilinx.com 150
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=150

Chapter 7: Design Optimization
2. Using the command prompt window (Figure 7-2), change directory to the Design
Optimization tutorial, lab1.

3. Execute the Tcl script to set up the Vivado HLS project, using the command
vivado_hls –f run_hls.tcl, as shown in Figure 7-2.

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado_hls –p matrixmul_prj, as shown in Figure 7-3.

5. Expand the Sources folder in the Explorer pane and double-click matrixmul.cpp to
view the source code (Figure 7-4).

X-Ref Target - Figure 7-1

Figure 7-1: Vivado HLS Command Prompt

X-Ref Target - Figure 7-2

Figure 7-2: Setup the Design Optimization Tutorial Project

X-Ref Target - Figure 7-3

Figure 7-3: Open Design Optimization Project for Lab 1
High-Level Synthesis www.xilinx.com 151
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=151

Chapter 7: Design Optimization
Scroll down the file to see that the source code has two input arrays, a and b, and output
array res. Hold the mouse over the macros (as shown in Figure 7-4) to see that each is
three-by-three for a total of nine elements.

Step 2: Synthesize and Analyze the Design
1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens (Figure 7-5), and the Performance
Estimates appears:

• The interval is 80 clock cycles. Because there are nine elements in each input array, the
design takes approximately nine cycles per input read.

• The interval is one cycle longer than the latency, so there is no parallelism in the
hardware at this point.

• The latency/interval is due to nested loops.

° The inner loop called Product:

- Has a latency of 2 clock cycles.

- Has 6 clock cycles total for all iterations.

° The Col loop:

- It requires 1 clock to enter loop Product and 1 clock to exit.

- It takes 8 clock cycles for each iteration (1+6+1).

- Has 24 cycles for all iterations to complete.

° The top-level loop has a latency of 26 clock cycles per iteration, for a total of 78
clock cycles for all iterations of the loop.

X-Ref Target - Figure 7-4

Figure 7-4: Source Code for the Matrix Multiplier
High-Level Synthesis www.xilinx.com 152
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=152

Chapter 7: Design Optimization
You can do one of two things to improve the initiation interval: Pipeline the loops or
pipeline the entire function. You begin by pipelining the loops and then compare those
results to pipelining the entire function.

When pipelining loops, the initiation interval of the loops is the important metric to
monitor. As seen in this exercise, even when the design reaches the stage at which the loop
can process a sample every clock cycle, the initiation interval of the function is still reported
as the time it takes for the loops contained within the function to finish processing all data
for the function.

Step 3: Pipeline the Product Loop
1. Select the New Solution toolbar button or use the menu Project > New Solution to

create a new solution, solution2.

2. Click Finish and accept the defaults to create solution2.

3. Ensure the C source code is visible in the Information pane.

X-Ref Target - Figure 7-5

Figure 7-5: Synthesis Report for the Matrix Multiplier
High-Level Synthesis www.xilinx.com 153
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=153

Chapter 7: Design Optimization
When pipelining nested loops, you realize the greatest benefit by pipelining the inner-most
loop, which processes a sample of data. High-Level Synthesis automatically applies loop
flattening, collapsing the nested loops, removing the loop transitions (essentially creating a
single loop with more iterations but overall fewer clock cycles).

4. In the Directive tab:

a. Select loop Product.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box, activate the Directive drop-down menu at the
top and select PIPELINE.

d. Click OK. With the default options, an initiation interval (II) of 1 (one new loop
iteration per clock) will be the default.

The Directive pane should show the following optimization directives. (The new directive is
highlighted.)

5. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

During synthesis, the information reported in the Console pane shows loop flattening was
performed on loop Row and that the default initiation internal target of 1 could not be
achieved on loop Product due to a dependency.

INFO: [XFORM 203-541] Flattening a loop nest 'Row' (matrixmul.cpp:54:37) in function
'matrixmul'.
...
INFO: [SCHED 204-61] Pipelining loop 'Product'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint (II = 1,
distance = 1)

X-Ref Target - Figure 7-6

Figure 7-6: Initial Pipeline Directive
High-Level Synthesis www.xilinx.com 154
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=154

Chapter 7: Design Optimization
 between 'store' operation (matrixmul.cpp:60) of variable 'tmp_8', matrixmul.cpp:60
on array 'res' and 'load' operation ('res_load', matrixmul.cpp:60) on array 'res'.
INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 2.

The synthesis report (Figure 7-7) shows that although the Product loop is pipelined with an
interval of 2, the interval of top-level loop is not pipelined.

The reason the top-level loop is not pipelined is that loop flattening only occurred on loop
Row. There was no loop flattening of loop Col into the Product loop. To understand why
loop flattening was unable to flatten all nested loops, use the Analysis perspective.

6. Open the Analysis perspective.

7. In the Performance View, expand loops Row_Col and Product.

8. Select the write operation in state C1.

9. Right-click and select Goto Source to see the view in Figure 7-8.

The write operation in state C1 is due to the code that sets res to zero before the Product
loop. Because res is a top-level function argument, it is a write to a port in the RTL: This
operation must happen before the operations in loop Product are executed. Because it is

X-Ref Target - Figure 7-7

Figure 7-7: Matrixmul Initial Pipeline Report
High-Level Synthesis www.xilinx.com 155
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=155

Chapter 7: Design Optimization
not an internal operation but has an impact on the I/O behavior, this operation cannot be
moved or optimized. This prevents the Product loop from being flattened into the Row_Col
loop.

More importantly, it is worth addressing why only an II of 2 was possible for the Product
loop (as shown in Figure 7-7).

The message SCHED-68 in the console pane (and file vivado_hls.log) tells you:

WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint (II = 1,
distance = 1)
 between 'store' operation (matrixmul.cpp:60) of variable 'tmp_8', matrixmul.cpp:60
on array 'res' and 'load' operation ('res_load', matrixmul.cpp:60) on array 'res'.

X-Ref Target - Figure 7-8

Figure 7-8: Matrixmul Initial Performance View
High-Level Synthesis www.xilinx.com 156
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=156

Chapter 7: Design Optimization
• The issue is a carried dependency. This is a dependency between an operation in one
iteration of a loop and an operation in a different iteration of the same loop. For
example, an operation when k=1 and when k=2 (where k is the loop index).

• The first operation is a store (memory read operation) on array res on line 60.

• The second operation is a load (memory write operation) on array res on line 60.

From Figure 7-9 you can see line 60 is a read from array res (due to the += operator) and a
write to array res. An array is mapped into a block RAM by default and the details in the
Performance View can show why this conflict occurred.

The Performance view shows in which states the operations are scheduled. Figure 7-9
shows a number of copies of the schedule for the Product loop to highlight how this issue
can be understood. The operations on the res array, a two-cycle read and write, are
highlighted.

In the successful schedule, the next iteration of the Product loop appears as shown below.
In this schedule, the initiation interval (II)=2 and the loop operations re-start every two
cycles. There is no conflict between any block RAM accesses. (None of the highlighted cells
overlap across iterations.)

The unsuccessful schedule shows why the loop cannot be pipelined with an II=1. In this
case, the next iteration would need to start after 1 clock cycle. The write to the block RAM
in the first iteration is still occurring when the second iteration tries to apply an address for
a read operation. These addresses are different. Both cannot be applied to the block RAM
at the same time.
High-Level Synthesis www.xilinx.com 157
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=157

Chapter 7: Design Optimization
You cannot pipeline the Product loop with an initiation interval of 1. The next lab exercise
shows how re-writing the code can remove this limitation. In this lab exercise you will
continue to optimize the code as it is.

The next step is to pipeline the loop above, the Col loop. This automatically unrolls the
Product loop and creates more operators and hence more hardware resources, but it
ensures there is no dependency between different iterations of the Product loop.

10. Return to the Synthesis perspective.

Step 4: Pipeline the Col Loop
1. Select the New Solution toolbar button to create a new solution, solution3.

2. Because solution2 already has a directive added, use the drop-down menu to select
solution1 as the source for existing directives and constraints (solution1 has none).

X-Ref Target - Figure 7-9

Figure 7-9: Carried Dependency Analysis
High-Level Synthesis www.xilinx.com 158
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=158

Chapter 7: Design Optimization
3. Click Finish and accept the default solution name, solution3.

4. Open the C source code matrixmul.cpp to make it visible in the Information pane.

5. In the Directive tab:

a. Select loop Col.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select PIPELINE.

d. Click OK. With the default options, an initiation interval (II) of 1 (one new loop
iteration per clock) becomes the default.

The Directive pane, shown below, displays the following optimization directives (the new
directive is highlighted).

6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

During synthesis, the information reported in the Console pane shows that loop Product
was unrolled, loop flattening was performed on loop Row, and the default initiation internal
target of 1 could not be achieved on loop Row_Col due resource limitations on the
memory for array a.

INFO: [XFORM 203-502] Unrolling all sub-loops inside loop 'Col' (matrixmul.cpp:56) in
function 'matrixmul' for pipelining.
INFO: [XFORM 203-501] Unrolling loop 'Product' (matrixmul.cpp:59) in function
'matrixmul' completely.
INFO: [XFORM 203-541] Flattening a loop nest 'Row' (matrixmul.cpp:54:37) in function
'matrixmul'.
...
...
INFO: [SCHED 204-61] Pipelining loop 'Row_Col'.
WARNING: [SCHED 204-69] Unable to schedule 'load' operation ('a_load_1',
matrixmul.cpp:60) on array 'a' due to limited memory ports.
INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

X-Ref Target - Figure 7-10

Figure 7-10: Col Pipeline Directive
High-Level Synthesis www.xilinx.com 159
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=159

Chapter 7: Design Optimization
Reviewing the synthesis report shows, as noted above, that the interval for loop Row_Col is
only two: the target is to process one sample every cycle. Once again, you can use the
Analysis perspective to highlight why the initiation target was not achieved.

7. Open the Analysis perspective.

8. In the Performance View, expand the Row_Col loop

The operations on array a (mentioned in the SCHED-69 message above) are highlighted in
Figure 7-11. There are three read operations on array a. Two operations start in state C1 and
a third read operation starts in state C2.

Arrays are implemented as block RAMs and arrays which are arguments to the function are
implemented as block RAM ports. In both cases a block RAM can only have a maximum of
two ports (for dual-port block RAM). By accessing array a through a single block RAM
interface, there are not enough ports to be able to read all three values in one clock cycle.
High-Level Synthesis www.xilinx.com 160
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=160

Chapter 7: Design Optimization
Another way to view this resource limitation is to use to the Resource pane.

9. Click the Resource tab.

10. Expand the Memory Ports to see the view shown in Figure 7-12.

In Figure 7-12 the 2-cycle read operations in state C1 overlap with those starting in state C2
and so only a single cycle is visible: however, it is clear that this resource is used in multiple
states.

In looking at this view, it is clear that even when the issue with port a is resolved, the same
issue occurs with port b: it also has to perform 3 reads.

X-Ref Target - Figure 7-11

Figure 7-11: Matrixmul Pipeline Col Performance View
High-Level Synthesis www.xilinx.com 161
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=161

Chapter 7: Design Optimization
High-Level Synthesis can only report one schedule error or warning at a time, because, as
soon as the first issue occurs, the actions to create an achievable schedule invalidates any
other infeasible schedules.

High-Level Synthesis allows arrays to be partitioned, mapped together and re-shaped.
These techniques allow the access to array to be modified without changing the source
code.

11. Return to the Synthesis perspective.

Step 5: Reshape the Arrays
1. Select the New Solution toolbar button or use the menu Project > New Solution to

create a new solution, solution4.

2. Click Finish and accept the default solution name solution4.

Because the loop index for the Product loop is k, both arrays should be partitioned along
their respective k dimension: the design needs to access more than two values of k in each
clock cycle.

For array a, this is dimension 2 because its access patterns is a[i][k]; for array b, this is
dimension 1 because its access pattern is b[k][j].

Partitioning these arrays creates k arrays - in this case, k number ports. Alternatively, we can
use re-shape instead of partition allowing one wide array (port) to be created instead of k
ports.

After this transformation, the data in the block RAM outside this block must be reshaped in
an identical manner: if this process is not done by HLS, the data must be arranged as:

• For array a: i elements, each of width data_word_size times k.

X-Ref Target - Figure 7-12

Figure 7-12: Matrixmul Pipeline Col Resource View
High-Level Synthesis www.xilinx.com 162
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=162

Chapter 7: Design Optimization
• For array b: j elements, each of width data_word_size times k.

2. Open the C source code matrixmul.cpp to make it visible in the Information pane.

3. In the Directive tab

a. Select variable a.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select ARRAY_RESHAPE.

d. Set the dimension to 2.

e. Click OK.

4. Repeat this process for variable b, but set the dimension to 1.

The Directive pane should show the following optimization directives.

5. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

The synthesis report shows the top-level loop Row_Col is now processing data at 1 sample
per clock period (Figure 7-14).

X-Ref Target - Figure 7-13

Figure 7-13: Array Reshape Directive
High-Level Synthesis www.xilinx.com 163
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=163

Chapter 7: Design Optimization
• The top-level module takes 12 clock cycles to complete.

• The Row_Col loop outputs a sample after 3 cycles (iteration latency).

• It then reads 1 sample every cycle (Initiation Interval).

• After 9 iterations/samples (Trip count) it completes all samples.

• 3 + 9 = 12 clock cycles

The function can then complete and return to start to process the next set of data.

Now, change the block RAM interfaces to FIFO interfaces to allow for streaming data.

 Step 6: Apply FIFO Interfaces
1. Select the New Solution toolbar button to create a new solution.

2. Click Finish and accept the default solution name, solution5.

3. Open the C source code matrixmul.cpp to make it visible in the Information pane.

4. In the Directive tab

a. Select variable a.

X-Ref Target - Figure 7-14

Figure 7-14: Optimized Loop Processing Report
High-Level Synthesis www.xilinx.com 164
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=164

Chapter 7: Design Optimization
b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select INTERFACE.

d. Click the mode drop-down menu to select ap_fifo.

e. Click OK.

5. Repeat this process for variables b and variable res.

The Directive pane displays the following optimization directives. (The new directives are
highlighted).

6. Click the Run C Synthesis toolbar button to synthesizes the design to RTL.

Figure 7-16 shows the Console display after synthesis runs.

From the code shown in Figure 7-17, array res performs writes in the following sequence
(MAT_B_COLS = MAT_B_ROWS = 3):

X-Ref Target - Figure 7-15

Figure 7-15: Matrixmul FIFO Directives

X-Ref Target - Figure 7-16

Figure 7-16: FIFO Synthesis Warning
High-Level Synthesis www.xilinx.com 165
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=165

Chapter 7: Design Optimization
• Write to [0][0] on line57.

• Then a write to [0][0] on line 60.

• Then a write to [0][0] on line 60.

• Then a write to [0][0] on line 60.

• Write to [0][1] on line 57 (after index J increments).

• Then a write to [0][1] on line 60.

• Etc.

Four consecutive writes to address [0][0] does not constitute a streaming access pattern;
this is random access.

Examining the code in Figure 7-17 reveals that there are similar issues reading arrays a and
b. It is impossible to use a FIFO interface for data access with the code as written. To use a
FIFO interface, the optimization directives available in Vivado High-Level Synthesis are
inadequate because the code currently enforces a certain order of reads and writes. Further
optimization requires a re-write of the code, which you accomplish in Lab 2.

Before modifying the code, however, it is worth pipelining the function instead of the loops
to contrast the difference in the two approaches.

Step 7: Pipeline the Function
1. Select the New Solution toolbar button to create a new solution, solution6.

IMPORTANT: In this step, copy the directives from solution4 as this solution does not have FIFO
interfaces specified.

2. Select solution4 from both the drop down menus in the Options section. The Solution
Wizard appears as shown in Figure 7-18.

X-Ref Target - Figure 7-17

Figure 7-17: Matrixmul Code
High-Level Synthesis www.xilinx.com 166
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=166

Chapter 7: Design Optimization
3. Click Finish and accept the default solution name, solution6.

4. Open the C source code matrixmul.cpp to make it visible in the Information pane.

5. In the Directive tab:

a. Select the pipeline directive on loop Col.

b. Right-click and select Remove Directive.

c. Select the top-level function matrixmul.

d. Right-click and select Insert Directive.

e. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select PIPELINE.

f. Click OK.

The Directives tab should appear as Figure 7-19.

X-Ref Target - Figure 7-18

Figure 7-18: New Solution Based on Solution4 Directives
High-Level Synthesis www.xilinx.com 167
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=167

Chapter 7: Design Optimization
6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

7. Click the Compare Reports toolbar button.

a. Add solution4.

b. Add solution6.

c. Click OK.

The comparison of solutions 4 and 6 is shown in Figure 7-20.

X-Ref Target - Figure 7-19

Figure 7-19: Directives for Solution6
High-Level Synthesis www.xilinx.com 168
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=168

Chapter 7: Design Optimization
The design now completes in fewer clocks and can start a new transaction every 5 clock
cycles. However, the area and resources have increased substantially because all the loops
in the design were unrolled.

INFO: [XFORM 203-502] Unrolling all sub-loops inside loop 'Col' (matrixmul.cpp:56) in
function 'matrixmul' for pipelining.
INFO: [XFORM 203-501] Unrolling loop 'Product' (matrixmul.cpp:59) in function
'matrixmul' completely.
INFO: [XFORM 203-541] Flattening a loop nest 'Row' (matrixmul.cpp:54:37) in function
'matrixmul'.

Pipelining loops allows the loops to remain rolled, thus providing a good means of
controlling the area. When pipelining a function, all loops contained in the function are
unrolled, which is a requirement for pipelining. The pipelined function design can process a
new set of 9 samples every 5 clock cycles. This exceeds the requirement of 1 sample per
clock because the default behavior of High-Level Synthesis is to produce a design with the
highest performance.

The pipelined function results in the best performance. However, if it exceeds the required
performance, it might take multiple additional directives to slow the design down.
Pipelining loops gives you an easy way to control resources, with the option of partially
unrolling the design to meet performance.

X-Ref Target - Figure 7-20

Figure 7-20: Loop Versus Function Pipelining
High-Level Synthesis www.xilinx.com 169
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=169

Chapter 7: Design Optimization
Lab 2: C Code Optimized for I/O Accesses
In Lab 1, you were unable to use streaming interfaces. The nature of the C code, which
specified multiple accesses to the same addresses, prevented streaming interfaces being
applied.

• In a streaming interface, the values must be accessed in sequential order.

• In the code, the accesses were also port accesses, which High-Level Synthesis is unable
to move around and optimize. The C code specified writing the value zero to port res
at the start of every product loop. This may be part of the intended behavior. HLS
cannot simply decide to change the specification of the algorithm.

The code intuitively captured the behavior of a matrix multiplication, but it prevented a
required behavior in the hardware: streaming accesses.

This lab exercise uses an updated version of the C code you worked with in Lab 1. The
following explains how the C code was updated.

Figure 7-21 shows the I/O access pattern for the code in Lab 1. Out of necessity the address
values are shown in a small font.

As variables i, j and k iterate from 0 to 3, the lower part of Figure 7-21 shows the
addresses generated to read a, b and write to res. In addition, at the start of each Product
loop, res is set to the value zero.

To have a hardware design with sequential streaming accesses, the ports accesses can only
be those shown highlighted in red. For the read ports, the data must be cached internally to
ensure the design does not have to re-read the port. For the write port res, the data must
be saved into a temporary variable and only written to the port in the cycles shown in red.

The C code in this lab reflects this behavior.

X-Ref Target - Figure 7-21

Figure 7-21: Matrix Multiplier Address Accesses
High-Level Synthesis www.xilinx.com 170
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=170

Chapter 7: Design Optimization
Step 1: Create and Open the Project
1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as

shown in Figure 7-22.

2. Create a new Vivado HLS project by typing vivado_hls –f run_hls.tcl.

3. Open the Vivado HLS GUI project by typing vivado_hls –p matrixmul_prj.

4. Open the Source folder in the Explorer pane and double-click matrixmul.cpp to open
the code as shown in Figure 7-23.

X-Ref Target - Figure 7-22

Figure 7-22: Setup for Interface Synthesis Lab 2

X-Ref Target - Figure 7-23

Figure 7-23: C Code with Updated I/O Accesses
High-Level Synthesis www.xilinx.com 171
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=171

Chapter 7: Design Optimization
Review the code and confirm the following:

• The directives from Lab 1, including the FIFO interfaces, are specified in the code as
pragmas.

• For-loops have been added to cache the row and column reads.

• A temporary variable is used for the accumulation and port res is only written to when
the final result is computed for each value.

• Because the for-loops to cache the row and column would require multiple cycles to
perform the reads, the pipeline directive has been applied to the Col for-loop, ensuring
these cache for-loops are automatically unrolled.

Synthesize the design and verify the RTL using co-simulation.

5. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

6. When synthesis completes, use the Run C/RTL Cosimulation toolbar button to launch
the Cosimulation Dialog box.

7. Click OK to start RTL verification.

The design has been now been fully synthesized to read one sample every clock cycle using
streaming FIFO interfaces.

Conclusion
In this tutorial, you learned:

• How to analyze pipelined loops and understand exactly which limitations prevent
optimizations targets from being achieved.

• The advantages and disadvantages of function versus loop pipelining.

• How unintended dependencies in the code can prevent hardware design goals from
being realized and how they can be overcome by modifications to the source code.
High-Level Synthesis www.xilinx.com 172
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=172

Chapter 8

RTL Verification

Overview
The High Level Synthesis tool automates the process of RTL verification and allows you to
use RTL verification to generate trace files that show the activity of the waveforms in the
RTL design. You can use these waveforms to analyze and understand the RTL output. This
tutorial covers all aspects of the RTL verification process.

To perform RTL verification, you use both the RTL output from High-Level Synthesis
(Verilog, VHDL or SystemC) and the C test bench. RTL verification is often called
cosimulation or C/RTL cosimulation; because both C and RTL are used in the verification.

This tutorial consists of three lab exercises.

Lab 1 Description
Perform RTL verification steps and understand the importance of the C test bench in
verifying the RTL.

Lab 2 Description
Create RTL trace files and analyze them using the Vivado Design Suite.

Lab 3 Description
Create RTL trace files and analyze them using a third-party RTL simulator. This lab requires
a license for Mentor Graphics ModelSim simulator. (You can use an alternative, third-party
simulator with minor modifications to the steps).

Tutorial Design Description
You can download the tutorial design file from the Xilinx website. See the information in
Locating the Tutorial Design Files.
High-Level Synthesis www.xilinx.com 173
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=173

Chapter 8: RTL Verification
This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\RTL_Verification.

The sample design used in the lab exercise is a DUC (digital up converter) function. The
purpose of this lab is to demonstrate and explain the features of RTL verification. There are
no design goals for these lab exercises.

Lab 1: RTL Verification and the C Test Bench
This exercise explains the basic operations for RTL verification and highlights the
importance of the C test bench.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

° On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 8-1).

° On Linux, open a new shell.

2. Using the command prompt window (Figure 8-2), change directory to the
RTL_Verification tutorial, lab1.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado_hls
–f run_hls.tcl, as shown in Figure 8-2.

X-Ref Target - Figure 8-1

Figure 8-1: Vivado HLS Command Prompt
High-Level Synthesis www.xilinx.com 174
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=174

Chapter 8: RTL Verification
4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado_hls –p duc_prj, as shown in Figure 8-3.

Step 2: Perform RTL Verification
1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

2. When synthesis completes, use the Run C/RTL Cosimulation toolbar button
(Figure 8-4) to launch the Cosimulation dialog box.

The Cosimulation Dialog box opens, as shown in Figure 8-5.

X-Ref Target - Figure 8-2

Figure 8-2: Setup the RLTL Verification Tutorial Project

X-Ref Target - Figure 8-3

Figure 8-3: Open RTL Verification Project for Lab 1

X-Ref Target - Figure 8-4

Figure 8-4: Run C/RTL Cosimulation Toolbar Button
High-Level Synthesis www.xilinx.com 175
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=175

Chapter 8: RTL Verification
The drop-down menu allows you to select the RTL simulator for HDL simulation. For this
exercise, you use the default Auto selection (Auto selects the Vivado Simulator) with Verilog
RTL for cosimulation.

3. Click OK to start RTL verification.

When RTL Verification completes, the simulation report opens automatically (Figure 8-6).
The report indicates if the simulation passed or failed. In addition, the report indicates the
measured latency and interval.

X-Ref Target - Figure 8-5

Figure 8-5: Cosimulation Dialog Box
High-Level Synthesis www.xilinx.com 176
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=176

Chapter 8: RTL Verification
RTL simulation completes in three steps. To better understand how the RTL verification
process is performed, scroll up in the console window to confirm that the messages
described below were issued.

First, the C test bench is executed to generate input stimuli for the RTL design.

INFO: [COSIM 212-14] Instrumenting C test bench ...

< C simulation executes to generate input stimuli >

At the end of this phase, the simulation shows any messages generated by the C test bench.
The output from the C function is not used in the C test bench at this stage, but any
messages output by the test bench can be seen in the console.

INFO: [COSIM 212-302] Starting C TB testing ...

 *** DUC hardware test PASSED ! ***

An RTL test bench with newly generated input stimuli is created and the RTL simulation is
then performed.

INFO: [COSIM 212-333] Generating C post check test bench ...
INFO: [COSIM 212-12] Generating RTL test bench ...

Finally, the output from the RTL simulation is re-applied to the C test bench to check the
results. Once again, you can see any message output by the C test bench in the console.
Finally, RTL verification issues message SIM-1000 if the RTL verification passed.

INFO: [COSIM 212-316] Starting C post checking ...

 *** DUC hardware test PASSED ! ***

INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS ***

To fully understand why the C test bench should check the results and how message
SIM-1000 is generated, you will modify the C test bench.

X-Ref Target - Figure 8-6

Figure 8-6: Cosimulation Report (TH: Update Screenshot)
High-Level Synthesis www.xilinx.com 177
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=177

Chapter 8: RTL Verification
Step 3: Modify the C test bench
1. Expand the Test Bench folder in the Explorer pane (Figure 8-7).

2. Double-click duc_test.c to open the C test bench in the Information pane.

3. Scroll to the end of the file to see the code shown in Figure 8-8.

4. Edit the return statement to match Figure 8-8 and ensure the test bench always returns
the value 1.

5. Save the file.

6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

X-Ref Target - Figure 8-7

Figure 8-7: RTL Test Bench

X-Ref Target - Figure 8-8

Figure 8-8: Modified RTL Test Bench
High-Level Synthesis www.xilinx.com 178
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=178

Chapter 8: RTL Verification
7. Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog
box.

8. Leave the Cosimulation options at their default value and click OK to execute the RTL
cosimulation.

When RTL cosimulation completes, the cosimulation report opens and says the verification
has failed (Figure 8-9).

In Figure 8-9, you can see from the message printed to the console (DUC hardware test
PASSED) that the results are correct, however, the verification report says the RTL
verification failed.

If required, you can confirm the results are correct. To do this, compare the output files
created by the RTL simulation with the golden results. The RTL simulation is executed in the
simulation directory wrapc, which is inside the solution directory. Figure 8-10 shows the
solution directory, with the output files highlighted.

X-Ref Target - Figure 8-9

Figure 8-9: Cosimulation Report Failure
High-Level Synthesis www.xilinx.com 179
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=179

Chapter 8: RTL Verification
RTL Cosimulation only reports a successful verification when the test bench returns a value
of 0 (zero). Modifying the test bench to return a non-zero value ensures RTL verification
(and C simulation if it was performed) would always report a failure.

To ensure that the RTL results are automatically verified: the C test bench must always check
the output from the C function to be synthesized and return a 0 (zero) if the results are
correct OR return any other value if they are not correct.

When RTL Verification is performed, the same testing occurs in the test bench, and the
output from the RTL block is automatically checked. This is why it is important for the C test
bench to check the results and return a zero value only if they are correct (or return a
non-zero value if they are incorrect).

9. Exit the Vivado HLS GUI and return to the command prompt.

X-Ref Target - Figure 8-10

Figure 8-10: Cosimulation Output Files
High-Level Synthesis www.xilinx.com 180
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=180

Chapter 8: RTL Verification
Lab 2: Viewing Trace Files in Vivado
This exercise explains how to generate RTL trace files and how to view them using the
Vivado Design Suite tools.

Step 1: Create an RTL Trace File using Vivado Simulator
1. From the Vivado HLS command prompt you used in Lab 1, change to the lab2 directory

as shown in Figure 8-11.

2. Create a new Vivado HLS project by typing vivado_hls –f run_hls.tcl.

3. Open the Vivado HLS GUI project by typing vivado_hls –p duc_prj.

4. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

5. Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog
box.

In this case, you will produce a trace file you can open using the Vivado Simulator.

6. In the Co-simulation Dialog box:

a. Leave the default auto selection (using Vivado Simulator and Verilog).

b. Activate the Dump Trace drop-down menu and select the all option, to have the
options shown in Figure 8-12.

c. Click OK to execute RTL cosimulation.

X-Ref Target - Figure 8-11

Figure 8-11: Setup for RTL Verification Lab 2
High-Level Synthesis www.xilinx.com 181
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=181

Chapter 8: RTL Verification
When RTL verification completes, the cosimulation report automatically opens. The report
shows that the Verilog simulation has passed (and the measured latency and interval). In
addition, because the Dump Trace option was used with the Vivado Simulator simulator
option and because Verilog was selected, two trace files are now present in the Verilog
simulation directory. These are shown highlighted in Figure 8-13.

X-Ref Target - Figure 8-12

Figure 8-12: Cosimulation Dialog Box for Lab 2
High-Level Synthesis www.xilinx.com 182
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=182

Chapter 8: RTL Verification
X-Ref Target - Figure 8-13

Figure 8-13: Verilog Vivado Simulator Cosimulation Results
High-Level Synthesis www.xilinx.com 183
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=183

Chapter 8: RTL Verification
The next step is to view the trace files inside the Vivado Design Suite.

Since waveform trace data has been generated for the Vivado Simulator, the Open Wave
Viewer toolbar button is now highlighted, as shown in Figure 8-14.

Note: The Open Wave Viewer toolbar button can only be used when Vivado Simulator is selected
as the Verilog/VHDL Simulator.

7. Click on the Open Wave Viewer toolbar button to open the Vivado IDE with the RTL
waveforms traces.

Note: The only functionality provided by the Vivado IDE by this action is the viewing and analysis of
RTL waveforms.

You can then view the waveforms in the waveform viewer. Figure 8-15 shows the zoomed
waveforms where the output data ports and their associated I/O protocol signals (output
valid signals) are expanded to view.

X-Ref Target - Figure 8-14

Figure 8-14: Opening the Trace File in Vivado
High-Level Synthesis www.xilinx.com 184
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=184

Chapter 8: RTL Verification
8. Exit the Vivado IDE.

9. Exit and close the Vivado GUI.

10. Type exit to close the Vivado Tcl command prompt.

X-Ref Target - Figure 8-15

Figure 8-15: Analyzing the RTL Trace File
High-Level Synthesis www.xilinx.com 185
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=185

Chapter 8: RTL Verification
Lab 3: Viewing Trace Files in ModelSim
This exercise explains how you can generate and view RTL trace files and using the Mentor
Graphics ModelSim RTL simulator. Other third-party simulators are supported, and similar
process can be used if another RTL simulator is selected.

CAUTION! This lab exercise requires that the executable for ModelSim is defined in the system search
path and that the required license to perform HDL simulation is available on the system.

Step 1: Create an RTL Trace File using ModelSim
1. From the Vivado HLS command prompt you used in Lab 2, change to the lab3

directory.

2. Create a new Vivado HLS project by typing vivado_hls –f run_hls.tcl.

3. Open the Vivado HLS GUI project by typing vivado_hls –p duc_prj.

4. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

5. Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog
box.

This exercise uses the Mentor Graphics ModelSim RTL simulator. The path to the simulator
executable must be set in your system search path.

6. In the Co-simulation Dialog box:

a. Select ModelSim from the Verilog/VHDL Simulator Selector.

b. Select VHDL.

c. Activate the Dump Trace drop-down menu and select the all option, to have the
options shown in Figure 8-16.

d. Click OK to execute RTL cosimulation.
High-Level Synthesis www.xilinx.com 186
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=186

Chapter 8: RTL Verification
When RTL verification completes, the cosimulation report automatically opens, showing the
VHDL simulation has passed (and the measured latency and interval). In addition, because
the Dump Trace option was used with the ModelSim simulator option and because VHDL
was selected, a trace file is now present in the VHDL simulation directory. The trace file is
shown highlighted in Figure 8-17.

X-Ref Target - Figure 8-16

Figure 8-16: Cosimulation Dialog Box for Lab 3
High-Level Synthesis www.xilinx.com 187
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=187

Chapter 8: RTL Verification
The next step is to view the trace files inside ModelSim.

7. Exit the Vivado HLS GUI and return to the command prompt.

Step 2: View the RTL Trace File in ModelSim
1. Launch the Mentor Graphics ModelSim RTL Simulator.

2. Click the menu File > Open.

3. Select Log Files as the file type (Figure 8-18).

X-Ref Target - Figure 8-17

Figure 8-17: VHDL ModelSim Trace File
High-Level Synthesis www.xilinx.com 188
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=188

Chapter 8: RTL Verification
4. Navigate to the VHDL simulation directory and select duc.wlf.

5. Click Open.

6. Add the signals to the trace window and adjust to see a view similar to Figure 8-19.

X-Ref Target - Figure 8-18

Figure 8-18: ModelSim Open File WLF
High-Level Synthesis www.xilinx.com 189
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=189

Chapter 8: RTL Verification
7. Exit and close the ModelSim RTL simulator.

X-Ref Target - Figure 8-19

Figure 8-19: Viewing the Trace File in ModelSim
High-Level Synthesis www.xilinx.com 190
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=190

Chapter 8: RTL Verification
Conclusion
In this tutorial, you learned how to:

• Perform RTL verification on a design synthesized from C and the importance of the test
bench in this process.

• Create and open waveform trace files using the Vivado Design Suite.

• Create and open waveform trace files using a third-party HDL simulator (ModelSim)
and view the trace file created by RTL verification.
High-Level Synthesis www.xilinx.com 191
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=191

Chapter 9

Using HLS IP in IP Integrator

Overview
You can package the RTL from High-Level Synthesis and use it inside IP Integrator. This
tutorial demonstrates how to take HLS IP and use it in IP Integrator as part of a larger
design.

This tutorial consists of a single lab exercise.

Lab 1 Description
Complete the steps to generate two HLS blocks for the IP catalog and use them in a design
with Xilinx IP, an FFT. You validate and verify the final design using an RTL test bench.

Tutorial Design Description
You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory Vivado_HLS_Tutorial\
Using_IP_with_IPI.

The design blocks in this tutorial process the data for a complex FFT.

• The Xilinx FFT IP block only operates on complex data. Although you can perform an
FFT of real data on a complex data set with all imaginary components set to zero, it can
be done more efficiently by pre-processing the data.

• The front-end HLS block in this lab applies a Hamming windowing function to the 1024
(N) real data samples and sends even/odd pairs to an N/2-point XFFT as though they
are complex data.

• The back-end HLS block takes bit-reverse ordered data, puts it in natural order and
applies an O(N) transformation to FFT output to extract the spectral data for the
N-point real data set. Note, the first output pair packs the 0th and 512th (purely real)
spectral data point into the real and imaginary parts, respectively.
High-Level Synthesis www.xilinx.com 192
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=192

Chapter 9: Using HLS IP in IP Integrator
• The designs are fully pipelined, streaming designs for high throughput; intended for
continuous processing of data, but with throttling capability (stalls if input stalls).

• AXI4 Streaming interfaces are used to connect all blocks in IP Integrator (IPI).

Lab 1: Integrate HLS IP with a Xilinx IP Block
This lab exercise shows how two HLS IP blocks are combined with a Xilinx IP FFT in IP
Integrator and the design verified in the Vivado Design Suite.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create Vivado HLS IP Blocks
Create two HLS blocks for the Vivado IP Catalog using the provide Tcl script. The script runs
HLS C-synthesis, RTL co-simulation and package the IP for the two HLS designs
(hls_real2xfft and hls_xfft2real).

1. Open the Vivado HLS Command Prompt.

° On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt.

° On Linux, open a new shell.

2. Using the command prompt window, change the directory to
Vivado_HLS_Tutorial\Using_IP_with_IPI\lab1\hls_designs (Figure 9-2).

3. Type vivado_hls –f run_hls.tcl to create the HLS IP (Figure 9-2).

X-Ref Target - Figure 9-1

Figure 9-1: Vivado HLS Command Prompt
High-Level Synthesis www.xilinx.com 193
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=193

Chapter 9: Using HLS IP in IP Integrator
When the script completes, there are two Vivado HLS project directories, fe_vhls_prj
and be_vhls_prj, which contain the HLS IP, including the Vivado IP Catalog archives for
use in Vivado designs.

• The “front-end” IP archive is located at fe_vhls_prj/IPXACTExport/impl/ip/

• The “back-end” IP archive is located at be_vhls_prj/IPXACTExport/impl/ip/

The remainder of this tutorial shows how the Vivado HLS IP blocks can be integrated into a
design (in IP Integrator) and verified.

Step 2: Create a Vivado Design Suite Project
1. Launch the Vivado Design Suite (not Vivado HLS):

° On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado 2016.1.

° On Linux, type vivado in the shell.

2. From the Welcome screen, click Create New Project (Figure 9-3).

X-Ref Target - Figure 9-2

Figure 9-2: Create the HLS Design for IPI
High-Level Synthesis www.xilinx.com 194
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=194

Chapter 9: Using HLS IP in IP Integrator
3. Click Next on the first page of the Create a New Vivado Project wizard.

4. Click the ellipsis button to the right of the Project location text entry box and browse to
and select the tutorial directory (Figure 9-4).

X-Ref Target - Figure 9-3

Figure 9-3: Create a Vivado Project
High-Level Synthesis www.xilinx.com 195
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=195

Chapter 9: Using HLS IP in IP Integrator
5. Click Next to move to the Project Type page of the wizard.

a. Select RTL Project.

b. Select Do not specify sources at this time (if not the default).

c. Click Next.

6. On the Default Part page, under Specify, click Boards and select the ZYNQ-7 ZC702
Evaluation Board, as shown in Figure 9-5 and press Next.

X-Ref Target - Figure 9-4

Figure 9-4: Path to the Vivado Design Suite Project
High-Level Synthesis www.xilinx.com 196
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=196

Chapter 9: Using HLS IP in IP Integrator
7. On the New Project Summary Page, click Finish to complete the new project setup.

The Vivado workspace populates and appears as shown in Figure 9-6.

X-Ref Target - Figure 9-5

Figure 9-5: Vivado Project Specification
High-Level Synthesis www.xilinx.com 197
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=197

Chapter 9: Using HLS IP in IP Integrator
Step 3: Add HLS IP to an IP Repository
1. In the Project Manager area of the Flow Navigator pane, click IP Catalog.

X-Ref Target - Figure 9-6

Figure 9-6: Vivado Project
High-Level Synthesis www.xilinx.com 198
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=198

Chapter 9: Using HLS IP in IP Integrator
2. The IP Catalog appears in the main pane of the workspace. Click the IP Settings icon.

3. In the IP section of the Project Settings dialog, select the Repository Manager tab and
click on the “+” symbol to Add Repository.

4. In the IP Repositories dialog:

a. Browse to the tutorial directory,
Using_IP_with_IPI\lab1\hls_designs\fe_vhls_prj\IPXACTExport\im
pl\ip as shown in Figure 9-9.

X-Ref Target - Figure 9-7

Figure 9-7: Open the IP Catalog

X-Ref Target - Figure 9-8

Figure 9-8: Open the IP Catalog Settings
High-Level Synthesis www.xilinx.com 199
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=199

Chapter 9: Using HLS IP in IP Integrator
b. Click Select to close the IP Repositories window.

5. Press Select to accept the new repository.

6. Follow the same procedure to add the second HLS IP package:
lab1/hls_designs/be_vhls_prj/IPXACTExport/impl/ip/.

7. Click OK to exit the dialog box.

A Vivado HLS IP category now appears in the IP Catalog as HLS IP (Figure 9-10).

X-Ref Target - Figure 9-9

Figure 9-9: Create a New IP Repository
High-Level Synthesis www.xilinx.com 200
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=200

Chapter 9: Using HLS IP in IP Integrator
Step 4: Create a Block Design for RealFFT
1. Click Create Block Design under IP Integrator in the Flow Navigator.

a. In the resulting dialog box, name the design RealFFT.

b. Click OK.

X-Ref Target - Figure 9-10

Figure 9-10: IP Catalog with HLS IP
High-Level Synthesis www.xilinx.com 201
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=201

Chapter 9: Using HLS IP in IP Integrator
The upper-right pane now has a Diagram tab. Add a Xilinx FFT IP block to the design and
customize it.

2. In the Diagram tab click the Add IP link (Figure 9-12).

a. In the Search box type fourier.

b. Select Fast Fourier Transform.

c. Press Enter.

X-Ref Target - Figure 9-11

Figure 9-11: Create Block Design
High-Level Synthesis www.xilinx.com 202
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=202

Chapter 9: Using HLS IP in IP Integrator
The Xilinx IP block FFT is now instantiated in the design, as shown in Figure 9-13.

X-Ref Target - Figure 9-12

Figure 9-12: Add the Xilinx FFT IP
High-Level Synthesis www.xilinx.com 203
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=203

Chapter 9: Using HLS IP in IP Integrator
3. Double-click the new Fast Fourier Transform IP symbol to open the Re-customize IP
dialog box.

4. On the Configuration tab (Figure 9-14):

a. Change the Transform Length to 512.

b. Select Pipelined, Streaming I/O in the Architecture Choice section.

X-Ref Target - Figure 9-13

Figure 9-13: Xilinx FFT IP
High-Level Synthesis www.xilinx.com 204
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=204

Chapter 9: Using HLS IP in IP Integrator
5. Select the Implementation tab (Figure 9-15):

a. Select ARESETN (active low) in the Control Signals group.

b. Verify that Non Real Time is selected as Throttle Scheme.

c. Click OK to exit the Re-customize IP dialog box.

X-Ref Target - Figure 9-14

Figure 9-14: Xilinx FFT Configuration
High-Level Synthesis www.xilinx.com 205
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=205

Chapter 9: Using HLS IP in IP Integrator
Add one instance of each of the HLS generated blocks to the design.

6. Right-click in any space in the canvas and select Add IP (Figure 9-16).

X-Ref Target - Figure 9-15

Figure 9-15: Xilinx FFT Implementation
High-Level Synthesis www.xilinx.com 206
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=206

Chapter 9: Using HLS IP in IP Integrator
7. Type “hls” into the Search text entry box.

a. Highlight both IPs. (Click the control key and select both.)

b. Press Enter.

The design block now has three IP blocks, as shown in Figure 9-17.

X-Ref Target - Figure 9-16

Figure 9-16: Add IP Blocks
High-Level Synthesis www.xilinx.com 207
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=207

Chapter 9: Using HLS IP in IP Integrator
The next step is to connect HLS blocks to the FFT block and ports.

8. Hover the cursor over the dout interface connector of the Hls_real2xftt block until
pencil cursor appears.

a. Left-click and hold down the mouse button to start a connection.

b. Drag the connection line to the S_AXIS_DATA port connector of FFT block and
release (when green check mark appears next to it).

9. In a similar fashion, connect the FFT’s M_AXIS_DATA interface to the din interface of
the Hls_xfft2real block.

The two connections are shown in Figure 9-18.

X-Ref Target - Figure 9-17

Figure 9-17: RealFFT IP Blocks
High-Level Synthesis www.xilinx.com 208
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=208

Chapter 9: Using HLS IP in IP Integrator
To create I/O ports for the design, make some external connections.

10. Right-click the din_V_V interface connector on the hls_real2xfft block and select
Make External (Figure 9-19).

X-Ref Target - Figure 9-18

Figure 9-18: Connecting Ports on the IP Blocks
High-Level Synthesis www.xilinx.com 209
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=209

Chapter 9: Using HLS IP in IP Integrator
11. Give the new interface port a clearly unique name.

a. Click the port symbol to highlight it.

b. In the External Interface Properties pane (Figure 9-20), click in the Name text entry
box to highlight din_V.

c. Type real2xfft_din and press Enter.

IMPORTANT: Property changes might not take effect if this re-naming step is not done.

X-Ref Target - Figure 9-19

Figure 9-19: Make External Connections
High-Level Synthesis www.xilinx.com 210
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=210

Chapter 9: Using HLS IP in IP Integrator
12. In a similar manner to the previous step:

a. Make the dout_V interface of the Hls_xfft2real block external and rename it
xfft2real_dout.

13. Right-click the aclk connector of FFT block and select Make External.

14. Right-click the aresetn connector of the FFT block and select Make External.

15. Tie the ap_start ports of both HLS blocks High.

a. Right-click the canvas and select Add IP.

b. Type const into the Search text entry box.

c. Select Constant IP.

d. Double-click the Constant IP symbol (Figure 9-21) and verify that Const Width and
Const Val are set to 1.

X-Ref Target - Figure 9-20

Figure 9-20: Port Naming
High-Level Synthesis www.xilinx.com 211
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=211

Chapter 9: Using HLS IP in IP Integrator
e. Click OK to close Re-customize IP dialog box.

f. Expand the ap_ctrl bus port on both hls_xfft2real and hls_real2xfft
(click the plus symbol associated with each port).

g. Connect ap_start in both HLS blocks to the Constant block (Figure 9-22).

X-Ref Target - Figure 9-21

Figure 9-21: Constant IP Properties
High-Level Synthesis www.xilinx.com 212
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=212

Chapter 9: Using HLS IP in IP Integrator
16. Make the remaining connections.

a. Click and drag from the aclk connector of hls_real2xfft and hls_xfft2real
blocks to the aclk external port (or aclk connector on FFT block or anywhere on
“wire” connecting them).

b. Connect ap_rst_n of the hls_real2xfft and hls_xfft2real blocks to the
aresetn network.

17. Click the Regenerate Layout icon to clean up and reorganize the Block Design.

X-Ref Target - Figure 9-22

Figure 9-22: Connect AP_START to Constant
High-Level Synthesis www.xilinx.com 213
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=213

Chapter 9: Using HLS IP in IP Integrator
18. Click the Validate Design button to validate the design is correct.

The vlaidate design will show some warnings. These are related to the s_axis_config pin of
the FFT.

a. The XFFT configuration interface is left unconnected because this design always
operates in the default mode of the core.

b. Click OK to close the messages..

19. Click File > Save Block Design.

20. Close the Block Design.

21. The next step is to generate output products.

a. In the Sources tab of Project Manager pane (Figure 9-24), right-click RealFFT.bd and
select Generate Output Products.

b. Click Generate in the resulting dialog to initiate the generation of all output
products.

c. Select OK to ignore the warnings discussed above.

X-Ref Target - Figure 9-23

Figure 9-23: Re-generated Design Diagram
High-Level Synthesis www.xilinx.com 214
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=214

Chapter 9: Using HLS IP in IP Integrator
22. Create an HDL Wrapper.

a. In the Sources tab of the Project Manager pane, right-click RealFFT.bd and select
Create HDL Wrapper. (This is the same procedure and menu as described in the
previous step.)

b. Click OK and let Vivado manage the wrapper.

Step 5: Verify the Design
The next step in creating the final design is to verify design with the HDL test bench
provided in the lab exercise: realfft_rtl_tb.v.

1. Right-click Simulation Sources in the Sources tab of the Project Manager pane
(Figure 9-25).

2. Select Add Sources.

X-Ref Target - Figure 9-24

Figure 9-24: Generating Output Products
High-Level Synthesis www.xilinx.com 215
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=215

Chapter 9: Using HLS IP in IP Integrator
3. Select Add or Create Simulation Sources in the Add Sources dialog box.

4. Click Next.

5. In the Add Sources dialog box, click the “+” symbol Figure 9-26 and select Add Files.

X-Ref Target - Figure 9-25

Figure 9-25: Adding Simulation Sources
High-Level Synthesis www.xilinx.com 216
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=216

Chapter 9: Using HLS IP in IP Integrator
6. Browse to the file realfft_rtl_tb.v in the tutorial directory
Using_IP_with_IPI\lab1\verilog_tb.

7. Select it and click OK.

8. Select the checkbox Copy sources into the project (Figure 9-27).

X-Ref Target - Figure 9-26

Figure 9-26: Add Source Dialog Window
High-Level Synthesis www.xilinx.com 217
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=217

Chapter 9: Using HLS IP in IP Integrator
Note: When you copy the design source files into the project, edits to the file(s) are not
automatically propagated to the original source file.

9. Click Finish.

10. Click Run Simulation in the Flow Navigator (Figure 9-28) and select Run Behavioral
Simulation.

11. Once the simulation has started, click the Run All icon to complete simulation.

X-Ref Target - Figure 9-27

Figure 9-27: Copy Design Sources

X-Ref Target - Figure 9-28

Figure 9-28: Execute Simulation
High-Level Synthesis www.xilinx.com 218
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=218

Chapter 9: Using HLS IP in IP Integrator
Conclusion
In this tutorial, you learned:

• How to create Vivado HLS IP using a Tcl script.

• How to import a created design using IP integrator (IPI) and include both Xilinx IP and
the Vivado IP blocks.

• How to verify the design in IPI.

X-Ref Target - Figure 9-29

Figure 9-29: Run the Simulation to Conclusion
High-Level Synthesis www.xilinx.com 219
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=219

Chapter 10

Using HLS IP in a Zynq AP SoC Design

Overview
A common use of High-Level Synthesis design is to create an accelerator for a CPU – to
move code that executes on the CPU into the FPGA programmable logic to improve
performance. This tutorial shows how you can incorporate a design created with High-Level
Synthesis into a Zynq device.

This tutorial consists of two lab exercises:

Lab 1 Description
You create and configure a simple HLS design to work with the CPU on a Zynq device. The
HLS design used in this lab is simple to allow the focus of the tutorial to be on explaining
the connections to the CPU and how to configure the software drivers created by
High-Level Synthesis to control the device and manage interrupts.

Lab 2 Description
This lab illustrates a common high performance connection scheme for connecting
hardware accelerator blocks that consume data originating in the CPU memory and/or
producing data destined for it in a streaming manner. The lab highlights the software
requirements to avoid cache coherency issues.

Tutorial Design Description
You can download the tutorial design file can be downloaded from the Xilinx Website. See
the information in Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory Vivado_HLS_Tutorial\
Using_IP_with_Zynq.

The sample design is a simple multiple accumulate block. The focus of this tutorial exercise
is the methodology, connections and integration of the software drivers. (The tutorial does
not focus on the logic in the design itself.)
High-Level Synthesis www.xilinx.com 220
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=220

Chapter 10: Using HLS IP in a Zynq AP SoC Design
Lab 1: Implement Vivado HLS IP on a Zynq Device
This lab exercise integrates both the High-Level Synthesis IP and the software drivers
created by HLS to control the IP in a design implemented on a Zynq device.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create a Vivado HLS IP Block
1. Open the Vivado HLS Command Prompt.

° On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 10-1).

° On Linux, open a new shell.

2. Using the command prompt window, change the directory to
Vivado_HLS_Tutorial\Using_IP_with_Zynq\lab1\hls_macc (Figure 10-2).

3. Type vivado_hls –f run_hls.tcl to create the HLS IP (Figure 10-2).

X-Ref Target - Figure 10-1

Figure 10-1: Vivado HLS Command Prompt
High-Level Synthesis www.xilinx.com 221
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=221

Chapter 10: Using HLS IP in a Zynq AP SoC Design
When the script completes, there is a Vivado HLS project directory vhls_prj, which
contains the HLS IP, including the Vivado IP Catalog archive for use in Vivado designs.

The remainder of this tutorial exercise shows how the Vivado HLS IP blocks can be
integrated into a Zynq design using IP Integrator.

Step 2: Create a Vivado Zynq Project
1. Launch the Vivado Design Suite (not Vivado HLS):

° On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado 2016.1.

° On Linux, type vivado in the shell.

2. From the Welcome screen, click Create New Project (Figure 10-3).

X-Ref Target - Figure 10-2

Figure 10-2: Create the HLS Design
High-Level Synthesis www.xilinx.com 222
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=222

Chapter 10: Using HLS IP in a Zynq AP SoC Design
3. In the New Project wizard:

a. Click Next.

b. In the Project Location text entry box, browse to the location of the tutorial file
directory Using_IP_with_Zynq\lab1 and click Next (Figure 10-4).

c. On the Project Type page, select RTL Project and Do not specify sources at this
time (if it is not the default).

d. Click Next.

X-Ref Target - Figure 10-3

Figure 10-3: Vivado Welcome Screen
High-Level Synthesis www.xilinx.com 223
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=223

Chapter 10: Using HLS IP in a Zynq AP SoC Design
4. On the Default Part page:

a. Click Boards.

b. Select the ZYNQ-7 ZC702 Evaluation Board (Figure 10-5).

X-Ref Target - Figure 10-4

Figure 10-4: Specify the Vivado Project Directory
High-Level Synthesis www.xilinx.com 224
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=224

Chapter 10: Using HLS IP in a Zynq AP SoC Design
a. Click Next.

b. Click Finish on the New Project Summary Page.

The project workspace opens as shown in Figure 10-6.

X-Ref Target - Figure 10-5

Figure 10-5: Specify the Vivado Project Details
High-Level Synthesis www.xilinx.com 225
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=225

Chapter 10: Using HLS IP in a Zynq AP SoC Design
Step 3: Add HLS IP to the IP Catalog
1. In the Project Manager area of the Flow Navigator pane, click IP Catalog.

X-Ref Target - Figure 10-6

Figure 10-6: Initial Vivado Zynq Project
High-Level Synthesis www.xilinx.com 226
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=226

Chapter 10: Using HLS IP in a Zynq AP SoC Design
The IP Catalog appears in the main pane of the workspace.

2. Click the IP Settings icon (Figure 10-8).

3. In the IP section of the Project Settings dialog box, click the “+” symbol to Add
Repository.

4. In the IP Repositories dialog box:

a. Browse to the location of the IP created by Vivado HLS,
Using_IP_with_Zynq\lab1\hls_macc\vhls_prj\solution1\impl\ip and click Select.

X-Ref Target - Figure 10-7

Figure 10-7: Open the IP Catalog

X-Ref Target - Figure 10-8

Figure 10-8: Open the IP Catalog Settings
High-Level Synthesis www.xilinx.com 227
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=227

Chapter 10: Using HLS IP in a Zynq AP SoC Design
5. Click OK to close the IP repository manager.

X-Ref Target - Figure 10-9

Figure 10-9: IP Repository
High-Level Synthesis www.xilinx.com 228
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=228

Chapter 10: Using HLS IP in a Zynq AP SoC Design
6. There is now an HLS IP in the IP Catalog, HLS_macc.

Step 4: Creating an IP Integrator Block Design of the System
1. In the IP Integrator area of the Flow Navigator, click Create Block Design and type

Zynq_Design in the dialog box.

X-Ref Target - Figure 10-10

Figure 10-10: HLS IP in the Repository
High-Level Synthesis www.xilinx.com 229
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=229

Chapter 10: Using HLS IP in a Zynq AP SoC Design
The Block Design view opens in the main pane, with a new Diagram tab, containing a blank
Block Design canvas.

2. Press the Add IP button on the main screen open the IP search dialog.

a. Type zynq into the Search text entry box.

b. Select ZYNQ7 Processing System and press Enter.

X-Ref Target - Figure 10-11

Figure 10-11: Create the Zynq Design
High-Level Synthesis www.xilinx.com 230
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=230

Chapter 10: Using HLS IP in a Zynq AP SoC Design
An IP symbol for the ZYNQ7 Processing System appears on the canvas.

3. Double-click the ZYNQ IP symbol to open the associated Re-customize IP dialog box.

a. Click the Presets icon and select ZC702 (Figure 10-13).

X-Ref Target - Figure 10-12

Figure 10-12: Add a CPU Processor to the Design
High-Level Synthesis www.xilinx.com 231
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=231

Chapter 10: Using HLS IP in a Zynq AP SoC Design
4. Click MIO Configuration in the Page Navigator pane.

a. Expand the Application Processor Unit tree view.

b. Deselect Timer 0 (or any other timers if they are selected).

X-Ref Target - Figure 10-13

Figure 10-13: Configure the Zynq AP SoC
High-Level Synthesis www.xilinx.com 232
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=232

Chapter 10: Using HLS IP in a Zynq AP SoC Design
5. Click Interrupts in the Page Navigator pane.

a. Select Fabric Interrupts and expand its tree view.

b. Select IRQ_F2P[15:0] and click OK to close the Re-customize IP dialog box.

IPI provides Designer Assistance to automate certain tasks, such as making the correct
external connections to DDR memory and Fixed I/O for the ZYNQ PS7.

X-Ref Target - Figure 10-14

Figure 10-14: Zynq AP SoC MIO Configuration

X-Ref Target - Figure 10-15

Figure 10-15: Zynq AP SoC Interrupt Configuration
High-Level Synthesis www.xilinx.com 233
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=233

Chapter 10: Using HLS IP in a Zynq AP SoC Design
6. Click the Run Block Automation link under the title bar (Figure 10-16).

a. Ensure processing_system7_0 is selected.

b. Ensure Apply Board Presets is deselected. If this remains selected it re-applies the
timers that were disabled in step 4 and results in additional ports on the Zynq block
in Figure 10-16.

c. Click OK to complete in the resulting dialog box.

7. To add HLS IP to the design:

a. right-click in an open space of canvas and select Add IP from the context menu.

b. Type hls in the Search text entry box and press Enter to add it to design
(Figure 10-17).

X-Ref Target - Figure 10-16

Figure 10-16: Run Automation
High-Level Synthesis www.xilinx.com 234
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=234

Chapter 10: Using HLS IP in a Zynq AP SoC Design
Designer assistance is also available to automate the interconnection of IP blocks.

8. Click the Run Connection Automation link at the top of the canvas.

9. Select /hls_macc_0/S_AXI_HLS_MACC_PERIPH_BUS and click OK in the resulting
dialog box to automatically connect the HLS IP to the M_AXI_GP0 interface of the Zynq
Processor.

This adds an AXI Interconnect (block instance: processing_system7_0), a Proc Sys Reset
block and makes all necessary AXI related connections to create the design shown in
Figure 10-18.

X-Ref Target - Figure 10-17

Figure 10-17: Processor and HLS IP
High-Level Synthesis www.xilinx.com 235
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=235

Chapter 10: Using HLS IP in a Zynq AP SoC Design
The only remaining connection necessary is from the HLS interrupt port to the PS7
IRQ_F2P port.

10. Mouse over the interrupt pin on the hls_macc_0 IP symbol. When the cursor changes
to pencil shape, click and drag to the IRQ_F2P[0:0] port of the PS7 and release,
completing the connection.

11. Select the Address Editor tab and confirm that the hls_macc_0 peripheral has been
assigned a master address range. If it has not, click the Auto Assign Address icon.

The final step in the Block Diagram design entry process is to validate the design.

12. Click the Validate Design icon in the toolbar.

13. Upon successful validation, save the Block Design.

X-Ref Target - Figure 10-18

Figure 10-18: Design with AXI4 Interconnect

X-Ref Target - Figure 10-19

Figure 10-19: Address Editor
High-Level Synthesis www.xilinx.com 236
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=236

Chapter 10: Using HLS IP in a Zynq AP SoC Design
Step 5: Implementing the System
Before proceeding with the system design, you must generate implementation sources and
create an HDL wrapper as the top-level module for synthesis and implementation.

1. Return to the Project Manager view by clicking on Project Manager in the Flow
Navigator.

2. In the Sources browser in the main workspace pane, a Block Diagram object called
Zynq_Design is at the top of the Design Sources tree view (Figure 10-20). Right-click
this object and select Generate Output Products.

3. In the resulting dialog box, click Generate to start the process of generating the
necessary source files.

4. Right-click the Zynq_Design object again, select Create HDL Wrapper, and click OK to
exit the resulting dialog box.

The top-level of the Design Sources tree becomes the Zynq_Design_wrapper.v file. The
design is now ready to be synthesized, implemented and to have an FPGA programming
bitstream generated.

X-Ref Target - Figure 10-20

Figure 10-20: Generate Output Producs
High-Level Synthesis www.xilinx.com 237
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=237

Chapter 10: Using HLS IP in a Zynq AP SoC Design
5. Click Generate Bitstream to initiate the remainder of the flow.

a. Click Yes to implement the design.

6. In the dialog that appears after bitstream generation has completed, select Open
Implemented Design and click OK.

Step 6: Developing Software and Running it on the ZYNQ
System
You are now ready to export the design to Xilinx SDK. In SDK, you create software that runs
on a ZC702 board (if available). A driver for the HLS block was generated during HLS export
of the Vivado IP Catalog package. This driver must be made available in SDK so that the PS7
software can communicate with the block.

1. From the Vivado File menu select Export > Export Hardware.

Note: Both the IPI Block Design and the Implemented Design must be open in the Vivado
workspace for this step to complete successfully.

2. In the Export Hardware dialog box (Figure 10-21), ensure that the Include Bitstream is
enabled and click OK.

3. From the Vivado File menu, select Launch SDK.

4. Click OK to open SDK.

5. From the SDK File menu, select New > Application Project.

a. In the New Project dialog enter the project name Zynq_Design_Test.

b. Click Next.

c. Select the Hello World template.

d. Click Finish.

X-Ref Target - Figure 10-21

Figure 10-21: Export Hardware Dialog Box
High-Level Synthesis www.xilinx.com 238
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=238

Chapter 10: Using HLS IP in a Zynq AP SoC Design
6. Power up the ZC702 board and test the Hello World application. Ensure the board has all
the connections to allow you to download the bitstream on the FPGA device. See the
documentation that accompanies the ZC702 development board.

7. Click Xilinx Tools > Program FPGA (or toolbar icon).

Notice that the Done LED (DS3) is now on.

8. Setup a Terminal in the tab at bottom of workspace:

a. Click the Connect icon (Figure 10-23).

X-Ref Target - Figure 10-22

Figure 10-22: Application Project
High-Level Synthesis www.xilinx.com 239
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=239

Chapter 10: Using HLS IP in a Zynq AP SoC Design
b. Select Connection Type > Serial.

c. Select the COM port to which the USB UART cable is connected (generally not COM1
or COM3). On Windows, if you are not sure, open the Device Manager and identify
the port with the Silicon Labs driver under Ports (COM & LPT).

d. Change the Baud Rate to 115200 (Figure 10-24).

e. Click OK to exit the Terminal Settings dialog box.

9. Right-click the application project Zynq_Design_Test in the Explorer pane
(Figure 10-25).

a. Click Run As > Launch on Hardware.

X-Ref Target - Figure 10-23

Figure 10-23: The Connect Icon

X-Ref Target - Figure 10-24

Figure 10-24: Terminal Settings
High-Level Synthesis www.xilinx.com 240
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=240

Chapter 10: Using HLS IP in a Zynq AP SoC Design
10. Switch to the Terminal tab and confirm that Hello World was received.

X-Ref Target - Figure 10-25

Figure 10-25: Run the Application Project

X-Ref Target - Figure 10-26

Figure 10-26: Console Output
High-Level Synthesis www.xilinx.com 241
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=241

Chapter 10: Using HLS IP in a Zynq AP SoC Design
Step 7: Modify software to communicate with HLS block
The completely modified source file is available in the arm_code directory of the tutorial
file set. The modifications are discussed in detail below.

1. Open the helloworld.c source file.

2. Several BSP (and standard C) header files need to be included:

#include <stdlib.h> // Standard C functions, e.g. exit()
#include <stdbool.h> // Provides a Boolean data type for ANSI/ISO-C
#include "xparameters.h" // Parameter definitions for processor peripherals
#include "xscugic.h" // Processor interrupt controller device driver
#include "xHls_macc.h" // Device driver for HLS HW block

3. Define variables for the HLS block and interrupt controller instance data. The variables
will be passed to driver API calls as handles in the respective hardware.

// HLS macc HW instance
XHls_macc HlsMacc;
//Interrupt Controller Instance
XScuGic ScuGic;

4. Define global variables to interface with the interrupt service routine (ISR).

volatile static int RunHlsMacc = 0;
volatile static int ResultAvailHlsMacc = 0;

5. Define a function to wrap all run-once API initialization function calls for the HLS block.

int hls_macc_init(XHls_macc *hls_maccPtr)
{
XHls_macc_Config *cfgPtr;
int status;

cfgPtr = XHls_macc_LookupConfig(XPAR_XHLS_MACC_0_DEVICE_ID);
if (!cfgPtr) {
print("ERROR: Lookup of accelerator configuration failed.\n\r");
return XST_FAILURE;

}
status = XHls_macc_CfgInitialize(hls_maccPtr, cfgPtr);
if (status != XST_SUCCESS) {
print("ERROR: Could not initialize accelerator.\n\r");
return XST_FAILURE;

}
return status;

}

6. Define a helper function to wrap the HLS block API calls required to enable its interrupt
and start the block.

void hls_macc_start(void *InstancePtr){
XHls_macc *pAccelerator = (XHls_macc *)InstancePtr;
XHls_macc_InterruptEnable(pAccelerator,1);
XHls_macc_InterruptGlobalEnable(pAccelerator);
XHls_macc_Start(pAccelerator);

}

High-Level Synthesis www.xilinx.com 242
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=242

Chapter 10: Using HLS IP in a Zynq AP SoC Design
An interrupt service routine is required in order for the processor to respond to an interrupt
generated by a peripheral.

Each peripheral with an interrupt attached to the PS must have an ISR defined and
registered with the PS’s interrupt handler.

The ISR is responsible for clearing the peripheral’s interrupt and, in this example, setting a
flag that indicates that a result is available for retrieval from the peripheral. In general, ISRs
should be designed to be lightweight and as fast as possible, essentially doing the
minimum necessary to service the interrupt. Tasks such as retrieving the data should be left
to the main application code.

void hls_macc_isr(void *InstancePtr){
XHls_macc *pAccelerator = (XHls_macc *)InstancePtr;

//Disable the global interrupt
XHls_macc_InterruptGlobalDisable(pAccelerator);

 //Disable the local interrupt
XHls_macc_InterruptDisable(pAccelerator,0xffffffff);

// clear the local interrupt
XHls_macc_InterruptClear(pAccelerator,1);

ResultAvailHlsMacc = 1;
// restart the core if it should run again
if(RunHlsMacc){
hls_macc_start(pAccelerator);

}
}

7. Define a routine to setup the PS interrupt handler and register the HLS peripheral’s ISR.

int setup_interrupt()
{
//This functions sets up the interrupt on the ARM
int result;
XScuGic_Config *pCfg = XScuGic_LookupConfig(XPAR_SCUGIC_SINGLE_DEVICE_ID);
if (pCfg == NULL){
print("Interrupt Configuration Lookup Failed\n\r");
return XST_FAILURE;

}
result = XScuGic_CfgInitialize(&ScuGic,pCfg,pCfg->CpuBaseAddress);
if(result != XST_SUCCESS){
return result;

}
// self-test
result = XScuGic_SelfTest(&ScuGic);
if(result != XST_SUCCESS){
return result;

}
// Initialize the exception handler
Xil_ExceptionInit();
// Register the exception handler
//print("Register the exception handler\n\r");
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,

 (Xil_ExceptionHandler)XScuGic_InterruptHandler,&ScuGic);
//Enable the exception handler
High-Level Synthesis www.xilinx.com 243
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=243

Chapter 10: Using HLS IP in a Zynq AP SoC Design
Xil_ExceptionEnable();
// Connect the Adder ISR to the exception table
//print("Connect the Adder ISR to the Exception handler table\n\r");
result = XScuGic_Connect(&ScuGic, XPAR_FABRIC_HLS_MACC_0_INTERRUPT_INTR,

 (Xil_InterruptHandler)hls_macc_isr,&HlsMacc);
if(result != XST_SUCCESS){
return result;

}
//print("Enable the Adder ISR\n\r");
XScuGic_Enable(&ScuGic,XPAR_FABRIC_HLS_MACC_0_INTERRUPT_INTR);
return XST_SUCCESS;

}

8. Define a software model of the HLS hardware functionality with which you can compare
reference results.

void sw_macc(int a, int b, int *accum, bool accum_clr)
{
 static int accum_reg = 0;
 if (accum_clr)

accum_reg = 0;
 accum_reg += a * b;
 *accum = accum_reg;
}

9. Modify main() to use the HLS device driver API and the functions defined above to test
the HLS peripheral hardware.

int main()
{
 print("Program to test communication with HLS MACC peripheral in PL\n\r");
 int a = 2, b = 21;
 int res_hw;
 int res_sw;
 int i;
 int status;

 //Setup the matrix mult
 status = hls_macc_init(&HlsMacc);
 if(status != XST_SUCCESS){

print("HLS peripheral setup failed\n\r");
exit(-1);

 }
 //Setup the interrupt
 status = setup_interrupt();
 if(status != XST_SUCCESS){

print("Interrupt setup failed\n\r");
exit(-1);

 }

 //set the input parameters of the HLS block
 XHls_macc_SetA(&HlsMacc, a);
 XHls_macc_SetB(&HlsMacc, b);
 XHls_macc_SetAccum_clr(&HlsMacc, 1);

 if (XHls_macc_IsReady(&HlsMacc))
print("HLS peripheral is ready. Starting... ");

 else {
High-Level Synthesis www.xilinx.com 244
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=244

Chapter 10: Using HLS IP in a Zynq AP SoC Design
print("!!! HLS peripheral is not ready! Exiting...\n\r");
exit(-1);

 }

 if (0) { // use interrupt
hls_macc_start(&HlsMacc);
while(!ResultAvailHlsMacc)

; // spin
res_hw = XHls_macc_GetAccum(&HlsMacc);
print("Interrupt received from HLS HW.\n\r");

 } else { // Simple non-interrupt driven test
XHls_macc_Start(&HlsMacc);

do {
res_hw = XHls_macc_GetAccum(&HlsMacc);

 } while (!XHls_macc_IsReady(&HlsMacc));
print("Detected HLS peripheral complete. Result received.\n\r");

 }

 //call the software version of the function
 sw_macc(a, b, &res_sw, false);

 printf("Result from HW: %d; Result from SW: %d\n\r", res_hw, res_sw);
 if (res_hw == res_sw) {

print("*** Results match ***\n\r");
status = 0;

 }
 else {

print("!!! MISMATCH !!!\n\r");
status = -1;

 }

 cleanup_platform();
 return status;
}

10. Save the modified source file. When you save the file, SDK automatically attempts to
re-build the application executable. If the build fails, fix any outstanding issues.

Run the new application on the hardware and verify that it works as expected. Ensure that
a TCF hardware server is running, that the FPGA is programmed and a terminal session is
connected to the UART. Then Launch on Hardware, as you did for the previous Hello World
application code.

Upon success, the Terminal session looks similar to Figure 10-27.

X-Ref Target - Figure 10-27

Figure 10-27: Console Output with Updated C Program
High-Level Synthesis www.xilinx.com 245
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=245

Chapter 10: Using HLS IP in a Zynq AP SoC Design
Lab 2: Streaming Data Between the Zynq CPU and
HLS Accelerator Blocks
This lab illustrates a common high-performance connection scheme for connecting
hardware accelerator blocks that consume data originating in the CPU memory and/or
producing data destined for it, in a streaming manner.

• This tutorial uses the same Vivado HLS and XFFT IP blocks created in Lab 1 of the
tutorial “Using HLS IP in IP Integrator”. In this lab exercise these blocks are connected
to the HP0 Slave AXI4 port on a Zynq7 processing system via an AXI DMA IP core.

• The hardware accelerator blocks are free-running and do not require drivers; as long as
data is pushed in and pulled out by the CPU (often simply referred to as the Processing
System or PS).

• The lab highlights the software requirements to avoid cache coherency issues.

Step 1: Generate the HLS IP
1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as

shown in Figure 10-27.

2. Run Vivado HLS to create two HLS IP blocks by typing vivado_hls –f run_hls.tcl.

When the script completes, there are two Vivado HLS project directories, fe_vhls_prj
and be_vhls_prj, which contain the HLS IP, including the Vivado IP Catalog archives for
use in Vivado designs.

• The “front-end” IP archive is located at fe_vhls_prj/IPXACTExport/impl/ip/

• The “back-end” IP archive is located at be_vhls_prj/IPXACTExport/impl/ip/

Step 2: Create a Vivado Design Suite Project
1. Launch the Vivado Design Suite (not Vivado HLS):

X-Ref Target - Figure 10-28

Figure 10-28: Setup for Zynq Lab 2
High-Level Synthesis www.xilinx.com 246
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=246

Chapter 10: Using HLS IP in a Zynq AP SoC Design
° On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado 2016.1.

° On Linux, type vivado in the shell.

2. From the Welcome screen, select Create New Project.

3. Click Next on the first page of the Create a New Vivado Project wizard.

4. Click the ellipsis button to the right of the Project location text entry box and browse to
the lab2 tutorial directory.

5. Set the project name to project_1, if it is not already specified.

6. Click Next to move to the Project Type page of the wizard.

a. Select RTL Project.

b. Select do not specify sources at this time (if not the default); just click Next.

7. On the Default Part page, under Specify, click Boards and select the ZYNQ-7 ZC702
Evaluation Board. Click Next.

8. On the New Project Summary Page, click Finish to complete the new project setup.

Step 3: Add HLS IP to an IP Repository
1. In the Project Manager area of the Flow Navigator pane, click IP Catalog.

2. The IP Catalog appears in the main pane of the workspace. Click the IP Settings icon.

3. In the IP section of the Project Settings dialog box, click the “+” symbol to Add
Repository.

4. In the IP Repositories dialog box:

a. Browse to the lab2 tutorial directory .

b. Click the Create New Folder icon.

c. Enter vivado_ip_repo in the resulting dialog box.

d. Click OK.

e. Click Select to close the IP Repository window.

5. On returning to the IP Setting dialog box:

a. Click the “+” symbol to Add IP.

b. In the IP Repositories dialog box, browse to the location of the HLS IP
lab2/hls_designs/fe_vhls_prj/IPXACTExport/impl/ip/ or, if using IP
created in previous tutorial, browse to the corresponding path.

c. Select the xilinx_com_hls_hls_real2xfft_1_00_a.zip file.

d. Click OK.
High-Level Synthesis www.xilinx.com 247
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=247

Chapter 10: Using HLS IP in a Zynq AP SoC Design
6. Follow the same procedure to add the second HLS IP package, in directory
lab2/hls_designs/be_vhls_prj/IPXACTExport/impl/ip/, to the repository:
xilinx_com_hls_hls_xfft2real_1_00_a.zip.

7. The new HLS IP now appears in the IP Setting dialog box.

8. Click OK to exit the dialog box.

9. There is now HLS IP in the IP Catalog (Hls_real2xfft and Hls_xfft2real).

Step 4: Create a Top-level Block Design
1. Click Create Block Diagram under IP Integrator in the Flow Navigator.

a. In the resulting dialog box, name the design Zynq_RealFFT.

b. Click OK.

2. In the Diagram tab, click the Add IP button to add IP

a. In the Search box, type fourier.

b. Select the Fast Fourier Transform and double-click with the mouse.

3. Double-click the new Fast Fourier Transform IP symbol to open the Re-customize IP
dialog box. On the Configuration tab:

a. Change the Transform Length to 512.

b. Change the Target Clock Frequency to 100 MHz.

c. In the Architecture Choice section, select Pipelined, Streaming I/O.

4. Select the Implementation tab:

a. Select ARESETN (active-Low) in the Control Signals group.

b. Verify that Bit/Digit Reversed Order is selected under Output Ordering Options.

c. Verify that Non Real Time is selected as Throttle Scheme.

d. Click OK to exit Re-customize IP dialog

5. Add one instance of each of the HLS generated blocks to the design.

a. Right-click in any space in the canvas and select Add IP.

b. Type hls into the Search text entry box.

c. Highlight both IPs. (Click the control key and select both.)

d. Press Enter.

6. Connect the HLS blocks to the FFT block.

a. Mouse over the dout interface connector of the hls_real2xftt block until a
pencil cursor appears.
High-Level Synthesis www.xilinx.com 248
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=248

Chapter 10: Using HLS IP in a Zynq AP SoC Design
b. Left-click and hold down the mouse button to start a connection.

c. Drag the connection line to the S_AXIS_DATA input port connector of the FFT block
and release when a green check mark appears next to it.

7. In a similar fashion:

a. Connect the FFT’s M_AXIS_DATA interface to the din input interface of the
hls_xfft2real block.

8. Put the data processing blocks into their own level of hierarchy.

a. Select everything in the current digram by pressing Ctrl+A.

b. Right-click the canvas and select Create Hierarchy from the context menu.

c. In the Create Hierarchy dialog box, enter RealFFT as the Cell name.

d. Ensure that the Move ‘3’ selected blocks to new hierarchy option is checked, as
shown in Figure 10-30.

X-Ref Target - Figure 10-29

Figure 10-29: Create a Hierarchy Block
High-Level Synthesis www.xilinx.com 249
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=249

Chapter 10: Using HLS IP in a Zynq AP SoC Design
e. Click OK.

The diagram will appear as shown in Figure 10-31.

Add pins to the RealFFT hierarchical block so that you can connect it at the top-level.

9. Double-click the RealFFT block to open its diagram.

X-Ref Target - Figure 10-30

Figure 10-30: Name Hierarchy Block

X-Ref Target - Figure 10-31

Figure 10-31: New Hierarchy Block
High-Level Synthesis www.xilinx.com 250
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=250

Chapter 10: Using HLS IP in a Zynq AP SoC Design
10. Right-click the din_V_V pin of the hls_real2xfft_0 block and select Create
Interface Pin from the context menu.

X-Ref Target - Figure 10-32

Figure 10-32: RealFFT Diagram
High-Level Synthesis www.xilinx.com 251
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=251

Chapter 10: Using HLS IP in a Zynq AP SoC Design
11. In the Create Interface Pin dialog box, change the Interface name to
realfft_s_axis_din.

a. Accept all other defaults and click OK.

12. Right-click the ap_clk pin of the hls_real2xfft_1 block and select Create Pin from
the context menu.

X-Ref Target - Figure 10-33

Figure 10-33: Creating an Interface Pin

X-Ref Target - Figure 10-34

Figure 10-34: Naming an Interface Pin
High-Level Synthesis www.xilinx.com 252
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=252

Chapter 10: Using HLS IP in a Zynq AP SoC Design
a. Change the name to aclk and click OK.

After you create this clock pin, the RealFFT diagram appears as shown in Figure 10-36.

13. Following the procedures in steps 10 to 12:

a. Create an interface pin called realfft_m_axis_dout connected to the dout_V
pin of the hls_xfft2real component.

b. Create a pin for aresetn (from any one of the blocks).

X-Ref Target - Figure 10-35

Figure 10-35: Create a Clock Pin

X-Ref Target - Figure 10-36

Figure 10-36: RealFFT Diagram with Interface Pin and Clock Pin
High-Level Synthesis www.xilinx.com 253
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=253

Chapter 10: Using HLS IP in a Zynq AP SoC Design
After this step, the RealFFT diagram appears as shown in Figure 10-37.

Finalize RealFFT block internal connections. The ap_start pins for the HLS blocks are
tied HIGH, and the aclk and aresetn pins on all blocks are tied together.

14. Right-click the canvas and select Add IP from the context menu.

a. Type const into the search box and press Enter.

b. Double-click the xlconstant_0 component and verify that the Const Val field in
the Customize IP dialog is set to 1.

X-Ref Target - Figure 10-37

Figure 10-37: RealFFT Diagram with All Pins
High-Level Synthesis www.xilinx.com 254
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=254

Chapter 10: Using HLS IP in a Zynq AP SoC Design
15. Expand the ap_ctrl interface by clicking the + sign next to it on the hls_real2xfft
and hls_xfft2real block symbols and:

a. Connect the output pin of xlconstant_0 to the ap_start pin of
hls_real2xfft_0.

b. Connect the output pin of xlconstant_0 to the ap_start pin of
hls_xfft2real_0.

16. Similarly, connect all remaining component dout_V and reset pins to the RealFFT
block diagram aclk and aresetn pins respectively.

17. Add another xlconstant block and configure it with a Const Width of 16 and Const
Val of 0.

18. Expand the S_AXIS_CONFIG interface of the FFT block and connect
s_axis_config_tdata and s_axis_config_tvalid to the new constant block.

Leave all other output pins of the components disconnected. The final RealFFT diagram
appears with the connections shown in Figure 10-39.

X-Ref Target - Figure 10-38

Figure 10-38: Create a Constant 1 Tie-Off
High-Level Synthesis www.xilinx.com 255
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=255

Chapter 10: Using HLS IP in a Zynq AP SoC Design
19. Close the RealFFT diagram tab and return to the top-level Zynq_RealFFT diagram.

20. Create the Zynq system.

a. Right-click the canvas of the top-level diagram and select Add IP from the context
menu.

b. Type zynq in the search box, select ZYNQ7 Processing System and press Enter.

c. Notice that designer assistance is available and click the Run Block Automation
link. Accept the defaults in the dialog by clicking OK.

d. Double-click the processing_system7_0 component to enter the Re-customize IP
wizard for the ZYNQ7.

e. Click the Presets button near the top of the wizard screen, select the ZC702
Development Board Template, and click OK.

f. Click PS-PL Configuration in the Page Navigator pane on the left of the wizard.

g. Expand the HP Slave AXI Interface category and check the box for the S AXI HP0
interface, leaving the S AXI HP0 DATA WIDTH at 64.

X-Ref Target - Figure 10-39

Figure 10-39: Final RealFFT Diagram
High-Level Synthesis www.xilinx.com 256
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=256

Chapter 10: Using HLS IP in a Zynq AP SoC Design
h. Select Clock Configuration in the Page Navigator, expand PL Fabric Clocks, and
change the requested frequency to 100 (MHz).

i. Leave all other settings at their defaults; click OK to apply customizations.

21. Make a connection from RealFFT block’s realffft_s_axis_din to Zynq AP SoC’s S_AXI_HP0,
accept the defaults in the Make Connection dialog and click OK.

IPI will place several new blocks require to complete the connection automatically,
including an AXI DMA core, an AXI Interconnect and a Processor System Reset block.

X-Ref Target - Figure 10-40

Figure 10-40: Configuring Port HP0

X-Ref Target - Figure 10-41

Figure 10-41: Configuring the Clock
High-Level Synthesis www.xilinx.com 257
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=257

Chapter 10: Using HLS IP in a Zynq AP SoC Design
22. Make a connection from the RealFFT block’s realfft_m_axis_dout to the Zynq’s
S_AXI_HP0 interface. Accepting the defaults in the Make Connection dialog will cause IPI
to use the existing AXI DMA (which has an unused write channel) and AXI Interconnect
to make the ‘S2MM’ connection.

23. Note that Designer Assistance is again available. Run Connection Automation on
/axi_dma/S_AXI_LITE and click OK in the resulting dialog box.

24. Connect the aclk and aresetn ports of the RealFFT hierarchical block to nets
processing_system7_0 pin FCLK_CLK0 and rst_processing_system7_0_100M pin
peripheral_aresetn respectively.

25. To complete the design, run Validate Design. When validation completes successfully,
the block diagram should look like Figure 10-42.

Step 5: Implementing the System

Before proceeding with the system design, you must generate implementation sources and
create an HDL wrapper as the top-level module for synthesis and implementation.

1. Return to the Project Manager view by clicking Project Manager in the Flow Navigator.

2. In the Sources browser in the main workspace pane, a Block Diagram object called
Zynq_ RealFFT appears at the top of the Design Sources tree view. Right-click this
object and select Generate Output Products.

X-Ref Target - Figure 10-42

Figure 10-42: Zynq Diagram with Internal Connections
High-Level Synthesis www.xilinx.com 258
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=258

Chapter 10: Using HLS IP in a Zynq AP SoC Design
3. In the resulting dialog box, click OK to start the process of generating the necessary
source files.

4. Right-click the Zynq_RealFFT object again, select Create HDL Wrapper, and click OK
to exit the resulting dialog box.

The top-level of the Design Sources tree becomes the Zynq_ RealFFT _wrapper.v file.
You are now ready to synthesize, implement, and generate an FPGA programming bitstream
for the design.

5. Click Generate Bitstream to initiate the remainder of the flow.

6. In the dialog that appears after bitstream generation has completed, select Open
Implemented Design and click OK.

Step 6: Setup SDK and Test the ZYNQ System
You are now ready to export the design to Xilinx SDK. In SDK, you create software to run on
a ZC702 board (if available). A driver for the HLS block was generated during HLS export of
the Vivado IP Catalog package and must be made available in SDK for the PS7 software to
communicate with the block.

1. From the Vivado File menu select Export > Export Hardware for SDK.

Note: Both the IPI Block Design and the Implemented Design must be open in the Vivado
workspace for this step to complete successfully.

2. In the Export Hardware for SDK dialog box, ensure that the Include Bitstream option is
checked, and click OK.

3. From the Vivado File menu, select Launch SDK.

4. Click OK to launch SDK.

5. Create a Hello World application (also creates BSP).

a. Select File > New > Application Project.

b. Enter the project name Zynq_RealFFT_Test.

c. Click Next.

d. Select Hello World (if it is not the default).

e. Click Finish.

6. Power up the ZC702 board and program the FPGA.

Ensure the board has all the connections to allow you to download the bitstream on the
FPGA device. Refer to the documentation that accompanies the ZC702 development
board.

7. Click XilinxTools > Program FPGA. The Done LED (DS3) goes on.
High-Level Synthesis www.xilinx.com 259
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=259

Chapter 10: Using HLS IP in a Zynq AP SoC Design
8. Set up a Terminal in the tab at bottom of workspace:

a. Click the Connect icon.

b. Select Connection Type > Serial.

c. Select the COM port to which the USB UART cable is connected (generally not COM1
or COM3). On Windows, if you are not sure, open the Device Manager and identify
the port with the Silicon Labs driver under Ports (COM & LPT).

d. Change the Baud Rate to 115200.

e. Click OK to exit Terminal Settings dialog box.

f. Check that terminal is connected by message in tab title bar.

9. Right-click application project Zynq_Design_Test in the Explorer pane.

a. Select Run As > Launch on Hardware.

10. Switch to the Terminal tab and confirm that Hello World was received.

11. This project uses the C math library (libm), so you must adjust the build settings to link
to it.

a. Right-click the zynq_realfft_test project in the Project Explorer pane and select
C/C+ Build Settings (Figure 10-43).

T

b. Add the ARM gcc linker libraries.

i. In the Tool Settings tab, select ‘ARM gcc linker’ > Libraries.

ii. Click the Add icon.

X-Ref Target - Figure 10-43

Figure 10-43: Specify C/C++ Build Settings
High-Level Synthesis www.xilinx.com 260
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=260

Chapter 10: Using HLS IP in a Zynq AP SoC Design
c. Enter m in the text field in the Enter Value dialog box and click OK.

d. Click OK to exit the Properties for the zynq_realfft_test dialog box.

Step 7: Modify software to communicate with HLS block
The completely modified source file is available in the arm_code directory of the tutorial
file set. The modifications are discussed in detail below.

X-Ref Target - Figure 10-44

Figure 10-44: C/C++ Build Settings

X-Ref Target - Figure 10-45

Figure 10-45: Library Setting
High-Level Synthesis www.xilinx.com 261
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=261

Chapter 10: Using HLS IP in a Zynq AP SoC Design
1. Open the helloworld.c source file.

2. Several BSP (and standard C) header files must be included:

#include <stdlib.h> // Std C functions, e.g. exit()
#include <math.h> // libm header: sqrt(), cos(), etc
#include "xparameters.h" // System parameter definitions
#include "xaxidma.h" // Device driver API for AXI DMA

3. Define the (real data) transform length of the FFT:

#define REAL_FFT_LEN 1024

4. Define a custom complex data type with 16-bit real and imaginary members:

typedef struct {
 short re;
 short im;
} complex16;

5. Declare helper functions before the definition of main(); they will be defined later.

Note: The init_dma() function wraps up all run-once, initialization AXI DMA driver API calls and
checks that hardware initialization is successful before returning or exiting on an error condition.
The generate_waveform() function fills an array with a simple, periodic waveform to be used as
input stimulus for the RealFFT accelerator.

int init_dma(XAxiDma *axiDma);
void generate_waveform(short *signal_buf, int num_samples);

6. Modify main() to generate and send input data to the RealFFT accelerator and receive
the spectral data from it via the AXI DMA engine. Sections of particular importance will
be discussed in detail.

// Program entry point
int main()
{

a. Declare an XAxiDma instance to use as a handle to the AXI DMA hardware:

// Declare a XAxiDma object instance
XAxiDma axiDma;

b. Declare variable for local data storage:

// Local variables
int i, j;
int status;
static short realdata[4*REAL_FFT_LEN];

 volatile static complex16 realspectrum[REAL_FFT_LEN/2];

c. Run platform and DMA initialization functions:

 // Initialize the platform
 init_platform();
 print("---------------------------------------\n\r");
 print("- RealFFT PL accelerator test program -\n\r");
High-Level Synthesis www.xilinx.com 262
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=262

Chapter 10: Using HLS IP in a Zynq AP SoC Design
 print("---------------------------------------\n\r");

 // Initialize the (simple) DMA engine
 status = init_dma(&axiDma);
 if (status != XST_SUCCESS) {
 exit(-1);
 }

d. Generate a stimulus waveform:

 // Generate a waveform to be input to FFT
 for (i = 0; i < 4; i++)
 generate_waveform(realdata + i * REAL_FFT_LEN, REAL_FFT_LEN);

e. Before making the DMA transfer request, the buffer containing the data must be
flushed from the processor’s data cache. Without this step, the DMA might pull stale
data from the DRAM.

 // *IMPORTANT* - flush contents of 'realdata' from data cache to memory
 // before DMA. Otherwise DMA is likely to get stale or uninitialized data
 Xil_DCacheFlushRange((unsigned)realdata, 4 * REAL_FFT_LEN * sizeof(short));

f. Request DMA transfer from PS to PL. Enough data to fill the front-end block and the
FFT processing pipelines must be sent in order for spectral data to be ready when
the PL to PS transfer is requested. Therefore, four data sets are sent before the first
output set is requested:

 // DMA enough data to push out first result data set completely
 status = XAxiDma_SimpleTransfer(&axiDma, (u32)realdata,

 4 * REAL_FFT_LEN * sizeof(short), XAXIDMA_DMA_TO_DEVICE);

 // Do multiple DMA xfers from the RealFFT core's output stream and
 // display data for bins with significant energy. After the first frame,
 // there should only be energy in bins around the frequencies specified
 // in the generate_waveform() function - currently bins 191~193 only
 for (i = 0; i < 8; i++) {

g. Request DMA transfer of a frame of FFT spectral data from PL to PS then poll for
completion of the transfer before proceeding.

// Setup DMA from PL to PS memory using
// AXI DMA's 'simple' transfer mode
status = XAxiDma_SimpleTransfer(&axiDma, (u32)realspectrum,
REAL_FFT_LEN / 2 * sizeof(complex16), XAXIDMA_DEVICE_TO_DMA);

 // Poll the AXI DMA core
do {

status = XAxiDma_Busy(&axiDma, XAXIDMA_DEVICE_TO_DMA);
} while(status);

h. Before attempting to use the spectral data, the processor’s data cache copy of the
buffer must be invalidated to avoid use of stale data.

 // Data cache must be invalidated for 'realspectrum' buffer after DMA
 Xil_DCacheInvalidateRange((unsigned)realspectrum,
 REAL_FFT_LEN / 2 * sizeof(complex16));

i. Push another set of stimulus data to the PL in order to start the accelerator
processing the next frame:
High-Level Synthesis www.xilinx.com 263
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=263

Chapter 10: Using HLS IP in a Zynq AP SoC Design
// DMA another frame of data to PL
if (!XAxiDma_Busy(&axiDma, XAXIDMA_DMA_TO_DEVICE))

status = XAxiDma_SimpleTransfer(&axiDma, (u32)realdata,
REAL_FFT_LEN * sizeof(short), XAXIDMA_DMA_TO_DEVICE);

printf("\n\rFrame #%d received:\n\r");

j. Do something to verify that the accelerator is functioning. In this case, the spectral
data is scanned for bins that contain significant energy. The expectation is to detect
only energy in bins around the single tone (192) generated by the
generate_waveform() function.

// Detect energy in spectral data above a set threshold
for (j = 0; j < REAL_FFT_LEN / 2; j++) {

// Convert the fixed point (s.15) values into floating point values
float real = (float)realspectrum[j].re / 32767.0f;
float imag = (float)realspectrum[j].im / 32767.0f;
float mag = sqrtf(real * real + imag * imag);
if (mag > 0.00390625f) {

printf("Energy detected in bin %3d - ",j);
printf("{%8.5f, %8.5f}; mag = %8.5f\n\r", real, imag, mag);

}
}
printf("End of frame.\n\r");

}
printf("***************\n\r");
printf("* End of test *\n\r");
printf("***************\n\r\n\r");
return 0;

}

7. Define the helper function that generates the waveform data sets. This version simply
fills a buffer with a single tone with 192 cycles per num_samples data window with
values in a S.15 fixed point format.

void generate_waveform(short *signal_buf, int num_samples)
{
 const float cycles_per_win = 192.0f;
 const float phase = 0.0f;
 const float ampl = 0.9f;
 int i;
 for (i = 0; i < num_samples; i++) {
 float sample = ampl *
 cosf((i * 2 * M_PI * cycles_per_win / (float)num_samples) + phase);
 signal_buf[i] = (short)(32767.0f * sample);
 }
}

8. Define a routine to set up the and initialize the AXI DMA engine, wrapping all driver API
calls that only need to be run once at startup.

int init_dma(XAxiDma *axiDmaPtr){
 XAxiDma_Config *CfgPtr;
 int status;
 // Get pointer to DMA configuration
 CfgPtr = XAxiDma_LookupConfig(XPAR_AXIDMA_0_DEVICE_ID);
 if(!CfgPtr){
 print("Error looking for AXI DMA config\n\r");
High-Level Synthesis www.xilinx.com 264
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=264

Chapter 10: Using HLS IP in a Zynq AP SoC Design
 return XST_FAILURE;
 }
 // Initialize the DMA handle
 status = XAxiDma_CfgInitialize(axiDmaPtr,CfgPtr);
 if(status != XST_SUCCESS){
 print("Error initializing DMA\n\r");
 return XST_FAILURE;
 }
 //check for scatter gather mode - this example must have simple mode only
 if(XAxiDma_HasSg(axiDmaPtr)){
 print("Error DMA configured in SG mode\n\r");
 return XST_FAILURE;
 }
 //disable the interrupts
 XAxiDma_IntrDisable(axiDmaPtr, XAXIDMA_IRQ_ALL_MASK,XAXIDMA_DEVICE_TO_DMA);
 XAxiDma_IntrDisable(axiDmaPtr, XAXIDMA_IRQ_ALL_MASK,XAXIDMA_DMA_TO_DEVICE);

 return XST_SUCCESS;
}

9. Save the modified source file. As soon as you save the file, SDK automatically attempts
to re-build the application executable. If the build fails, fix any outstanding issues.

10. Run the new application on the hardware and verify that it works as expected. Ensure
that the FPGA is programmed and a terminal session is connected to the UART. Then
Launch on Hardware, as done for the previous Hello World application code.

Conclusion
In this tutorial, you learned:

• How to create Vivado HLS IP using a Tcl script.

• How to import an HLS design as IP into IP Integrator.

• How to connect HLS IP to a Zynq AP SoC using AXI4-Lite interfaces and AXI4-Stream
interfaces.

• How to configure HLS IP with AXI4-Lite in software.

• How to control DMAs using AXI4-Stream in software.
High-Level Synthesis www.xilinx.com 265
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=265

Chapter 11

Using HLS IP in System Generator for DSP

Overview
The RTL created by High-Level Synthesis can be packaged as IP and used inside System
Generator for DSP (Vivado). This tutorial shows how this process is performed and
demonstrates how the design can be used inside System Generator for DSP.

This tutorial consists of a single lab exercise.

Lab 1 Description
Generates a design using Vivado HLS and package the design for use with System Generator
for DSP. Then include the HLS IP into a System Generator for DSP design and execute an RTL
simulation.

Tutorial Design Description
You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory Vivado_HLS_Tutorial\
Using_IP_with_SysGen.

The sample design is a FIR filter that uses streaming interfaces modeled with the High-Level
Synthesis hls::stream class. The design is fully pipelined at the function level. The
optimization directives are embedded into the C code as pragmas.

Lab 1: Package HLS IP for System Generator
This lab exercise integrates the High-Level Synthesis IP into System Generator for DSP.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial.
High-Level Synthesis www.xilinx.com 266
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=266

Chapter 11: Using HLS IP in System Generator for DSP
If the tutorial data directory is unzipped to a different location, or on Linux systems, adjust the few
pathnames referenced, to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create a Vivado HLS IP Block
Create two HLS blocks for the Vivado IP Catalog using the provided Tcl script. The script
runs HLS C-synthesis, runs RTL co-simulation, and package the IP for the two HLS designs
(hls_real2xfft and hls_xfft2real).

1. Open the Vivado HLS Command Prompt.

° On Windows, go to Start > All Programs > Xilinx Design Tools > Vivado 2016.1
> Vivado HLS > Vivado HLS 2016.1 Command Prompt.

° On Linux, open a new shell.

2. Using the command prompt window, change the directory to
Vivado_HLS_Tutorial\Using_IP_with_SysGen\lab1.

3. Type vivado_hls –f run_hls.tcl to create the HLS IP.

X-Ref Target - Figure 11-1

Figure 11-1: Vivado HLS Command Prompt

X-Ref Target - Figure 11-2

Figure 11-2: Create the HLS Design
High-Level Synthesis www.xilinx.com 267
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=267

Chapter 11: Using HLS IP in System Generator for DSP
A key aspect of the Tcl script used to create this IP is the command export_design –
format sysgen. This command creates an IP package for System Generator. When the
script completes there is a Vivado HLS project directories fir_prj, which contains the HLS
IP, including the IP package for use in a System Generator for DSP design.

The remainder of this tutorial exercise shows how to integrate the Vivado HLS IP block into
a System Generator design.

Step 2: Open the System Generator Project
1. Open System Generator for DSP.

° On Windows use the desktop icon.

° On Linux, open a new shell and type sysgen.

2. When Matlab invokes, click the Open toolbar button. As shown in Figure 11-4.

3. Navigate to the tutorial directory
Vivado_HLS_Tutorial\Using_IP_with_SysGen\lab1 and select the file
fir_sysgen.slx, as shown in Figure 11-5.

X-Ref Target - Figure 11-3

Figure 11-3: System Generator Icon

X-Ref Target - Figure 11-4

Figure 11-4: Open the System Generator Design
High-Level Synthesis www.xilinx.com 268
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=268

Chapter 11: Using HLS IP in System Generator for DSP
When System Generator invokes, all blocks and ports except the HLS IP are already
instantiated in the design.

4. Right-click in the canvas and select Xilinx BlockAdd, as shown in Figure 11-6.

X-Ref Target - Figure 11-5

Figure 11-5: Select File fir_sysgen.slx
High-Level Synthesis www.xilinx.com 269
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=269

Chapter 11: Using HLS IP in System Generator for DSP
5. Type hls in the Add Block field.

6. Select Vivado HLS.

7. Double-click the Vivado HLS block to open the Vivado HLS dialog box.

8. Navigate to the fir_prj project and click Choose to select the solution1 folder.

IMPORTANT: System Generator for DSP uses the location of the solution folder to identify the IP.

9. Click OK to load the IP block, as shown in Figure 11-8.

X-Ref Target - Figure 11-6

Figure 11-6: Adding a New Block

X-Ref Target - Figure 11-7

Figure 11-7: Selecting a Vivado HLS IP Block
High-Level Synthesis www.xilinx.com 270
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=270

Chapter 11: Using HLS IP in System Generator for DSP
The FIR IP block is instantiated into the design.

10. Connect the design I/O ports to the ports on the FIR IP block, as shown in Figure 11-9.

11. Ensure the simulation stop time says 300.

X-Ref Target - Figure 11-8

Figure 11-8: Selecting the FIR IP Block

X-Ref Target - Figure 11-9

Figure 11-9: Design with All Connections
High-Level Synthesis www.xilinx.com 271
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=271

Chapter 11: Using HLS IP in System Generator for DSP
12. Click the Run button on the toolbar to execute simulation.

13. Double-click the Scope block to view the simulation waveforms.

Conclusion
In this tutorial, you learned:

• How to create Vivado HLS IP using a Tcl script.

• How to import an HLS design as IP into System Generator for DSP.
High-Level Synthesis www.xilinx.com 272
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=272

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter: docnav

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.
High-Level Synthesis www.xilinx.com 273
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=273

Appendix A: Additional Resources and Legal Notices
References
1. Introduction to FPGA Design with Vivado High-Level Synthesis (UG998)

2. Vivado® Design Suite User Guide: High-Level Synthesis (UG902)

3. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

4. Vivado Design Suite Documentation

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. C-based Design: High-Level Synthesis with the Vivado HLS Tool Training Course

2. C-based HLS Coding for Hardware Designers Training Course

3. C-based HLS Coding for Software Designers Training Course

4. Vivado Design Suite QuickTake Video Tutorials

5. Vivado Design Suite QuickTake Video Tutorials: Vivado High-Level Synthesis

6. Vivado Design Suite QuickTake Video: Getting Started with High-Level Synthesis

7. Vivado Design Suite QuickTake Video: Verifying your Vivado HLS Design

8. Vivado Design Suite QuickTake Video: Analyzing your Vivado HLS Design

9. Vivado Design Suite QuickTake Video: Creating Different Types of Projects

10. Vivado Design Suite QuickTake Video: Designing with Vivado IP Integrator

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
High-Level Synthesis www.xilinx.com 274
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.2;t=vivado+release+notes
http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.2;t=vivado+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.2;d=ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/high-level-synthesis-with-vivado-hls.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/c-based-hld-coding-for-hardware-designers.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/c-based-hld-coding-for-software-designers.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-high-level-synthesis.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/getting-started-vivado-high-level-synthesis.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/verifying-your-vivado-hls-design.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/analyzing-your-vivado-hls-design.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/creating-different-types-of-projects.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/designing-with-vivado-ip-integrator.html
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=274

Appendix A: Additional Resources and Legal Notices
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2012-2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.
High-Level Synthesis www.xilinx.com 275
UG871 (v2016.1) April 6, 2016

Send Feedback
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=275

	Vivado Design Suite Tutorial: High-Level Synthesis
	Revision History
	Table of Contents
	Ch. 1: Tutorial Description
	Overview
	High-Level Synthesis Introduction
	C Validation
	Interface Synthesis
	Arbitrary Precision Types
	Design Analysis
	Design Optimization
	RTL Verification
	Using HLS IP in IP Integrator
	Using HLS IP in a Zynq AP SoC Design
	Using HLS IP in System Generator for DSP

	Software Requirements
	Hardware Requirements
	Locating the Tutorial Design Files
	Preparing the Tutorial Design Files

	Ch. 2: High-Level Synthesis Introduction
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description

	Tutorial Design Description
	Lab 1: Creating a High-Level Synthesis Project
	Introduction
	Step 1: Creating a New Project
	Understanding the Graphical User Interface (GUI)

	Step 2: Validate the C Source Code
	Step 3: High-Level Synthesis
	Step 4: RTL Verification
	Step 5: IP Creation

	Lab 2: Using the Tcl Command Interface
	Introduction
	Step 1: Create a Tcl file

	Lab 3: Using Solutions for Design Optimization
	Introduction
	Step 1: Creating a New Project
	Step 2: Optimize the I/O Interfaces
	Step 3: Analyze the Results
	Step 4: Optimize for the Highest Throughput (Lowest Interval)

	Conclusion

	Ch. 3: C Validation
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description

	Tutorial Design Description
	Lab 1: C Validation and Debug
	Overview
	Step 1: Create and Open the Project
	Step 2: Review Test Bench and Run C Simulation
	Step 3: Run the C Debugger

	Lab 2: C Validation with ANSI C Arbitrary Precision Types
	Introduction
	Step 1: Create and Open the Project
	Step 2: Run the C Debugger

	Lab 3: C Validation with C++ Arbitrary Precision Types
	Overview
	Step 1: Create and Open the Project
	Step 2: Run the C Debugger

	Conclusion

	Ch. 4: Interface Synthesis
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description
	Lab 4 Description

	Tutorial Design Description
	About the Labs

	Lab 1: Block-Level I/O Protocols
	Overview
	Step 1: Create and Open the Project
	Step 2: Create and Review the Default Block-Level I/O Protocol
	Step 3: Modify the Block-Level I/O protocol

	Lab 2: Port I/O Protocols
	Overview
	Step 1: Create and Open the Project
	Step 2: Specify the I/O Protocol for Ports

	Lab 3: Implementing Arrays as RTL Interfaces
	Introduction
	Step 1: Create and Open the Project
	Step 2: Synthesize Array Function Arguments to RAM Ports
	Step 3: Using Dual-Port RAM and FIFO Interfaces
	Step 4: Partitioned RAM and FIFO Array interfaces
	Step 5: Fully Partitioned Array Interfaces

	Lab 4: Implementing AXI4 Interfaces
	Introduction
	Step 1: Create and Open the Project
	Step 2: Create an Optimized Design with AXI4-Stream Interfaces
	Step 3: Implementing an AXI4-Lite Interfaces

	Conclusion

	Ch. 5: Arbitrary Precision Types
	Overview
	Lab 1 Description
	Lab 2 Description

	Tutorial Design Description
	Lab 1: Arbitrary Precision
	Step 1: Create and Open the Project
	Step 2: Review Test Bench and Run C Simulation
	Step 3: Synthesize the Design and Review Results

	Lab 2: Arbitrary Precision
	Introduction
	Step 1: Create and Simulate the Project
	Step 2: Synthesize the Design and Review Results

	Conclusion

	Ch. 6: Design Analysis
	Overview
	Lab 1 Description

	Tutorial Design Description
	Lab 1: Design Optimization
	Step 1: Create and Open the Project
	Step 2: Review the Source Code and Create the Initial Design
	Step 3: Review the Performance Using the Synthesis Report
	Step 4: Review the Performance Using the Analysis Perspective
	Step 5: Apply Loop Pipelining and Review for Loop Optimization
	Step 6: Apply Loop Optimization and Review for Bottlenecks
	Step 7: Partition Block RAMs and Analyze Concurrency
	Step 8: Partition Block RAMs and Apply Dataflow optimization
	Step 9: Optimize the Hierarchy for Dataflow

	Conclusion

	Ch. 7: Design Optimization
	Overview
	Lab 1 Description
	Lab 2 Description

	Tutorial Design Description
	Lab 1: Optimizing a Matrix Multiplier
	Step 1: Create and Open the Project
	Step 2: Synthesize and Analyze the Design
	Step 3: Pipeline the Product Loop
	Step 4: Pipeline the Col Loop
	Step 5: Reshape the Arrays
	Step 6: Apply FIFO Interfaces
	Step 7: Pipeline the Function

	Lab 2: C Code Optimized for I/O Accesses
	Step 1: Create and Open the Project

	Conclusion

	Ch. 8: RTL Verification
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description

	Tutorial Design Description
	Lab 1: RTL Verification and the C Test Bench
	Step 1: Create and Open the Project
	Step 2: Perform RTL Verification
	Step 3: Modify the C test bench

	Lab 2: Viewing Trace Files in Vivado
	Step 1: Create an RTL Trace File using Vivado Simulator

	Lab 3: Viewing Trace Files in ModelSim
	Step 1: Create an RTL Trace File using ModelSim
	Step 2: View the RTL Trace File in ModelSim

	Conclusion

	Ch. 9: Using HLS IP in IP Integrator
	Overview
	Lab 1 Description

	Tutorial Design Description
	Lab 1: Integrate HLS IP with a Xilinx IP Block
	Step 1: Create Vivado HLS IP Blocks
	Step 2: Create a Vivado Design Suite Project
	Step 3: Add HLS IP to an IP Repository
	Step 4: Create a Block Design for RealFFT
	Step 5: Verify the Design

	Conclusion

	Ch. 10: Using HLS IP in a Zynq AP SoC Design
	Overview
	Lab 1 Description
	Lab 2 Description

	Tutorial Design Description
	Lab 1: Implement Vivado HLS IP on a Zynq Device
	Step 1: Create a Vivado HLS IP Block
	Step 2: Create a Vivado Zynq Project
	Step 3: Add HLS IP to the IP Catalog
	Step 4: Creating an IP Integrator Block Design of the System
	Step 5: Implementing the System
	Step 6: Developing Software and Running it on the ZYNQ System
	Step 7: Modify software to communicate with HLS block

	Lab 2: Streaming Data Between the Zynq CPU and HLS Accelerator Blocks
	Step 1: Generate the HLS IP
	Step 2: Create a Vivado Design Suite Project
	Step 3: Add HLS IP to an IP Repository
	Step 4: Create a Top-level Block Design
	Step 5: Implementing the System
	Step 6: Setup SDK and Test the ZYNQ System
	Step 7: Modify software to communicate with HLS block

	Conclusion

	Ch. 11: Using HLS IP in System Generator for DSP
	Overview
	Lab 1 Description

	Tutorial Design Description
	Lab 1: Package HLS IP for System Generator
	Step 1: Create a Vivado HLS IP Block
	Step 2: Open the System Generator Project

	Conclusion

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

