Vivado Design Suite
Tutorial

High-Level Synthesis

UG871 (v2016.2) June 8, 2016

& XILINX

AAAAAAAAAAAAAAA .

& XILINX

ALL PROGRAMMABLE..

Revision History

06/08/2016: Released with Vivado Design Suite 2016.2 without changes from the previous version.

Date

Version

Revision

04/06/2016

2016.1

Updated the steps in the Lab 2: Viewing Trace Files in Vivado section.
Updated the figures in the following chapters:

« Chapter 2, High-Level Synthesis Introduction

« Chapter 3, C Validation

« Chapter 4, Interface Synthesis

« Chapter 5, Arbitrary Precision Types

« Chapter 6, Design Analysis

« Chapter 7, Design Optimization

« Chapter 8, RTL Verification

« Chapter 9, Using HLS IP in IP Integrator

« Chapter 10, Using HLS IP in a Zynq AP SoC Design

High-Level Synthesis

www.xilinx.com | Send Feedback I
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=2

& XILINX

ALL PROGRAMMABLE

Table of Contents

ReVISION HIiStOryo ittt i it ittt it ittt atenattnaetanesnnnsannsannnes 2

Chapter 1: Tutorial Description

OV VI W, .« ot ittt ittt ettt aeesaetanasosasosnsssasssassssnsosasssnnsonnssnnssns 6
Software ReqUirementS.t it ittt ittt e iieiiereenaeearaasncsaseasansansansnennns 7
Hardware ReqUirementso io ittt ittt titeteneeenaeeeneeenesenasennsennnsanns 8
Locating the Tutorial Design Files.coiiiiiiiiiiiiiniintinntneeneenennssnssnanens 8
Preparing the Tutorial Design Files.c ittt it it iieeiinetennsannnanns 8

Chapter 2: High-Level Synthesis Introduction

OV VIBW. « ot ittt ettt e nesseneansansossssssssnsanssnsssssssnsanssssonssssansass 9
Tutorial Design Description.ottt ittt ittt e it ieesetennansansaeensansansannns 9
Lab 1: Creating a High-Level Synthesis Projectcciiitiiiiiiiiiiieiiennnnnnnnns 10
Lab 2: Usingthe TclCommand Interfacec.itiiiiiiiiiieiiiineernennennnnnns 27
Lab 3: Using Solutions for Design Optimization..............c ittt rnnnnennn. 32
(07 T 0T 11T o T 45

Chapter 3: C Validation

OV VI W, & ottt ittt ittt ittt it nenaetanesosssosnsosasenasssnssonnsosnssannsannses 46
Tutorial Design Description. i ittt ittt ittt et iieetieartennsennsanassnnssanns 46
Lab1l:CValidationand Debugttt ittt ieiarnnraennenananns 47
Lab 2: C Validation with ANSI C Arbitrary Precision Typeso iveiiiiiiiiineinennnnnns 55
Lab 3: C Validation with C++ Arbitrary Precision Types. et ittt it ittt iieeinaennas 59
0o ol 1T o T 62

Chapter 4: Interface Synthesis

OV VW, + it ittt ittt te s s tensaasossossnsonsonsosssssnssnssnsossnssnossnsansans 63
Tutorial Design Description.o viii ittt ittt ititenteatsesnennsansssssasassnsanss 63
Lab 1: Block-Level I/O Protocols . ..o cviviti ittt ittt e iernenenensesenannanaenenns 64
Lab 2: POrt 1/ O ProtOCOIS . . v ottt ettt tte ittt eerneeneenenesnesaeensnssnsnnennsanes 72
Lab 3: Implementing Arraysas RTLInterfaces.ottt innennrnnnnannns 76
Lab 4: Implementing AXI4 Interfaces ci ittt ittt i et ettt a et e, 90
0o ol 1T To T 98

High-Level Synthesis www.xilinx.com Send Feedback
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=3

& XILINX

ALL PROGRAMMABLE

Chapter 5: Arbitrary Precision Types

OV VW, « ot ittt ittt tee e tessensnnsossessnsanssssossssenssnssssossnssossnsansans 99
Tutorial Design Description.ot ittt ittt et ittt ieeterearansaenasensansnnnnns 100
Lab 1: Arbitrary Precisionc.citiiiiiniiint i tienerenneeeneseneseansennnnns 100
Lab 2: Arbitrary Precisionciiiiiiiiiiiiiiiieieietenattaastanesaansannnans 106
Lo ol 11T o T 111

Chapter 6: Design Analysis

OV VIBW. « ot ittt ittt it testenssasansassnssnssnsassossnssnssnsansnssansnssnsas 112
Tutorial Design Description.t iit ittt ittt iieetenereneeenneenaseenanannans 113
Lab 1: Design Optimizationciiitiiiiiiii it tiinerinernnnesnnssnnssnnnans 113
Lo ol 1T o T 148

Chapter 7: Design Optimization

OV VIBW. « ottt ittt ettt te e s eensensansossnsssnssnsassassnssnssnsansnssonsnssnsas 149
Tutorial Design Description.ttt ittt ittt titeetnnereneeenneenneeenasannans 150
Lab 1: Optimizing a Matrix Multiplier.ottt i i i i ittt ieeennans 150
Lab 2: C Code Optimized for I/O ACCESSES . .. v v tvtentntneeeeneeeeneneeeeneeeenennenns 170
Lo ol [T T T 172

Chapter 8: RTL Verification

OV VI W, « ittt ittt ettt ittt teeteneassasenseneansassosensensansansnssnnsnssnsas 173
Tutorial Design Description.ottt ittt iieiieteeresnasentsasessassnsasnnns 173
Lab 1: RTL Verificationandthe CTestBench...........coiiiiiiiiiiiiiininnrnrnrnnnnns 174
Lab 2: Viewing Trace Files in Vivado.ciiiiiiiiiiiiintiinetinetenneennsennnnns 181
Lab 3: Viewing Trace FilesinModelSimottt ittt ittt iininntnannnans 186
Lo ol 11T o T 191

Chapter 9: Using HLS IP in IP Integrator

OV VIBW. « ot ittt ittt e ie e s tsnsaasansassnsssnsansassossnssnsansansnssonsnssnsas 192
Tutorial Design Description.ttt ittt ittt iieetnnereneeeaneenneeenasannans 192
Lab 1: Integrate HLS IP with a Xilinx IPBlock.ciiiiiiiiiii ittt it inaannns 193
Lo ol 1T o T 219

Chapter 10: Using HLS IP in a Zynq AP SoC Design

OV VIBW. « ot ittt ittt it testenssasansassnssnssnsassossnssnssnsansnssansnssnsas 220
Tutorial Design Description.ttt ittt ittt iieetenerenneennsenaeeenasannans 220
Lab 1: Implement Vivado HLS IPon aZyngDevicecoviiiinienennrnnrnneneansansas 221
Lab 2: Streaming Data Between the Zynq CPU and HLS AcceleratorBlocks 246
Lo ol [T T T 265

High-Level Synthesis www.xilinx.com Send Feedback
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=4

& XILINX

ALL PROGRAMMABLE

Chapter 11: Using HLS IP in System Generator for DSP

OV VW, + ot ittt tete e sessonsensassasessanssnsassasssssnsansanssssonssssnsas 266
Tutorial Design Description.ttt ittt et e tie it reerarnanansnesasnnsnnnnns 266
Lab 1: Package HLS IP for System Generatorcii ittt iitenernnernnerenneennnnns 266
(07 T Yol 11 oo 272

Appendix A: Additional Resources and Legal Notices

XiliNX RESOUINCES . o o vt ittt ittt ien et tneeneansansosssessssnsansonsssssssnnsnss 273
R o [T 4o T T =T =T 273
Documentation Navigatorand Design Hubs ittt rinnnrnnnnnns 273
3 ST =T =T 4T 274
TrainiNg RESOUICES. . oot i vt ittt it tonetsnnessessssssosasosasssnsssnsssansonnssns 274
Please Read: Important Legal Noticesciiiiiiiiiiinrnnernnerenerenneennnnns 274

High-Level Synthesis www.xilinx.com Send Feedback
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=5

& XILINX

ALL PROGRAMMABLE.

Chapter 1

Tutorial Description

Overview

This Vivado® tutorial is a collection of smaller tutorials that explain and demonstrate all
steps in the process of transforming C, C++ and SystemC code to an RTL implementation
using High-Level Synthesis. The tutorial shows how you create an initial RTL implementation
and then you transform it into both a low-area and high-throughput implementation by
using optimization directives without changing the C code.

High-Level Synthesis Introduction

This tutorial introduces Vivado High-Level Synthesis (HLS). You can learn the primary tasks
for performing High-Level Synthesis using both the Graphical User Interface (GUI) and Tcl
environments.

C Validation

This tutorial reviews the aspects of a good C test bench and demonstrates the basic
operations of the Vivado High-Level Synthesis C debug environment. The tutorial also
shows how to debug arbitrary precision data types.

Interface Synthesis

The interface synthesis tutorial reviews all aspect of creating ports for the RTL design. You
can learn how to control block-level I/O port protocols and port I/O protocols, how arrays
in the C function can be implemented as multiple ports and types of interface protocol
(RAM, FIFO, AXI4-Stream), and how AXI4 bus interfaces are implemented.

The tutorial completes with a design example in which the I/O accesses and the logic are
optimized together to create an optimal implementation of the design.
Arbitrary Precision Types

The lab exercises in this tutorial contrast a C design written in native C types with the same
design written with Vivado High-Level Synthesis arbitrary precision types, showing how the
latter improves the quality of the hardware results without sacrificing accuracy.

High-Level Synthesis www.xilinx.com Send Feedback 6
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=6

g: XILINX Chapter 1: Tutorial Description

ALL PROGRAMMABLE

Design Analysis

This tutorial uses a DCT function to explain the features of the interactive design analysis
features in Vivado High-Level Synthesis. The initial design takes you through a number of
analysis and optimization stages that highlight all the features of the analysis perspective
and provide the basis for a design optimization methodology.

Design Optimization

Using a matrix multiplier example, this tutorial reviews two-design optimization techniques.
The Design Optimization lab explains how a design can be pipelined, contrasting the
approach of pipelining the loops versus pipelining the functions.

The tutorial shows you how to use the insights learned from analyzing to update the initial
C code and create a more optimal implementation of the design.

RTL Verification

This tutorial shows how you can use the RTL cosimulation feature to automatically verify the
RTL created by synthesis. The tutorial demonstrates the importance of the C test bench and
shows you how to use the output from RTL verification to view the waveform diagrams in
the Vivado and Mentor Graphics ModelSim simulators.

Using HLS IP in IP Integrator

This tutorial shows how RTL designs created by High-Level Synthesis are packaged as IP,
added to the Vivado IP Catalog, and used inside the Vivado Design Suite.

Using HLS IP in @ Zynq AP SoC Design

In addition to using an HLS IP block in a Zynq®-7000 APSoC design, this tutorial shows how
the C driver files created by High-Level Synthesis are incorporated into the software on the
Zynq Processing System (PS).

Using HLS IP in System Generator for DSP

This tutorial shows how RTL designs created by High-Level Synthesis can be packaged as IP
and used inside System Generator for DSP.

Software Requirements

This tutorial requires that the Vivado Design Suite 2016.1 release or later is installed.

High-Level Synthesis www.xilinx.com Send Feedback 7
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=7

i: XILINX Chapter 1: Tutorial Description

ALL PROGRAMMABLE-

Hardware Requirements

Xilinx recommends a minimum of 2 GB of RAM when using the Vivado tools.

Locating the Tutorial Design Files

As shown in Figure 1-1, designs for the tutorial exercises are available as a zipped archive
on the Xilinx Website, tutorial documentation page.

ﬁ IMPORTANT: All the tutorial examples for Vivado High-Level Synthesis are available at: Reference

Design Files
) { -
(CIREATeeT— o [B &
e [Sy il e P e e - - - |
& httpy//wwwailink.com/support/documentatior O ~ B & X || € vivado Design Suit... |
4]
18/2012 Vivado Design Suite Tutorial: Programming and Debugging .
ugail
* Ug936-vivado-tutorial-program-debug.zip
b ent helpful? Ye:
01/25/2013 [\‘macfc Design Suite Tutorial: High-Level Synthesis l
Pr nformation on the Vivade High-Level Synthesis
t e Ipful? Ye:
18/2012 Vivado Design Suite Tutorial: Logic Simulation
Provides Xilinx designers with a detailed introduction of the Vivado Simulation software 3
Design File(s)
- ug937.zip
as this document helpful? Yes | No
] m »

Figure 1-1: High-Level Synthesis Tutorial Design Files

Preparing the Tutorial Design Files

Extract the zip file contents into any write-accessible location.

This tutorial assumes that you have placed the unzipped design files in the location
C:\Vivado HLS Tutorial.

ﬁ IMPORTANT: /f the Vivado_HLS_Tutorial directory is unzipped to a different location, or if it resides on
Linux, adjust the pathnames to the location at which you have placed the Vivado_HLS_Tutorial
directory.

High-Level Synthesis www.xilinx.com Send Feedback 8
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://secure.xilinx.com/webreg/clickthrough.do?cid=419471
http://secure.xilinx.com/webreg/clickthrough.do?cid=419471
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=8

& XILINX

ALL PROGRAMMABLE.

Chapter 2

High-Level Synthesis Introduction

Overview

This tutorial introduces Vivado® High-Level Synthesis (HLS). You can learn the primary
tasks for performing High-Level Synthesis using both the Graphical User Interface (GUI) and
Tcl environments.

The tutorial shows how use of optimization directives transforms an initial RTL
implementation into both a low-area and high-throughput implementation.
Lab 1 Description

Explains how to set up a High-Level Synthesis (HLS) project and perform all the major steps
in the HLS design flow:

Validate the C code.
Create and synthesize a solution.

Verify the RTL and package the IP.

Lab 2 Description

Demonstrates how to use the Tcl interface.

Lab 3 Description

Shows you how to optimize the design using optimization directives. This lab creates
multiple versions of the RTL implementation and compares the different solutions.

Tutorial Design Description

To obtain the tutorial design file, see Locating the Tutorial Design Files.

High-Level Synthesis www.xilinx.com Send Feedback 9
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=9

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

This tutorial uses the design files in the tutorial directory.
Vivado HLS Tutoriall\Introduction.

The sample design used in this tutorial is a FIR filter. The hardware goal for this FIR design
project is:

« Create a version of this design with the highest throughput.

The final design must process data supplied with an input valid signal and produce output
data accompanied by an output valid signal. The filter coefficients are to be stored
externally to the FIR design, in a single port RAM.

Lab 1: Creating a High-Level Synthesis Project

Introduction

This lab shows how to create a High-Level Synthesis project, validate the C code, synthesize
the design to RTL, and verify the RTL.

f IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS Tutorial files are unzipped and placed in the location C:\Vivado HLS Tutorial.

Step 1: Creating a New Project

1. Open the Vivado® HLS Graphical User Interface (GUI):

- On Windows systems, open Vivado HLS by double-clicking the Vivado HLS 2016.1
desktop icon.

Vivado HLS

Figure 2-1: The Vivado HLS Desktop Icon

o On Linux systems, type vivado hls at the command prompt.

TIP: You can also open Vivado HLS using the Windows menu Start > All Programs > Xilinx Design
Tools > Vivado 2016.1 > Vivado HLS > Vivado HLS 2016.1.

Vivado HLS opens with the Welcome Screen as shown below. If any projects were previously
opened, they are shown in the Recent Project pane, otherwise this window is not shown in
the Welcome screen.

High-Level Synthesis www.xilinx.com Send Feedback 10
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=10

8 XI LI NX Chapter 2:

ALL PROGRAMMABLE-~

High-Level Synthesis Introduction

4 Vivado HLS
File Edit Project Solution Window Help
‘s | #]vivado HLS Welcome Page 3

VIVADO! XILINX

HLS

E=SECR =5

[~

ALL PROGRAMMABLE.

Quick Start Recent Projects
proj_dct
. C\Vivado_HLS\My_First_Project\proj_dct
19 £
W B B
Create New Project Open Project Open Example Project

Documentation

. % e
(asad l\
Tutorials User Guide Release Notes Guide

Figure 2-2: The Vivado HLS Welcome Page
2. In the Welcome Page, select Create New Project to open the Project wizard.
3. As shown in Figure 2-3:
a. Enter the project name fir prj.
b. Click Browse to navigate to the location of the 1ab1 (Introduction) directory.
c. Select the 1abl directory and click OK.
d. Click Next.

High-Level Synthesis www.xilinx.com

| Send Feedback l 1
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=11

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

+ |New Vivado HLS Project o[G0
Project Configuration A ﬁ
7
Create Vivado HLS project of selected type

Project name: fir_prj|

Location: C\Vivado_HLS_Tutorial\Introduction\labl Browse...

=]
fal
~

Figure 2-3: Project Configuration

This information defines the name and location of the Vivado HLS project directory. In
this case, the project directory is fir prj and it resides in the 1abl folder.

4. Enter the following information to specify the C design files:
a. Specify fir as the top-level function.
b. Click Add Files.
c. Select fir.c and click Open.

d. Click Next.

High-Level Synthesis www.xilinx.com Send Feedback 12
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=12

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

s New Vivado HLS Project o [C S
Add/Remove Files E}“E%
Add/remove C-based source files (design specification)
Top Function: fir Browse...
Design Files
Name CFLAGS
firc New File..
Edit CFLAGS...
Remove

< Back “ Mext = Finish Cancel

Figure 2-4: Project Design Files

ﬁ IMPORTANT: In this lab there is only one C design file. When there are multiple C files to be
synthesized, you must add all of them to the project at this stage. Any header files that exist in the local
directory 1abl are automatically included in the project. If the header resides in a different location,
use the Edit CFLAGS button to add the standard gcc/g++ search path information (for example,
-I<path to header file dir>).

Figure 2-5 shows the input window for specifying the test bench files. The test bench and
all files used by the test bench (except header files) must be included. You can add files one
at a time, or select multiple files to add using the Ctrl and Shift keys.

High-Level Synthesis www.xilinx.com Send Feedback 13
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=13

& XILINX

ALL PROGRAMMABLE

Chapter 2: High-Level Synthesis Introduction

+ | New Vivado HLS Project o [
Add/Remove Files :}IE%
Add/remove C-based testbench files (design test)

TestBench Files

Mame CFLAGS Add Files...
fir_test.c —
Mew File...
out.gold.dat
Add Folder...
Edit CFLAGS...

Remove

< Back “ Next = l Finish Cancel

Figure 2-5: Test Bench Files

5. Click the Add Files button to include both test bench files: fir test.c and
out.gold.dat.

6. Click Next.

Both C simulation (and RTL cosimulation) execute in subdirectories of the solution.

If you do not include all the files used by the test bench (for example, data files read by the
test bench, such as out.gold.dat), C and RTL simulation might fail due to an inability to

find the data files.

The Solution Configuration window (shown in Figure 2-6) specifies the technical
specifications of the first solution.

A project can have multiple solutions, each using a different target technology, package,
constraints, and/or synthesis directives.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com l Send Feedback I 14

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=14

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

¢ MNew Vivado HLS Project = @

Solution Configuration

& Part must be specified.

Solution Name: solutionl

Clock
Period: 10 Uncertainty:

Part Selection

Part: [Please select part] D

Figure 2-6: Solution Configuration

7. Accept the default solution name (solutionl), clock period (10 ns), and clock
uncertainty (defaults to 12.5% of the clock period, when left blank/undefined).

8. Click the part selection button to open the part selection window.

9. Select Device xc7k160tfbg484-2 from the list of available devices. Select the following
from the drop-down filters to help refine the parts list:

a. Product Category: General Purpose
b. Family: Kintex®-7
c. Sub-Family: Kintex-7
d. Package: fbg484
e. Speed Grade: -2
f. Temp Grade: All
10. Select xc7k160tfbg484-2.
11. Click OK.

High-Level Synthesis www.xilinx.com Send Feedback 15
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=15

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

In the Solution Configuration dialog box (shown in Figure 2-6, above), the selected part
name now appears under the Part Selection heading.

12. Click Finish to open the Vivado HLS project, as shown in Figure 2-7.

4 Vivado HLS - fir2_prj (C:\Vivado_HLS_Tutorial\Introduction\lab1\fir2_prj) o @ |
File Edit Project Solution Window Help
i] XoRoUEBS RO~ iRl v e) #5 Debug Gd‘AnaIysis
|74 Explorer 23 = 8 = B || Outline 2 “_C¥ Directive = B8
4 I fir2_prj =
+ wl Includes An outline is not available.

= Source
+ #= Test Bench
. Y= solution1

B Console 2 @] Errors| & Warnings S =B ~O~ =
Vivado HLS Console

fir2_prj

Figure 2-7: Vivado HLS Project (DM: New Figure)
« The project name appears on the top line of the Explorer window.
« A Vivado HLS project arranges information in a hierarchical form.
« The project holds information on the design source, test bench, and solutions.
« The solution holds information on the target technology, design directives, and results.

« There can be multiple solutions within a project, and each solution is an
implementation of the same source code.

TIP: At any time, you can change project or solution settings using the corresponding Project Settings
O and/or Solution Settings buttons in the toolbar.

High-Level Synthesis www.xilinx.com Send Feedback 16
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=16

& XILINX

ALL PROGRAMMABLE

Chapter 2: High-Level Synthesis Introduction

Understanding the Graphical User Interface (GUI)

Before proceeding, review the regions in the Graphical User Interface (GUI) and their
functions. Figure 2-8 shows an overview of the regions, and describes each below.

4 Vivado HLS - fir_prj (C\Vivado_HLS_Tutorial\Introduction\lab1\fir_prj) o [@ s
File Edit Project Solution Window Help
I f x RSB ale- gl v &iGe &PI 3% Debug |+ | Synthesis | " Analysis
[Explorer & =0 & = O || Outline 2 . Difftive = O
4 & fir_prj i
= Includes An - — K
= Source Toolbar Buttons Perspectives
= Test Bench L
4 ¢= solution1
4 # constraints
W directives.tcl
W scripttcl -
Information
Pane
Project Auxiliary
Explorer Pane
Pane
& Console % . @] Errors| & Warnings Rt Y
CDT Build Console [fir_prj]
Console
Pane
1 item selected

Figure 2-8: Vivado HLS Graphical User Interface (DM: New Figure)

Explorer Pane

Shows the project hierarchy. As you proceed through the validation, synthesis, verification,
and IP packaging steps, sub-folders with the results of each step are created automatically
inside the solution directory (named csim, syn, sim, and impl respectively).

When you create new solutions, they appear inside the project hierarchy alongside

solutionl.

Information Pane

Shows the contents of any files opened from the Explorer pane. When operations complete,
the report file opens automatically in this pane.

High-Level Synthesis

UG871 (v2016.2) June 8, 2016

www.Xilinx.com l Send Feedback I 17

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=17

g: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE
Auxiliary Pane

Cross-links with the Information pane. The information shown in this pane dynamically
adjusts, depending on the file open in the Information pane.

Console Pane

Shows the messages produced when Vivado HLS runs. Errors and warnings appear in
Console pane tabs.

Toolbar Buttons
You can perform the most common operations using the Toolbar buttons.

When you hold the cursor over the button, a popup tool tip opens, explaining the function.
Each button also has an associated menu item available from the pull-down menus.

Perspectives

The perspectives provide convenient ways to adjust the windows within the Vivado HLS
GUL

« Synthesis Perspective

The default perspective allows you to synthesize designs, run simulations, and package the
IP.

+ Debug Perspective

Includes panes associated with debugging the C code. You can open the Debug Perspective
after the C code compiles (unless you use the Optimizing Compile mode as this disables
debug information).

* Analysis Perspective

Windows in this perspective are configured to support analysis of synthesis results. You can
use the Analysis Perspective only after synthesis completes.

Step 2: Validate the C Source Code

The first step in an HLS project is to confirm that the C code is correct. This process is called
C Validation or C Simulation.

In this project, the test bench compares the output data from the £ir function with known
good values.

1. Expand the Test Bench folder in the Explorer pane.

2. Double-click the file fir test.c to view it in the Information pane.

High-Level Synthesis www.xilinx.com Send Feedback 18
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=18

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

3. In the Auxiliary pane, select main () in the Outline tab to jump directly to the main ()
function.

Figure 2-9 shows the result of these actions

;| Vivado HLS - fir_prj (C:\Vivado_HLS_Tutorial\Introduction\lab1\fir_prj) = Eol
File Edit Project Solution Window Help
3|] R o@tE aa e | @~ e | ®
¥ Debug &"Analysis
[ty Explorer 52 o = O [@ fir_testc ¥ = B[5= Qutline 2 . G Directive =8
& fir_prj oint [EEH () { - T EE N

il Includes 1 ceonst int SAMPLES=600; o stdioh
] *® -
= Source FILE fp; U mathh
e Test- Bench data_t signal, output; H f"'h_ .
LElgfiAtestG coef_t taps[N] = {9,-10,-9,23,56,63,56,23,-9,-10,0,}; Sl rainliioY
outgold.dat

= solution1 int i, ramp_up;
signal = @;

ramp_up = 1;

constraints
@ directives.tcl

i script.icl fp=Fopen(“out.dat","w");

for (i=0;i<=SAMPLES;i++) {
if (ramp_up == 1)
signal = signal + 1;
else
signal = signal - 1;

1

// Execute the function with latest input
fir(&output,taps,signal);

if ((ramp_up == 1) && (signal »>= 75))
y ramn n — A- = 5

Figure 2-9: Reviewing the Test Bench Code

The test bench file, fir test.c, contains the top-level C function main (), which in turn
calls the function to be synthesized (£ir). A useful characteristic of this test bench is that it
is self-checking:

« The test bench saves the output from the £ir function into the output file, out.dat.
« The output file is compared with the golden results, stored in file out.gold.dat.

« If the output matches the golden data, a message confirms that the results are correct,
and the return value of the test bench main () function is set to 0.

« If the output is different from the golden results, a message indicates this, and the
return value of main () is set to 1.

The Vivado HLS tool can reuse the C test bench to perform verification of the RTL.

If the test bench has the previously described self-checking characteristics, the RTL results
are automatically checked during RTL verification. Vivado HLS re-uses the test bench during
RTL verification and confirms the successful verification of the RTL if the test bench returns
a value of 0. If any other value is returned by main (), including no return value, it indicates
that the RTL verification failed. There is no requirement to create an RTL test bench. This
provides a robust and productive verification methodology.

High-Level Synthesis www.xilinx.com Send Feedback 19
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=19

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

4. Click the Run C Simulation button, or use menu Project > Run C Simulation, to
compile and execute the C design.

5. In the C Simulation dialog box, click OK.

The Console pane (Figure 2-10) confirms the simulation executed successfully.

4 Vivado HLS - fir_prj (CA\Vivado_HLS_Tutorial\Introduction\lab1\fir_prj) = EOR <
File Edit Project Solution Window Help
if B iR HEH-HsgoR Rk -Ho W=k g E1 6@ © %5 Debug [1] Synthesis |é Analysis
[t5 Explorer &2 $ = 8 |[[@ fir_testc = _csimlog & = O |[g= Outline & . Directive = =0
4 & fir_prj 1 Compiling(apcc) ../../../../fir_test.c in debug mode e An outline is not available.
& Includes 2INFO: [HLS 200-10] Running 'c:/Xilinx/Vivado HLS/2016.1/bin/unwrappe

3INFO: [HLS 200-10] For user ‘duncanm’ on host ‘xsjduncanm31® (Windov
AINFO: [HLS 200-18] In directory '"C:/Vivado_HLS_Tutorial/Introductior
5INFO: [APCC 202-3] Tmp directory is apcc_db

> £ Source
4 fim Test Bench

& fir_testc 6INFO: [APCC 202-1] APCC is done.
w outgold.dat 7 Compiling(apcc) ../../../../fir.c in debug mode
. ¢= solution1 SINFO: [HLS 200-10] Running 'c:/Xilinx/Vivado HLS/2016.1/bin/unwrappe

G INFO: [HLS 200-18] For user ‘duncanm’ on host ‘xsjduncanm31’ (Windov
10 INFO: [HLS 200-18] In directory 'C:/Vivado_HLS_Tutorial/Introductior
11 INFO: [APCC 202-3] Tmp directory is apcc_db

12 INFO: [APCC 202-1] APCC is done.

13 Generating csim.exe

14 Comparing against output data

15

16PASS: The output matches the golden output!

18 INFO: [SIM 1] CSim done with @ errors.

19

« il »
B Console &2 @] Errors| & Warnings| & Man Page =By =8
Vivado HLS Console

INFO: [APCC 202-3] Tmp directory is apcc_db -

INFO: [APCC 202-1] APCC is done.
Generating csim.exe
Comparing against output data

PASS: The output matches the golden output!

INFO: [SIM 211-1] CSim done with @ errors.
Finished C simulation.

1

Figure 2-10: Results of C Simulation

TIP: If the C simulation ever fails, select the Launch Debugger option in the C Simulation dialog box,
O compile the design, and automatically switch to the Debug perspective. There you can use a C
debugger to fix any problems.

The C Validation tutorial module provides more details on using the Debug environment.

The design is now ready for synthesis.

Step 3: High-Level Synthesis

In this step, you synthesize the C design into an RTL design and review the synthesis report

High-Level Synthesis www.xilinx.com Send Feedback 20
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=20

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

1. Click the Run C Synthesis toolbar button or use the menu Solution > Run C Synthesis
> Active Solution.

When synthesis completes, the report file opens automatically. Because the synthesis
report is open in the Information pane, the Outline tab in the Auxiliary pane automatically
updates to reflect the report information.

2. Click Performance Estimates in the Outline tab (Figure 2-11).

3. In the Detail section of the Performance Estimates, expand the Loop view.

= fir_csimlog |2 Synthesis(solution1) 2 = B
Performance Estimates i
- Timing (ns)
= Summary

Clock Target Estimated Uncertainty
ap_clk 10.00 843 125

m

- Latency (clock cycles)
= Summary
Latency Interval
min max min max Type
78 78 79 79 none

= Detail
Instance
- Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target TripCount Pipelined
- Shift_Accum_Loop 77 77 7 - - 11 no

Figure 2-11: Performance Estimates

In the Performance Estimates pane, shown in Figure 2-12, you can see that the clock period
is set to 10 ns. Vivado HLS targets a clock period of Clock Target minus Clock Uncertainty
(10.00-1.25 = 8.75ns in this example).

The clock uncertainty ensures there is some timing margin available for the (at this stage)
unknown net delays due to place and routing.

The estimated clock period (worst-case delay) is 8.43 ns, which meets the 8.75 ns timing
requirement.

In the Summary section, you can see:

« The design has a latency of 78-clock cycles: it takes 78 clocks to output the results.

High-Level Synthesis www.xilinx.com Send Feedback 21
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=21

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

« Theinterval is 79 clock cycles: the next set of inputs is read after 79 clocks. This is one
cycle after the final output is written. This indicates the design is not pipelined. The
next execution of this function (or next transaction) can only start when the current
transaction completes.

The Detail section shows:

« There are no sub-blocks in this design. Expanding the Instance section shows no
submodules in the hierarchy.

« All the latency delay is due to the RTL logic synthesized from the loop named
Shift Accum Loop. This logic executes 11 times (Trip Count). Each execution
requires 7 clock cycles (Iteration Latency), for a total of 77 clock cycles, to execute all
iterations of the logic synthesized from this loop (Latency).

« The total latency is one clock cycle greater than the loop latency. It requires one clock
cycle to enter and exit the loop (in this case, the design finishes when the loop finishes,
so there is no exit cycle).

4. In the Outline tab, click Utilization Estimates (Figure 2-12).

- The design uses a single memory implemented as LUTRAM (since it contains less
than 1024 elements), 4 DSP48s, and approximately 200 flip-flops and LUTs. At this
stage, the device resource numbers are estimates.

- The resource utilization numbers are estimates because RTL synthesis might be able
to perform additional optimizations, and these figures might change after RTL
synthesis.

High-Level Synthesis www.xilinx.com Send Feedback 22
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=22

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

=l Synthesis(solutionl) 2 = g

Utilization Estimates

- Summary
Name BRAM_18K DSP48E FF LUT
DSP - - - -
Expression - - 0 39
FIFO - - - -
Instance - 4 0 i}
Memary 0 - 64 5]
Multiplexer - - - 114
Register - - 179 - :
Total 0 4 243 159
Available 650 600 202800 101400
Utilization (%) 0 ~0 ~0 ~0
- Detail
-l Instance
Instance Maodule BRAM_18K DSP48E FF LUT
fir_mul_32s_32s 32 3 U0 fir_mul_32s_32s 32 3 0 4 0 0
Total 1 0 4 0 0 i
4 B 1] F

Figure 2-12: Utilization Estimates
5. In the Detail section of the Utilization Estimates, expand the Instance view.

o The number of DSP48s seems larger than expected for a FIR filter. This is because
the data is a C integer type, which is 32-bit. It requires more than one DSP48 to
multiply 32-bit data values.

- The multiplier instance shown in the Instance view accounts for all the DSP48s.

o The multiplier is a pipelined multiplier. It appears in the Instance section indicating
it is a sub-block. Standard combinational multipliers have no hierarchy and are
listed in the Expressions section (indicating a component at this level of hierarchy).

In HLS: Lab 3: Using Solutions for Design Optimization, you optimize this design.

6. In the Outline tab, click Interface (Figure 2-13).

High-Level Synthesis www.xilinx.com Send Feedback 23
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=23

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

=| fir_csim.log =l Synthesis(solution1) &3 = O
Interface oy
- Summary
RTL Ports Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs fir return value
ap_rst in 1 ap_ctrl_hs fir return value
ap_start in 1 ap_ctrl_hs fir return value
ap_done out 1 ap_ctrl_hs fir return value
ap_idle out 1 ap_ctrl_hs fir return value
ap_ready out 1 ap_ctrl_hs fir return value
v out 32 ap_vid v pointer
y_ap_vid out 1 ap_vid ¥ painter
c_addressO out 4 ap_memary C array
c_cel out 1 ap_memory C array =
c_g0 in 32 ap_memory C array
X in 32 ap_none X scalar
4 il 3

Figure 2-13: Interface Report

The Interface section shows the ports and I/O protocols created by interface synthesis:

« The design has a clock and reset port (ap_clk and ap_reset). These are associated
with the Source Object f£ir: the design itself.

« There are additional ports associated with the design as indicated by Source Object fir.
Synthesis has automatically added some block level control ports: ap_start,
ap_done, ap_idle, and ap_ready.

« The Interface Synthesis tutorial provides more information about these ports.

« The function output y is now a 32-bit data port with an associated output valid signal
indicator y_ap_ vld.

« Function input argument c (an array) has been implemented as a block RAM interface
with a 4-bit output address port, an output CE port and a 32-bit input data port.

« Finally, scalar input argument x is implemented as a data port with no I/O protocol
(ap_none).

Later in this tutorial, HLS: Lab 3: Using Solutions for Design Optimization explains how to
optimize the I/O protocol for port x.

Step 4: RTL Verification

High-Level Synthesis can re-use the C test bench to verify the RTL using simulation.

High-Level Synthesis www.xilinx.com Send Feedback 24
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=24

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

1. Click the Run C/RTL Cosimulation toolbar button or use the menu Solution > Run
C/RTL Cosimulation.

2. Click OK in the C/RTL Co-simulation dialog box to execute the RTL simulation.

The default option for RTL co-simulation is to perform the simulation using the Vivado
simulator and Verilog RTL. To perform the verification using a different simulator, VHDL, or
SystemC RTL use the options in the C/RTL Co-simulation dialog box.

When RTL co-simulation completes, the report opens automatically in the Information
pane, and the Console displays the message shown in Figure 2-14. This is the same
message produced at the end of C simulation.

« The C test bench generates input vectors for the RTL design.
« The RTL design is simulated.

« The output vectors from the RTL are applied back into the C test bench and the
results-checking in the test bench verify whether or not the results are correct.

« The Vivado HLS indicates that simulation passes if the test bench returns a value of 0. It
is the value of the return variable in the test bench, and this alone, which indicates if
the simulation was successful. It is important that the test bench returns a value of 0
only if the results are correct.

B Console % . @] Errors| & Wamings B =z|*BvNv4=0
Vivado HLS Console
INFO: [COSIM 212-316] Starting C post checking ... -

Comparing against output data
AR R

PASS: The output matches the golden output!

3 R R R R R R R R R R O O R R R R R R R R R R R R R

INFO: [COSIM 212-1088] *** C/RTL co-simulation finished: PASS ***
Finished C/RTL cosimulation.

4 (1M

L | {11} b

Figure 2-14: RTL Verification Results

The Chapter 8, RTL Verification tutorial provides additional information.

Step 5: IP Creation

The final step in the High-Level Synthesis flow is to package the design as an IP block for
use with other tools in the Vivado Design Suite.

1. Click the Export RTL toolbar button or use the menu Solution > Export RTL.
2. Ensure the Format Selection drop-down menu shows IP Catalog.

3. Click OK.

High-Level Synthesis www.xilinx.com Send Feedback 25
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=25

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

The IP packager creates a package for the Vivado IP Catalog. (Other options available from
the drop-down menu allow you to create IP packages for System Generator for DSP, a
Synthesized Checkpoint format for Vivado, or a Pcore for Xilinx Platform Studio.)

4. Expand Solutionl in the Explorer.
5. Expand the impl folder created by the Export RTL command.

6. Expand the ip folder and find the IP packaged as a zip file, ready for adding to the
Vivado IP Catalog (Figure 2-15).

%
i
o

L™ Explorer &3
4 = impl o
4 = ip
|2 autoimpl.log
= auxiliary.xml
=l componentxmi
packbat
W run_ippack.tcl
vivado.jou
|2 vivado.log
xilink_com_hls_fir_1_0.zip
= bd
+ # constraints
» = doc
» = example
» & hdl
+ = misc
= subcore
» = xgui
4 = verilog
W extraction.tcl
st fir_mul_32s5_325_32 3v
fir_shift_reg_ram.dat
writ fir_shift_reg.v

m

writ firv
firxdc
impl.bat
projectxpr
' run_vivado.tcl
W settings.tcl
» = project.data
» & vhdl
= sim
=E N

Figure 2-15: RTL Verification Results

Note: In Figure 2-15, if you expand the Verilog or VHDL folders inside the impl folder, there is a
Vivado project ready for opening in the Vivado Design Suite.

O RECOMMENDED: This Vivado project is provided only as a convenient way to analyze the design inside
the Vivado IDE. This project should not be used to implement your design: there are no top-level 10
buffers in this project. The recommended methodology for using the output of Vivado HLS in your own
design is to incorporate the IP package, or one of the other output formats, into your own Vivado

High-Level Synthesis www.xilinx.com Send Feedback 26
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=26

g: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

project. Additional tutorials in this guide demonstrate how to use the Vivado HLS output as IP in your
project.

Note: There is no project file created for devices synthesized by ISE (6 series or earlier devices).

At this stage, leave the Vivado HLS GUI open. You will return to this in the next lab exercise.

Lab 2: Using the Tcl Command Interface

Introduction

This lab exercise shows how to create a Tcl command file based on an existing Vivado HLS
project and use the Tcl interface.

Step 1: Create a Tcl file

1. Open the Vivado HLS Command Prompt.

- On Windows, use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 2-16).

o On Linux, open a new shell.

High-Level Synthesis www.xilinx.com Send Feedback 27
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=27

§: XI I_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

@ Vivado HLS 2016.1 Command Prompt o]

ivado HLS Command Prompt
vailable commands:

Microsoft Windows [Uersion 6.1.7601]
Copyright (c¢) 2009 Microsoft Corporation. All rights reserved.

C:\Xilinx\Vivado_HLS\2016.1>_

Figure 2-16: The Vivado HLS Command Prompt

When you create a Vivado HLS project, Tcl files are automatically saved in the project
hierarchy. In the GUI still open from Lab 1, a review of the project shows two Tcl files in
the project hierarchy (Figure 2-17).

2. In the GU], still open from Lab 1, expand the Constraints folder in solutionl and
double-click the file script.tcl to view it in the Information pane.

High-Level Synthesis www.xilinx.com Send Feedback 28
UG871 (v2016.2) June 8, 2016 L\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=28

& XILINX

ALL PROGRAMMABLE-

5 Explorer 2
4 = fir_prj
> mit Includes
4 3 Source
[fir.c
: = Test Bench
a = solution1
4 % constraints
4 directives.tcl
& script.tel
» & csim
» = impl
> =5 sim
s = syn

g = 8

Chapter 2: High-Level Synthesis Introduction

= fir_csim.log £l Synthesis(solutionl) =l Simulation(solutio

© WO 0o o~ O P L RO

SHHHHHHHHHHHHH A A
This file is generated automatically by Vi
Please DO NOT edit it.

Copyright (C) 2815 Xilinx Inc. All rights
SHHHHHHHHHHHHH A A
open_project fir_prj

set_top fir

add_files fir.c

add_files -tb fir_test.c

add_files -tb out.gold.dat

open_solution "solutionl”

set part {xc7kle@tfbgd84-2}

create_clock -period 18 -name default

#source "./fir_prj/solutionl/directives.tcl”
csim_design

csynth_design

cosim_design

export_design -format ip catalog

4

Figure 2-17: The Vivado HLS Project Tcl Files

e The file script.tcl contains the Tcl commands to create a project with the files
specified during the project setup and run synthesis.

« Thefiledirectives.tcl contains any optimizations applied to the design. No
optimization directives were used in Lab 1 so this file is empty.

In this lab exercise, you use the script.tcl from Lab 1 to create a Tcl file for the Lab 2

project.

3. Close the Vivado HLS GUI from Lab 1. This is project no longer needed.

4. In the Vivado HLS Command Prompt, use the following commands (also shown in
Figure 2-18) to create a new Tcl file for Lab 2.

a. Change directory to the Introduction tutorial directory
C:\Vivado HLS Tutoriall\Introduction.

b. Use the command cp labl\fir prj\solutionl\script.tcl
lab2\run hls.tcl to copy the existing Tcl file to Lab 2. (The Windows command
prompt supports auto-completion using the Tab key: press the tab key repeatedly to

see new selections).

c. Use the command cd lab2 to change into the lab2 directory.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.xilinx.com | Send Feedback l 23

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=29

§: XI I_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

C:\>cd Uivado_HLS_Tutorial\Introduction

C:\VUivado_HLS_Tutorial\Introduction>cp labl\fir_prj\solutioni\script.tcl lab2\ru
n_hls.tcl

C:\Uivado_HLS_Tutorial\Introduction>cd lab2

C:\Uivado_HLS_Tutorial\Introduction\lab2>

Figure 2-18: Copying the Lab 1 Tcl file to Lab 2

5. Using any text editor, perform the following edits to the file run_hls.tcl inthe 1ab2
directory. The final edits are shown in Figure 2-19.

a. Add a -reset option to the open project command. Because you typically run
Tcl files repeatedly on the same project, it is best to overwrite any existing project
information.

b. Add a -reset option to the open solution command. This removes any existing
solution information when the Tcl file is re-run on the same solution.

c. Leave the source command commented. If the previous project contains any
directives you wish to re-use, you can copy the directives directly into this file.

d. Add the exit command.

e. Save and exit.

High-Level Synthesis www.xilinx.com Send Feedback 30
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=30

8 X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE-~

@ run_hlstd x

-] o N o L D

o oo

##
This file is generated automatically by Vivado HLS.

Please DO NOT edit it.

Copyright (C) 2015 Xilinx Inc. A1l rights reserved.

FHEF AR AR R R R R R R A R R R R R R R R R R

Reset the project with the -rset option
open project -reset fir prj

set top fir

add files fir.c

add files -tb fir test.c

add files -tb out.gold.dat

Reset the project with the -rset option
open solution -reset "solutionl"”

set part {xcTkleOtfbgd84-2}

create clock -period 10 -name default

Leave the previous directives commented out
#source "./fir prj/solutionl/directives.tcl"

csim design

csynth design

cosim design

export design -format ip catalog

Exit vivado HLS
exit

Figure 2-19: Updated run_hls.tcl file for Lab 2

You can run the Vivado HLS in batch mode using this Tcl file.

6. In the Vivado HLS Command Prompt window, type vivado hls -f run hls.tcl.

Vivado HLS executes all the steps covered in labl. When finished, the results are available
inside the project directory fir prj.

« The synthesis report is available in fir prj\solutionl\syn\report.

High-Level Synthesis www.xilinx.com l Send Feedback l 31

UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=31

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

« The simulation results are available in fir prj\solution\sim\report.
« The output package is available in fir prj\solutionl\impl\ip.

« The final output RTL is available in fir prj\solutionl\impl and then Verilog or
VHDL.

& CAUTION! When copying the RTL results from a Vivado HLS project, you must use the RTL from the
impl directory. For designs using floating-point operators or AXI4 interfaces, the RTL files are the only
output from synthesis. Additional processing is performed by Vivado HLS during export design
before you can use this RTL in other design tools.

Lab 3: Using Solutions for Design Optimization

Introduction

This lab exercise uses the design from Lab 1 and optimizes it.

Step 1: Creating a New Project

1. Open the Vivado HLS Command Prompt.

- On Windows, use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt.

o On Linux, open a new shell.

2. Change to the Lab 3 directory: cd
C:\Vivado HLS TutoriallIntroduction\lab3.

3. In the command prompt window, type: vivado hls -f run hls.tcl
This sets up the project.

4. In the command prompt window, type vivado hls -p fir prj to open the project
in the Vivado HLS GUL

Vivado HLS opens, as shown in Figure 2-20, with the synthesis for solutionl already
complete.

High-Level Synthesis www.xilinx.com Send Feedback 32
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=32

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

4 Vivado HLS - fir_prj (C:\Vivado_HLS Tutorial\Introduction\lab3\fir_prj) = R
File Edit Project Solution Window Help
o X o R oS ROy Bigy Tieri® :ﬁDebugG‘o”Analysis
[t5 Explorer &2 o= g = O |[3= Qutline 2 ™. Directive = [
4 & fir_prj =
- @ Includes An outline is not available.

: £ Source
> #= Test Bench
4 |¢= solutioni
4 § constraints
W directives.tcl
W@ scripttcl
4 (= csim
» & build
> (= report
4 = impl
=]
» & verilog
> & vhdl
4 = sim
» [= autowrap
+ (= report
> (= v

> = verilo =
g B Console = @] Errors| & Warnings g8

+ (= wrapc - S
CDT Build Console [fir_prjl

> (= wrapc_pc
4 (= syn
> = report
+ (= systemc
> & verilog
> = vhdl

fir_prj/solutionl

Figure 2-20: Introduction Lab 3 Initial Solution

As stated earlier, the design goals for this design are:

« Create a version of this design with the highest throughput.
« The final design should be able to process data supplied with an input valid signal.
* Produce output data accompanied by an output valid signal.

« The filter coefficients are to be stored externally to the FIR design, in a single port
RAM.

Step 2: Optimize the 1/0 Interfaces

Because the design specification includes I/O protocols, the first optimization you perform
creates the correct I/O protocol and ports. The type of I/O protocol you select might affect
what design optimizations are possible. If there is an I/O protocol requirement, you should
set the I/O protocol as early as possible in the design cycle.

You reviewed the I/O protocol for this design in Lab 1 (Figure 2-13), and you can review the
synthesis report again by navigating to the report folder inside the solutionl\syn folder.
The I/0 requirements are:

High-Level Synthesis www.xilinx.com Send Feedback 33
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=33

g: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

« Port C must have a single port RAM access.
« Port X must have an input data valid signal.

« Port Y must have an output data valid signal.

Port C already is a single-port RAM access. However, if you do not explicitly specify the RAM
access type, High-Level Synthesis might use a dual-port interface. HLS takes this action if
doing so creates a design with a higher throughput. If a single-port is required, you should
explicitly add to the design the I/O protocol requirement to use a single-port RAM.

Input Port X is by default a simple 32-bit data port. You can implement it as an input data
port with an associated data valid signal by specifying the I/O protocol ap v1d.

Output Port Y already has an associated output valid signal. This is the default for pointer
arguments. You do not have to specify an explicit port protocol for this port, because the
default implementation is what is required, but if it is a requirement, it is a good practice to
specify it.

To preserve the existing results, create a new solution, solution?2.

1. Click the New Solution toolbar button to create a new solution.

2. Leave the default solution name as solution2. Do not change any of the technology
or clock settings.

3. Click Finish.

This creates solution?2 and sets it as the default solution. To confirm you can verify that
the current active solution2 is highlighted in bold in the Explorer pane.

To add optimization directives to define the desired I/O interfaces to the solution, perform
the following steps.

4. In the Explorer pane, expand the Source container (as shown in Figure 2-21).
5. Double-click fir.c to open the file in the Information pane.

6. Activate the Directive tab in the Auxiliary pane and select the top-level function fir to
jump to the top of the fir function in the source code view.

High-Level Synthesis www.xilinx.com Send Feedback 34
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=34

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

I Explorer 22 $ = 8 |[[@ firc 2 = O | 5= Qutline | Directive =0
4 I fir_prj 42 THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAIN = €
- wl Includes 3 ALL TIMES. 4 0 fir
“ % SOUT’CE 3 SR SRR O SRR SOR SR RO OB SRR SOR SRRk OR SRRk OR SR ROk OR R R R R Rk R R Rk = y
e firc 6 #include "fir.h" “c

- U= Test Bench o x
» £3 solutionl void 1 («{1 shift_reg
4 v= solution2 data_t *y, ® acc

4 % constraints coef_t c[N], © data

data t x
) A

o directives.tcl
& scripticl

%" Shift Accum Loop

m

static data_t shift_reg[N];
acc_t acc;

data_t data;

int i;

acc=0;
Shift_Accum_Loop: for (i=N-1;i»>=8;i--) {
if (1i--0Y [
4 11 b

Figure 2-21: Opening the Directives Tab

The Directives tab, shown on the right side of Figure 2-21, lists all of the objects in the
design that can be optimized. In the Directive tab, you can add optimization directives to
the design. You can view the Directives tab only when the source code is open in the
Information pane.

Apply the optimization directives to the design.

7. In the Directive tab, select the ¢ argument/port (green dot).

8. Right-click and select Insert Directive.

9. Implement the single-port RAM interface by performing the following:
a. Select RESOURCE from the Directive drop-down menu.
b. Click the core box.
c. Select RAM_1P_BRAM, as shown in Figure 2-22. Then select OK.

The steps above specify that array c be implemented using a single-port block RAM
resource. Because array c is in the function argument list, and hence is outside the function,
a set of data ports are automatically created to access a single-port block RAM outside the
RTL implementation.

Because 1/0O protocols are unlikely to change, you can add these optimization directives to
the source code as pragmas to ensure that the correct I/O protocols are embedded in the
design.

10. In the Destination section of the Directive Editor, select Source File.

High-Level Synthesis www.xilinx.com Send Feedback 35
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=35

i: X”_INX Chapter 2: High-Level Synthesis Introduction

11. To apply the directive, click OK.

.

+' | Vivado HLS Directive Editor "5z | | |+ |vivado HLS core selectio.. = [-E-|[mEdm]
ClEme HMul_maxdsp [functional_unit] -
RESOURCE 'l HMul_nodsp [functional_unit]
Destination HSqrt [fun_ctional_timit]
@ Source File Mul [functlonal-_unlt] -
©) Directive File Mul_LUT [functional_unit]
MulnS [functional_unit]
Options MuxnS [functional_unit]
variable (required): ¢ RAM_1P [storage]

RAM_1P_BRAM [storage]
e RAM_1P_LUTRAM [storage]
RAM_2P [storage]
RAM_2P_BRAM [storage]
RAM_2P_LUTRAM [storage]
RAM_S2P_BRAM [storage]
RAM_S2P_LUTRAM [storage]
RAM_T2P_BRAM [storage]
ROM_1P [storage] -

111

latency (optional):

Help l [Cancel l [0K 0K l [Cancel

Figure 2-22: Adding a Resource Directive

TIP: If you wish to change the destination of any directive, double-click on the directive In the Directive
O tab and modify the destination.

12. Next, specify port x to have an associated valid signal/port.
a. In the Directive tab, select input port x (green dot).
b. Right-click and select Insert Directive.
c. Select Interface from the Directive drop-down menu.
d. Select Source File from the Destination section of the dialog box.
e. Select ap_vld as the mode.
f. Click OK to apply the directive.
13. Finally, explicitly specify port y to have an associated valid signal/port.
a. In the Directive tab, select input port y (green dot).

b. Right-click and select Insert Directive.

High-Level Synthesis www.xilinx.com Send Feedback 36
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=36

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE-

c. Select Source File from the Destination section of the dialog box
d. Select Interface from the Directive drop-down menu.
e. Select ap_vld for the mode.

f. Click OK to apply the directive

When complete, verify that the source code and the Directive tab are correct as shown in
Figure 2-23. Right-click on any incorrect directive to modify it.

[€] *firg &3 = O |[8= Outline |G Directive 52 =04
46 #include "fir.h" - ® fir
47 . #[1 shift_reg
8void fir (
data_t *y, 2y
coef_t c[N], # HLS INTERFACE ap_vld port=y
data_t x 4C
2) { # HLS RESOURCE variable=c core=RAM_1P_BRAM
3 #pragma HLS INTERFACE ap_vld port=y P x
4#pr‘agma HLS INTERFACE ap_vld pOI"‘t=X # HLS INTERFACE ap_\.fld port=x

5 #pragma HLS RESOURCE variable=c core=RAM_1P_BRAM %' Shift_Accum_Loop
static data_t shift_reg[N];
acc_t acc;

int i;

m

@ MD 0~ O

acc=0;
Shift_Accum_Loop: for (i=N-1;i»=0;i--) { 4
< 10 3

Figure 2-23: 1/0 Directives for solution2
14. Click the Run C Synthesis toolbar button to synthesize the design.

15. When prompted, click Yes to save the contents of the C source file. Adding the
directives as pragmas modified the source code.

When synthesis completes, the report file opens automatically.

16. Click the Outline tab to view the Interface results, or simply scroll down to the bottom
of the report file.

Figure 2-24 shows that the ports now have the correct I/O protocols.

High-Level Synthesis www.xilinx.com Send Feedback 37
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=37

& XILINX

ALL PROGRAMMABLE

Step 3: Analyze the Results

ap_clk

ap_rst
ap_start
ap_done
ap_idle
ap_ready
y
y_ap_vid
c_address0
c_cel
c_gl

X
¥_ap_vid

R

32

—

32
32

11}

Figure 2-24:

Protocol
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_vld
ap_vld
ap_memory
ap_memory
ap_memory
ap_vld
ap_vld

Chapter 2:

Source Object
fir
fir
fir

High-Level Synthesis Introduction

C Type
return value
return value
return value
return value
return value
return value

pointer
pointer
array
array
array
scalar
scalar

1/0 Protocols for solution2

m

Before optimizing the design, it is important to understand the current design. It was shown
in Lab 1 how the synthesis report can be used to understand the implementation. However,
the Analysis perspective provides greater detail in an inter-active manner.

While still in solution2, and as shown in Figure 2-25:

17. Click the Analysis perspective button.

18. Click the Shift_Accum_Loop in the Performance window to expand it.

« The red-dotted line in Figure 2-25 is used shortly in an explanation; it is not part of the

view.

» The Chapter 6, Design Analysis tutorial provides a more complete understanding of the
Analysis perspective, but the following explains what is required to create the smallest
and fastest RTL design from this source code.

« The left column of the Performance pane view shows the operations in this module of

the RTL hierarchy.

« The top row lists the control states in the design. Control states are the internal states

High-Level Synthesis uses to schedule operations into clock cycles. There is a close

correlation between the control states and the final states in the RTL Finite State
Machine (FSM), but there is no one-to-one mapping.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback I

38

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=38

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

4 Vivado HLS - firprj (C:\Vivado_HLS Tutoralintroduction\ab3\fir.pr) o[@ s
File Edit Project Solution Window Help

BiRidAr &:8 1 Debug Symhesis
4 Module Hierarchy = O || = Performance - fir & -0

BRAM DSP FF LUT Latency Interval Pipeline type
o fir 0 4 24978 79 none

Curzent Module : fir

[oneration\Contral S...] co | ¢t [¢ | 3|l calcs | cel ez
X read(read) - -

=shift Accum Loop [
acc(phi mux)

i(phi mux) |

tmp 1(icmp) I

|

|

|

tmp 2(+)

data (read)
node 36(write)
9 node 33(write)

&7 Performance Profile 22 Resource Profile SU0

00~ O L LD N

Pipelined Latency Initiation Interval Iteration Latency Trip count

4 o fir - BN : - 10 ¢ load(read)
o Shift_Accum_Loop no 7 - 7 11 11| 1 1(4) - e e e s e e)|
12 datal(phi mux)
13 tmp 6(¥) |
14 ace 1(4) d= = = = = === - - -

15 node 48 (write)
Performance Resource

Figure 2-25: Solution2 Analysis Perspective: Performance

The explanation presented here follows the path of the dotted red line in Figure 2-25. Some
of the objects here correlate directly with the C source code. Right-click the object to
cross-reference with the C code.

« The design starts in the first state with a read operation on port x.

« In the next state, it starts to execute the logic created by the for-loop
Shift Accum Loop. Loops are shown in yellow, and you can expand or collapse
them. Holding the cursor over the yellow loop body in this view shows the loop details:
7 cycles, 11 iterations for a total latency of 77.

« In the first state, the loop iteration counter is checked: addition, comparison, and a
potential loop exit.

« There is a two-cycle memory read operation on the block RAM synthesized from array
data (one cycle to generate the address, one cycle to read the data).

« There is a memory read on the c port.
« The multiplication operation takes 3 cycles to complete.
« The for-loop is executed 11 times.

« At the end of the final iteration, the loop exits in state c1 and the write to port y occurs.
You can also use the Analysis perspective to analyze the resources used in the design.

19. Click the Resource view, as shown in Figure 2-26.

20. Expand all the resource groups (also shown in Figure 2-26).

High-Level Synthesis www.xilinx.com Send Feedback 39
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=39

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

= Resource(solution2) & = B

Current Module : fir

|Resource\Control Sten] co | c1 | c2 | ec3 | ca |l o5 | c6 | cz |
1 EI/0 Ports
2 b4 read
3 Y write
4 c(p0) read
5 HInstances
6 fir mul 32s 32... E
7 EMemory Ports
8 shift reg(p0) write | write
g c(p0) read
10 EExpressions
11 grp fu 136 + =
12 | acc phi fu 105 phi mux
13 i phi fu 118 phi_mux
14 tmp 1 fu 155 iemp
15 datal phi fu 129 phi mux
16 acc 1 fu 179 +

Performance |Resource

Figure 2-26: Solution2 Analysis Perspective: Resource

Figure 2-27 shows:

« The reads on the ports x and y. Port c is reported in the memory section because this
is also a memory port.

« There are two multipliers being used in this design.
» There is a read and write operation on the memory shift reg.

« None of the other resources are being shared because there is only one instance of
each operation on each row.

With the insight gained through analysis, you can proceed to optimize the design.

Before concluding the analysis, it is worth commenting on the multicycle multiplication
operations, which require multiple DSP48s to implement. The source code uses an int
data-type. This is a 32-bit data-type that results in large multipliers. A DSP48 multiplier is
18-bit and it requires multiple DSP48s to implement a multiplication for data widths greater
than 18-bit.

The Arbitrary Precision Types tutorial shows how you can create designs with more suitable
data types for hardware. Use of arbitrary precision types allows you to define data types of
any arbitrary bit size (more than the standard C/C++ 8-, 16-, 32- or 64-bit types).

High-Level Synthesis www.xilinx.com Send Feedback 40
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=40

8 X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE-~

Step 4: Optimize for the Highest Throughput (Lowest Interval)
The two issues that limit the throughput in this design are:

« The for loop. By default loops are kept rolled: one copy of the loop body is
synthesized and re-used for each iteration. This ensures each iteration of the loop is
executed sequentially. You can unroll the for loop to allow all operations to occur in
parallel.

« The block RAM used for shift reg. Because the variable shift regis an array in
the C source code, it is implemented as a block RAM by default. However, this prevents
its implementation as a shift-register. You should therefore partition this block RAM
into individual registers.

Begin by creating a new solution.

Click the Synthesis perspective button.
Click the New Solution button.
Leave the solution name as solution3.

Click Finish to create the new solution.

v A Wb oE

In the Project menu, select Close Inactive Solution Tabs to close any existing tabs from
previous solutions.

The following steps, summarized in Figure 2-27 explain how to unroll the loop.

= O [z Outline | Directive & =8

coef_t c[N], - 45 fir
data_t x Vivado HLS Directive Editor 3y
A Type % HLS INTERFACE ap_vid port=y
static data_t Directive: | UNROLL ~ sc
acc_t acc; % HLS RESOURCE variable=c core=RAM_1P_BRAM
data_t data; Destination @ x
int i; (") Source File % HLS INTERFACE ap_vld port=x
acc-0: @ Directive File *11 shift_reg

Py %' Shift_Accum L
Shift_Accum_Lo¢ Options : ift_Accum_Loop

| skip exit check: 0
factor (optional):

region: o

[Help] ’ Cancel l I OK]

< | 1 | r

Figure 2-27: Unrolling FOR Loop

6. Click in the fir.c file, then in the Directive tab, select loop Shift_Accum_Loop.

High-Level Synthesis www.xilinx.com Send Feedback 41
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=41

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

f IMPORTANT: Reminder: the source code must be open in the Information pane to see any code objects
in the Directive tab.

7. Right-click and select Insert Directive.

8. From the Directive drop-down menu, select Unroll.
Leave the Destination as the Directive File.

When optimizing a design, you must often perform multiple iterations of optimizations to
determine what the final optimization should be. By adding the optimizations to the
directive file, you can ensure they are not automatically carried forward to the next solution.
Storing the optimizations in the solution directive file allows different solutions to have
different optimizations. Had you added the optimizations as pragmas in the code, they
would be automatically carried forward to new solutions, and you would have to modify the
code to go back and re-run a previous solution.

Leave the other options in the Directives window unchecked and blank to ensure that the
loop is fully unrolled.

9. Click OK to apply the directive.

10. Apply the directive to partition the array into individual elements.
a. In the Directive tab, select array shift_reg.
b. Right-click and select Insert Directive.
c. Select Array_Partition from the Directive drop-down menu.
d. Specify the type as complete.
e. Select OK to apply the directive.

With the directives embedded in the code from solution2 and the two new directives just
added, the directive pane for solution3 appears as shown in Figure 2-28.

&= Outline | Directive 2 -

@ fir
#[1 shift_reg
% HLS ARRAY_PARTITION variable=shift_reg complete dim=1
4y
HLS INTERFACE ap_vld register port=y
@ c
HLS RESOURCE variable=c core=RAM_1P_BRAM
@ x
HLS INTERFACE ap_vid port=x
%" Shift_Accum_Loop
% HLS UNROLL

Figure 2-28: Solution3 Directives

High-Level Synthesis www.xilinx.com Send Feedback 42
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=42

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE-

In Figure 2-28, notice the directives applied in solution2 as pragmas have a different
annotation (#HLS) than those just applied and saved to the directive file (%HLS). You can
view the newly added directives in the Tcl file, as shown next.

11.In the Explorer pane, expand the Constraint folder in Solution3 as shown in
Figure 2-29.

12. Double-click the solution3 directives.tcl file to openitinthe Information pane.

[25 Explorer 2 w = O [g firc |4 directives.tel i3 =58
& fir_prj 1 lﬁ### -
il Includes 2 ## This file is generated automatically by Vivado HLS.

S Source 3 i Please DO NOT edit it.
. 4 ## Copyright (C) 2013 Xilinx Inc. All rights reserved.
lel fir.c S AR R
= Test Bench 6 set directive_unroll "fir/Shift_ Accum_Loop"
3 solutionl 7 set_directive_array_partition -type complete -dim 1 "fir" shift_reg
3 solution2 8

= solution3
constraints
W directives.tcl
W scripticl

Figure 2-29: Solution3 Directives.tcl File

13. Click the Synthesis toolbar button to synthesize the design.
When synthesis completes, the synthesis report automatically opens.

14. Compare the results of the different solutions. Click the Compare Reports toolbar
button.

Alternatively, use Project > Compare Reports.

15. Add solutionl, solution?2, and solution3 to the comparison.
16. Click OK.
Figure 2-30 shows the comparison of the reports. solution3 has the smallest initiation

interval and can process data much faster. As the interval is only 16, it starts to process a
new set of inputs every 16 clock cycles.

High-Level Synthesis www.xilinx.com Send Feedback 43
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=43

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE-

£7 compare reports

Performance Estimates

= Timing (ns)
Clock solutionl solution2 solution3
ap_clk Target 10.00 10.00 10.00
Estimated 843 843 843

-l Latency (clock cycles)

solutionl solution? solution3

Latency min 78 78 15
max 78 78 15
Interval min 79 79 16
max 79 79 16

Utilization Estimates

solutionl solution2 solution3

BRAM_18K O 0 0
DSP48E 4 4 44
FF 276 276 a77
LuT 195 195 254

Figure 2-30: Comparison of Lab3 Solutions

It is possible to perform additional optimizations on this design. For example, you could use
pipelining to further improve the throughput and lower the interval. The Chapter 7, Design
Optimization tutorial provides details on using pipelining to improve the interval.

As mentioned earlier, you could modify the code itself to use arbitrary precision types. For
example, if the data types are not required to be 32-bit int types, you could use bit accurate
types (for example, 6-bit, 14-bit, or 22-bit types), provided that they satisfy the required
accuracy. For more details on using arbitrary precision type see the Chapter 5, Arbitrary
Precision Types tutorial.

High-Level Synthesis www.xilinx.com Send Feedback a4
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=44

i: X”_INX Chapter 2: High-Level Synthesis Introduction

ALL PROGRAMMABLE

Conclusion

In this tutorial, you learned how to:

« Create a Vivado High-Level Synthesis project in the GUI and Tcl environments.
« Execute the major steps in the HLS design flow.
« Create and use a Tcl file to run Vivado HLS.

« Create new solutions, add optimization directives, and compare the results of different
solutions.

High-Level Synthesis www.xilinx.com Send Feedback 45
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=45

& XILINX

ALL PROGRAMMABLE.

Chapter 3

C Validation

Overview

Validation of the C algorithm is an important part of the High-Level Synthesis (HLS) process.
The time spent ensuring the C algorithm is performing the correct operation and creating
a C test bench, which confirms the results are correct, reduces the time spent analyzing
designs that are incorrect “by design” and ensures the RTL verification can be performed
automatically.

This tutorial consists of three lab exercises.

Lab 1 Description

Reviews the aspects of a good C test bench, the basic operations for C validation and the C
debugger.

Lab 2 Description

Validates and debugs a C design using arbitrary precision C types.

Lab 3 Description

Validates and debugs a design using arbitrary precision C++ types.

Tutorial Design Description

You can download the tutorial design file from the Xilinx website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado HLS Tutoriall\C Validation.

The sample design used in this tutorial is a Hamming Window FIR. There are three versions
of this design:

High-Level Synthesis www.xilinx.com Send Feedback 46
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=46

i: XILINX Chapter 3: C Validation

ALL PROGRAMMABLE

« Using native C data types.
« Using ANSI C arbitrary precision data types.

« Using C++ arbitrary precision data types.

This tutorial explains the operation and methodology for C validation using High-Level
Synthesis. There are no design goals for this tutorial.

Lab 1: C Validation and Debug

Overview

This exercise reviews the aspects of a good C test bench and explains the basic operations
of the High-Level Synthesis C debug environment.

ﬁ IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

- On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 3-1).

o On Linux, open a new shell.

Vivado 2016.1
& Add Design Tools or Devices 2016.1
'.__u Manage Xilinx Licenses
$.. Uninstall 2016.1
B Vivado 2016.1 Tcl Shell
4 Vivado 2016.1
System Generator

m

Vivado HLS
@ Vivado HLS 2016.1 Command Promp
[7] Vivado HLS 2016.1 ~
1 Back
| Comrrh nrameanne mnd flac 0 |

Figure 3-1: Vivado HLS Command Prompt

High-Level Synthesis www.xilinx.com Send Feedback a7
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=47

g: X”_INX Chapter 3: C Validation

ALL PROGRAMMABLE

2. Using the command prompt window (Figure 3-2), change the directory to the C
Validation tutorial, labl.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado hls
—-f run hls.tcl as shown in Figure 3-2.

C:\Uivado_HLS_Tutorial>cd C_Ualidation

C:\Uivado_HLS_Tutorial:C_Ualidation>cd labl

4 [

C:\Uivado_HLS_Tutorial\C_Ualidation\labl1>vivado_hls -f run_hls.tcl

Figure 3-2: Setup the Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado hls -p hamming window prj as shown in Figure 3-3.

@I [APCC-3] Tmp directory is apcc_db -
@I [APCC-1] APCC is done.
@I [LIC-101] Checked in feature [HLS]
Generating csim.exe
Running DUT. . .done.
Testing DUT results

@I [SIM-1] CSim done with O errors.
@I [LIC-101] Checked in feature [HLS]

4 [

C:\Uivado_HLS_Tutorial:C_Ualidation\labl>vivado_hls -p hamming_window_prj

Figure 3-3: Initial Project for C Validation Lab 1

Step 2: Review Test Bench and Run C Simulation

1. Open the C test bench for review by double-clicking hamming window test.cinthe
Test Bench folder (Figure 3-4).

High-Level Synthesis www.xilinx.com Send Feedback 48
UG871 (v2016.2) June 8, 2016 L\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=48

i: XILINX Chapter 3: C Validation

ALL PROGRAMMABLE-

[t5 Explorer &2 w = 0| [hamming_window_test.c &3 =0
4 & hamming_window_prj 73 // Check the results returned by DUT against expected va *
> [Includes 74 fp=fopen("result.dat","w");
» £ Source 75 printf("Testing DUT results");
4 = Test Bench 76 for (i = ©; i < WINDOW LEN; i++) {
[& hamming_window_test.c 77 fprintf(fp, "%d %d \n", hw_result[i],sw_result[i]);
. - - 78 if (hw_result[i] !=s sw_result[i]) {
a = solution1 .
i 79 err_cnt++;
4 $ constraints 20 check_dots = 0;
& directives.tcl 81 printf("\n!!! ERROR at i = %4d - expected: %lod\tg
W scriptitcl 82 i, sw_result[i], hw_result[i]};
4 = csim 83 } else { // indicate progress on console
. & build 84 if (check_dots == @)
. & report 85 printf("\n"};

86 printf(".");

87 if (++check_dots == 64)

88 check_dots = @;

89 }

9% 1}

91 fclose(fp);

92 printf("\n");

93

94 // Print final status message

95 if (err_cnt) {

96 printf("!!! TEST FAILED - %d errors detected !!!\n",

97 } else E
98 printf("*** Test Passed ***\n");

99

100 // Only return @ on success

181 return err_cnt;

102} -

A

(1L} 4

Figure 3-4: C Test Bench for C Validation Lab 1

A review of the test bench source code shows the following good practices:

« The test bench:
- Creates a set of expected results that confirm the function is correct.
o Stores the results in array sw_result.

« The Design Under Test (DUT) is called to generate results, which are stored in array
hw_result. Because the synthesized functions use the hw_result array, it is this
array that holds the RTL-generated results later in the design flow.

« The actual and expected results are compared. If the comparison fails, the value of
variable err cnt is set to a non-zero value.

« The test bench issues a message to the console if the comparison failed, but more
importantly returns the results of the comparison. If the return value is zero the test
bench validates the results are good.

This process of checking the results and returning a value of zero if they are correct
automates RTL verification.

You can execute the C code and test bench to confirm that the code is working as expected.

High-Level Synthesis www.xilinx.com Send Feedback 49
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=49

i: XILINX Chapter 3: C Validation

ALL PROGRAMMABLE

2. Click the Run C Simulation toolbar button to open the C Simulation Dialog box, shown
in Figure 3-5.

¢ CSimulation Dialog @

C Simulation

bl

Options
Launch Debugger
Build Only
Clean Build

Optimizing Compile

Input Arguments

Do not show this dialog box again.

[Ok l | Cancel |

Figure 3-5: Run C Simulation Dialog Box

3. Select OK to run the C simulation.
As shown in Figure 3-6, the following actions occur when C simulation executes:

« The simulation output is shown in the Console window.

* Any print statements in the C code are echoed in the Console window. This example
shows the simulation passed correctly.

« The C simulation executes in the solution subdirectory csim. You can find any output
from the C simulation in the build folder, which is the location at which you can see the
output file result.dat written by the fprintf command highlighted in Figure 3-6.

Because the C simulation is not executed in the project directory, you must add any data
files to the project as C test bench files (so they can be copied to the csim/build
directory when the simulation runs). Such files would include, for example, input data read
by the test bench.

High-Level Synthesis www.xilinx.com Send Feedback 50
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=50

8 X”_INX Chapter 3: C Validation

ALL PROGRAMMABLE-

[ty Explorer 2 [¢ hamming_window_test ¢ i =g

Fprintf(fp, "%d %d \n", hw_result[i],sw_result[i]);*

=5 hamming_window_prj 77
@l Includes 78 if (hw_result[i] != sw_result[i]) {
£ Source 79 err_cnt++;
80

check_dots = @;

81 printf("\n!!! ERROR at i = %4d - expected: %1@d\
82 i, sw_result[i], hw_result[i]);

83 } else { // indicate progress on console

= Test Bench
[¢ hamming_window_test.c
= solution1

constraints 24 if (check_dots == @)
W directives.tcl 85 printf("\n");
W script.tcl 86 printf(".");
& csim 87 if (;H:I;e;k_dots == 64)
& build 88 check_dots = @;
89 }
apcclog % }
csim.exe 91 fclose(fp);
L& csim.mk 92 printf("\n"};
= Makefile.rules 93
2 resultdat 94 // Print final status message E
7 - 95 if (err_cnt) {
W@ run_sim.tcl —
o 96 printf("!!! TEST FAILED - %d errors detected !!!\n"__
= sim.bat -
97 } else
& apcc_db 98 printf("*** Test Passed ***\n"); v
= obj «| i | b
= report

El Console &2 . 9] Errors| & Warnings
<terminated= hamming_window_prj.Debug [C/C++ Application] C\Vivado_HLS_Tutorial\
Testing DUT results

% Test Passed *
4

Figure 3-6: C Simulation Results

Step 3: Run the C Debugger
A C debugger is included as part of High-Level Synthesis.

1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.
2. Select the Launch Debugger option as shown in Figure 3-7.

3. Click OK to run the simulation.

High-Level Synthesis www.xilinx.com Send Feedback 51
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=51

i: XILINX Chapter 3: C Validation

ALL PROGRAMMABLE

¢ CSimulation Dialog @

C Simulation

|

Options
¥ | Launch Debugger

Build Only
Clean Build

Optimizing Compile

Input Arguments

Do not show this dialog box again.

[(0]4 l | Cancel |

Figure 3-7: C Simulation Dialog Box

The Launch Debugger option compiles the C code and then opens the Debug environment,
as shown in Figure 3-8. Before proceeding, note the following:

» Highlighted at the top-right in Figure 3-8, you can see that the perspective has
changed from Synthesis to Debug. Click the perspective buttons to return to the
synthesis environment at any time.

« By default, the code compiles in debug mode. The Launch Debugger option
automatically opens the debug perspective at time 0, ready for debug to begin. To
compile the code without debug information, select the Optimizing Compile option in
the C Simulation dialog box.

High-Level Synthesis www.xilinx.com Send Feedback 52
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=52

8 X”_INX Chapter 3: C Validation

ALL PROGRAMMABLE-~

y Vivado HLS - hamming_window_prj (C:\Vivado_HLS _Tutorial\C_Validation\lab1\hamming_window_prj) =0 a0 (o]
File Edit Project | Solution Run Window Help
IO END.RD DB g Bi@im b @ % Debug |i+| Synthesis ¢ Analysis
4 Debug 2 . [Exploref @i = B |[wsVariables 2 . % Breakpoin& iili Registers | €% 3 ;
4 [€] hamming_window_prj.Debug [C/C++ Application] = M =
4 B csim.exe [4456] Name Type Value &
4 ¢ Thread [1] 0 (Suspended : Breakpoint)) arge int 1 E
= main() at hamming_window_test.:54 0x40139d » argy char ** 0xa54180
w gdb (* test_data in_data_t [256] 0x28fd0c
(# hw_result out_data_t [256) 0x28f90¢ o
4 »
[& hamming_window_test.c % hamming_window_csim.log . = 8 | 5 Outline =
2#Vendor: Xilinx [] - vERBY ek ¥
45 #include <stdio.h> = U stdioh

47 #include "hamming_window.h"

48

19- int main(int argc, char *argv[])

50 {

51 in_data_t test_data[WINDOW_LEN];

52 out_data_t hw_result[WINDOW_LEN], sw_result[WINDOW_LEN];

U hamming_window.h
o main(int, chart[]) : in

53 int i;
» 54 unsigned err_cnt = @, check_dots = @;
55 FTIF - '
4 »
B Console i3 &1 Tasks [Problems| O Executables| 0 Memory- [] xE&E=0

hamming_window_prj.Debug [C/C++ Application] csim.exe

| R

Figure 3-8: The HLS Debug Perspective
You can use the Step Into button (Figure 3-9) to step through the code line-by-line.

: op N-..[Z]-.E..E &l :

Figure 3-9: The Debug Step Into Button
4. Expand the Variables window to see the sw_results array.
5. Expand the sw_results array to the view shown in Figure 3-10.

6. Click the Step Into button (or key F5) repeatedly until you see the values being updated
in the Variables window.

High-Level Synthesis www.xilinx.com Send Feedback 53
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=53

i: X”_INX Chapter 3: C Validation

ALL PROGRAMMABLE-

45 Debug ¥ 5 Explorer i ¥ = O ||t=Variables & . % Breakpoints !ii! Registers| ¢ Expressions| 2 Modules =0
4 [t] hamming_window_prj.Debug [C/C++ Application] A=) e~
4 % csim.exe [3808] Name Type Value b
4 ¥ Thread [1] 0 (Suspended : Step) - (% hw_result out_data_t [256] 0x2890c E
= main() at hamming_window_test.c:57 0x4014a9 4 (& gy result out_data_t [256] 0x28f50c
w gdb 4 [B[0.99) out_data_t [100] 0x28150¢
(9= sw_result[0] out_data_t 42923460
(9= sw_result[1] out_data_t -37643710
(9= sw_result[2] out_data_t -32413106
(9= sw_result[3] out_data_t 302692880 L
{ b
[¢ hamming_window_testc & .5/ hamming_window_csim.log = 8 ||5= Outline =
. PERRE X~
for (i =0; i < WINDOW_LEN; i++) { U stdioh

/[Generate a test pattern for input to DUT
test data[i] = (in_date _t)((32767.0 * (double)((i % 16) - 8) / 8.0) + 0.5);
[/ Calculate the coefficient value for this index
in_data t coeff val = (in_data t)(WIN COEFF_SCALE * (@.54 -
0.46 * cos(2.0 * M PI * i / (double)(WINDOW_LEN - 1))));
// Generate array of expected values -- n.b. explicit casts to avoid
// integer promotion issues M

111

& hamming_window.h
® main(int, char*[]) : int

Figure 3-10: Analysis of C Variables

In this manner, you can analyze the C code and debug it if the behavior is incorrect.

For more detailed analysis, to the right of the Step Into button are the Step Over (F6), Step
Return (F7) and the Resume (F8) buttons.

7. Scroll to line 69 in the hamming window_ test.c file.

8. Place the cursor in the left-hand margin on line 69, right-click with the mouse button
and select Toggle Breakpoint. A breakpoint (blue dot) is indicated in the margin, as
shown in Figure 3-11.

9. Activate the Breakpoints tab, also shown in Figure 3-11, to confirm there is a breakpoint
set at line 69.

10. Click the Resume button (highlighted in Figure 3-11) or the F8 key to execute up to the
breakpoint.

High-Level Synthesis www.xilinx.com Send Feedback 54
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=54

i: XILINX Chapter 3: C Validation

ALL PROGRAMMABLE-

BNRD AR & B@RER&OQ _ #(soebué_.ESymhesis & Analysis

I Debug & Explorer # v°=0 f==\-=\.fariable iiti Registers| & Expressions ®\ Modules = g

4 [&] hamming_window_prj.Debug [C/C++ Application] XEAN BB ¥
4 @ csim.exe [3808] V| hamming_window_testc [line: 69]
4 (P Thread [1] 0 (Suspended : Step)
= main() at hamming_window_test.c:57 Ox4014ad
w gdb

(¢} hamming_window_test.c &2 hamming_window_csim.log = 8 |5 Outline & = ful
sw_result[i] = (out_data_t)test data[i] * (out_data_t)coeff_val; ’ BARy o#
} 9 stdioh
U hamming_window.h

// Call the DU o main(int, char*[]) : int

printf("Running DUT...");
hamming_window(hw_result, test data);
printf("done.\n");

/] Check the results returned by DUT against expected values

Figure 3-11: Using Breakpoints

11. Click the Step Into button (or key F5) multiple times to step into the hamming window
function.

12. Click the Step Return button (or key F7) to return to the main function.

13. Click the red Terminate button to end the debug session.

You can use the Run C simulation button to restart the debug session from within the
Debug perspective.

14. Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: C Validation with ANSI C Arbitrary Precision
Types

Introduction

This exercise uses a design with arbitrary precision C types. You will review and debug the
design in the GUL

High-Level Synthesis www.xilinx.com Send Feedback 55
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=55

2: X”_INX Chapter 3: C Validation

ALL PROGRAMMABLE

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the 1ab2 directory, as
shown in Figure 3-12.

2. To create a new Vivado HLS project, type vivado hls —-f run hls.tcl.

C:\Vivado_HLS_Tutorial\C_Ualidation\labi>cd ..

C:\Uivado_HLS_Tutorial:C_Ualidation>cd lab2

C:\Uivado_HLS_Tutorial:C_Ualidation\lab2>vivado_hls -f run_hls.tcl

Figure 3-12: Setup for Interface Synthesis Lab 2
3. To open the Vivado HLS GUI project, type vivado _hls -p hamming window prj.

4. Open the Source folder in the Explorer pane and double-click hamming window.c to
open the code, as shown in Figure 3-13.

[Explorer &3 ¢ = B [g hamming_window.c &2 =8
4 25 hamming_window_prj 45 #include "hamming_window.h" // Provides default WINDOW_LEN if no =
[k Includes 46 - o o .
4 S Source 47 // Translation module function prototypes:
- = : 48 static void hamming_rom_init(in_data_t rom_array[])};
lel hamming_window.c 49
= Test Bench 58 // Function definitions:
4 (= solution1 51void hamming_window(out_data t outdata[WINDOW_LEN], in_data t in
4 # constraints 524 L
% directives.tcl 53 static in_data_t window_coeff[WINDOW_LEN]; [
% scripticl 54 unsigned i;
o 55
= eim 56 // In order to ensure that 'window coeff' is inferred and pro
57 // initialized as a ROM, it is recommended that the arrya ini .
o 4 I - 1 = = I [

Figure 3-13: C Code for C Validation Lab 2

5. Hold down the Ctrl key and click hamming window.h on line 45 to open this header
file.

6. Scroll down to view the type definitions (Figure 3-14).

High-Level Synthesis www.xilinx.com Send Feedback 56
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=56

i: XILINX Chapter 3: C Validation

ALL PROGRAMMABLE

[hamming_window.c | hamming_window.h &2 =0
68 // scaled integer, which may be interpreted as a signed fixed po *
69 // with WIN_COEFF_FRACBITS bits after the binary point.

70

71/ /typedef intl6_t in_data_t;
72 /[typedef int32_t out_data_t;
73 #include "ap_cint.h"

74 typedef intl6 in_data_t;

75 typedef int32 out_data_t;

76
77 void hamming_window(out_data_t outdata[], in_data_t indata[]);

78 L
79 #endif // HAMMING _WINDOW_H_ not defined N
820 %

< 1 3

Figure 3-14: Type Definitions for C Validation Lab 2

In this lab, the design is the same as Lab 1, however, the types have been updated from the
standard C data types (intl6_t and int32_t) to the arbitrary precision types provided by
Vivado High-Level Synthesis and defined in header file ap cint.h.

More details for using arbitrary precision types are discussed in the Chapter 5, Arbitrary
Precision Types tutorial. An example of using arbitrary precision types would be to change
this file to use 12-bit input data types: standard C types only support data widths on 8-bit
boundaries.

This exercise demonstrates how such types can be debugged.

Step 2: Run the C Debugger

1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.
2. Select the Launch Debugger option.
3. Click OK to run the simulation.

The warning and error message shown in Figure 3-15 appears.

The message in the console pane and log file indicate you cannot debug the arbitrary
precision types used for ANSI C designs in the debug environment.

ﬁ IMPORTANT: When working with arbitrary precision types you can use the Vivado HLS debug
environment only with C++ or SystemC. When using arbitrary precision types with ANSI C,the debug
environment cannot be used. With ANSI C, you must instead use printf or fprintf statements for
debugging.

High-Level Synthesis www.xilinx.com Send Feedback 57
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=57

8 X”_INX Chapter 3: C Validation

ALL PROGRAMMABLE-

4 Vivado HLS - hamming_window_prj (C:\Vivado_HLS_Tutorial\C_Validation\lab2\hamming_window._prj) (= m] =]
File Edit Project Solution Window Help
IO B ERGRCEGD A B0 i © %> Debug [b-] Synthesis | 6 Analysis
= , 5 = - - » = o = e ——— =
| g =l |\ - z == [=
{5 Explorer & 8 |[(% hamming_window. hamming_window_ 3 8 |[E= Outline 2 ™[Directive =]
4 5 hamming_window_prj 1 Compiling ../../../../hamming_window_test. ~ An outline is not available.
. & Includes 2@E [SIM-34] C:/Xilinx/Vivado_HLS5/2015.3/inclu
+ S Source 3@E [SIM-1] CSim file generation failed: compi
- a
[hamming_window.c
» @i= Test Bench
a = solution1
4 # constraints
}’,& directives.tcl + | Message Dialog @
Uk scriptcl
4 = csim Vivado HLS C Simulation could not complete...
> & build Please check the error and warning messages:
» & report - There are 2 errors
4 = impl
> B2 ip] Do not show this dialog box again.
» & verilog
i
4 = sim < ‘#
» (= autowrap <
& report B Console % @] Errors| & Warnings| 4 Man Page R =MB-rmN-& =0
B v Vivado HLS Console
. & verilog while executing -
- "source C:/Vivado_HLS_Tutorial/C_Validation/lab2/hamming_window_prj/solutionl/csim.tcl”
» (> wrapc .
) invoked from within
N & wrapc_pc "hls::main C:/Vivado_HLS_Tutorial/C_Validation/lab2/hamming_window_prj/solutionl/csim.tcl"
4 & syn ("uplevel™ body line 1)
+ = report invoked from within
. = systemc "uplevel 1 hls::main {*}$args"
. &= verilog (procedure "hls_proc™” line 5)
. & vhdl invoked from within
"hls_proc $argv"
@I [LIC-101] Checked in feature [HLS] |;
< 11 »

Figure 3-15: C Simulation Dialog Box
Select the Explorer pane.
Expand the Test Bench folder in the Explorer pane.

Double-click the file hamming window test.c.

N o o oa

. Scroll to line 78 and remove the comments in front of the printf statement (as shown
in Figure 3-16).

[Explorer 22 w = 3/ [g hamming_window.c l¢) *hamming_window_test.c % =0
=5 hamming_window_prj &
i Includes 73 // Check the results returned by DUT against expected values
= Source 74 fp=fopen("result.dat","w");
& hamming window.c 75 printf("Testing DUT results");
- k 76 for (i = @; i < WINDOW LEN; i++) {
= Test Bench 77 fprintf(fp, "%d %d \n", hw_result[i],sw_result[i]);
[hamming_window_test.c 78 brintf("DUT results: Sample=%d, DUT=%d, Expected=%d\n", i, hw_result[i],sw_result[i]);
= solutiont 79 if (hw_result[i] != sw_result[i]) {
& constraints 8@ err_cnt++;
U directivestcl check_dots = @; .
4 scripticl 82 printf("“\n!!! ERROR at i = %4d - expected: %led\tgot: %1ed", —
. 83 i, sw_result[i], hw_result[i]); ‘E‘
& csim 84 } else { // indicate progress on console =
& build 85 if (check_dots == @)
= report 86 printf("\n");
87 printf("."); -

Figure 3-16: Enable Printing of the Results
8. Save the file.
9. Select the Synthesis button.

High-Level Synthesis www.xilinx.com Send Feedback 58
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=58

i: XILINX Chapter 3: C Validation

ALL PROGRAMMABLE

10. Click the Run C Simulation toolbar button or the menu Project > Run C Simulation to
open the C Simulation Dialog box.

11. Ensure the Launch Debugger option is not selected.

12. Click OK to run the simulation.

The results appear in the console window (Figure 3-17).

El Console &2 . @) Errors| & Warnings X pEE—O
<terminated= hamming_window_prj.Debug [C/C++ Application] C\Vivado_HLS_Tutorial\C_Validation\lab2\hamming_win
.DUT results: Sample=252, DUT=21807104, Expected=21807104 -

.DUT results: Sample=253, DUT=27011801, Expected=27011801
.DUT results: Sample=254, DUT=32266975, Expected=32266975
.DUT results: Sample=255, DUT=37559018, Expected=37559010

% Test Passed *

4 [m

Figure 3-17: C Validation Lab 2 Results

13. Exit the Vivado HLS GUI and return to the command prompt.

Lab 3: C Validation with C++ Arbitrary Precision
Types

Overview

This exercise uses a design with arbitrary precision C++ types. You will review and debug
the design in the GUL

Step 1: Create and Open the Project
From the Vivado HLS command prompt used in Lab 2, change to the 1ab3 directory.
Create a new Vivado HLS project by typing vivado hls —-f run hls.tcl.

Open the Vivado HLS GUI project by typing vivado hls -p hamming window prj.

Eal S

Open the Source folder in the Explorer pane and double-click hamming window.cpp
to open the code, as shown in Figure 3-18.

High-Level Synthesis www.xilinx.com Send Feedback 59
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=59

8 X”_INX Chapter 3: C Validation

ALL PROGRAMMABLE-

[Explorer &3 & = O|[¢ hamming_window.cpp & =0
4 25 hamming_window_prj 45 #include "hamming_window.h" // Provides default WINDOW_LEN if 1=
» ki Includes 46 . .
=g 47 // Translation module function prototypes:
4 = Source . . . A,
- - 48 static void hamming_rom_init(in_data_t rom_array[]);
[¢ hamming_window.cpp 19
’ &QTEEtSench 50 // Function definitions:
4 {= solution1 51void hamming_window(out_data_t outdata[WINDOW_LEN], in_data_t :
4 # constraints 524 X
< directives.tcl 53 static in_data_t window_coeff[WINDOW_LEN]; ‘:‘
W scripticl 22 unsigned 1i;
» = csim o

56 // In order to ensure that "window_coeff' is inferred and pi
57 // initialized as a ROM, it is recommended that the arrya i1

—
co Fd bhm Amomm aem m mwabn Liiimmd s men amdb T mbnd Fovnd bl mmiiinmm L.

< | il P

Figure 3-18: C++ Code for C Validation Lab 3

5. Hold down the Ctrl key down and click hamming window.h on line 45 to open this
header file.

6. Scroll down to view the type definitions (Figure 3-19).

l¢ hamming_window.cpp | hamming_window.h &3 =0
70 // This function applies an Hamming window function to the "ini=+
71// returning the windowed data in 'outdata'. The coefficients

72 // scaled integer, which may be interpreted as a signed fixed |
73// with WIN_COEFF_FRACBITS bits after the binary point.

74
75/ /typedef intl6_t in_data_t;
76 //typedef int32_t out_data_t;
77 #include "ap_int.h"
78 typedef ap_int<l6> in_data_t;
79 typedef ap_int<32> out_data_t;
20
81void hamming_window(out_data_t outdata[], in_data_t indata[]); E‘
82 n
07 Mawmds £ F VIARMTRI, LITRIDWME 1) ot ALl
< | il P

Figure 3-19: Type Definitions for C Validation Lab 3

Note: In this lab, the design is the same as in Lab 1 and Lab 2, with one exception. The design is now
C++ and the types have been updated to use the C++ arbitrary precision types, ap_int<#N>,
provided by Vivado HLS and defined in header file ap_int.h.

Step 2: Run the C Debugger

1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.
2. Select the Launch Debugger option.
3. Click OK.

The debug environment opens.

4. Select the hamming window.cpp code tab.

High-Level Synthesis www.xilinx.com Send Feedback 60
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=60

i: X”_INX Chapter 3: C Validation

ALL PROGRAMMABLE-

5. Set a breakpoint at line 61 in the hamming window.cpp file as shown in Figure 3-20.

6. Click the Resume button (or key F8) to execute the code up to the breakpoint.

4 Debug 2 ™[5 Explorer |# ¥ = B |[w=Variables| % Breakpoin £ 4% Registers| & Expressio | =\ Modules] = O
4 (€] hamming_window_prj.Debug [C/C++ Application] REARNBES ~
4 (% csim.exe [3740] «e hamming_window.cpp [line: 61]

4 Thread [1] 0 (Suspended : Breakpoint)
= main() at hamming_window_test.cpp:50 0x4013a2

w gdb
[¢] hamming_window.cpp & . [i hamming_window.h | [¢ hamming_window_test.cpp = O ||E Outline 2 =8
// In order to ensure that 'window_coeff' is inferred and properly B dERARY o ¥ ¥
// initialized as a ROM, it is recommended that the array initialization & hamming_window.h
// be done in a sub-function with global (wrt this source file) scope. # hamming_rom_init(in_data_t[]) : v

hamming_rom_init(window_coeff); s hamming window(out data [l i

of hamming_rom_init{in_data_t[]) : v

m

for (i = @; i < WINDOW_LEN; i++) { A
2 #pragma AP pipeline
outdata[i] = (out_data_t)window_coeff[i] * (out_data_t)indata[i];

Figure 3-20: Debug Environment for C Validation Lab 3
7. Click the Step Into button (or press the F5 key) twice to see the view in Figure 3-21.

The variables in the design are now C++ arbitrary precision types. These types are defined

in header file ap_int.h. When the debugger encounters these types, it follows the
definition into the header file.

As you continue stepping through the code, you have the opportunity to observe in greater

detail how the results for arbitrary precision types are calculated.

[¢/ hamming_window.cpp | hamming_window.h | ap_inth &3 =8
50 INLINE ap_int(const volatile ap_int<_AP_W2> &op):Base((const ap_private<_A »

i

52 template<int _AP_W2:>
53 INLINE ap_int(const ap_int<_AP_W2> &op):Base((const ap private<_AP_W2,true

55 template<int _AP_W2:>
56 INLINE ap_int(const ap_uint<_AP_W2> &op):Base((const ap_private<_AP_lW2,fal

58 template<int _AP_W2:>
59 INLINE ap_int(const volatile ap_uint<_AP_W2> &op):Base((const ap_private<_

)

template<int _AP_W2, bool _AP_52>
INLINE ap_int(const ap_range ref<_AP_W2, _AP_S2>& ref):Base(ref) {} -
< | il »

[=3 0= R

[z}

Figure 3-21: Arbitrary Precision Header File

A more productive methodology is to exit the ap_int.h header file and return to view the
results.

High-Level Synthesis www.xilinx.com Send Feedback 61
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=61

i: XILINX Chapter 3: C Validation

ALL PROGRAMMABLE-

8. Click the Step Return button (or the F7 key) to return to the calling function.
9. Select the Variables tab.

10. Expand the outdata variable, as shown in Figure 3-22 to see the value of the variable
shown in the VAL parameter.

%% Debug 2 5 Explorer b Hlaares|id ¥ = O||e9= Variables 3 . % Breakpoints| ¥ Registers| = Modules =8
[£] hamming_window_prj.Debug [C/C++ Application] =l =E=
i C\Vivado_HLS_Tutorial\C_Validation\lab3\hamming_window_prj\solutid| Name Type Value i
o Thread [1] 0 (Suspended : Step) 4 % gutdata out_data_t * 0x28f4d8
= hamming_window() at hamming_window.cpp:63 0x4017fa 4 (= ap_private <32, tr ap_private<32, true, true.. {.}
= main() at hamming_window_test.cpp:69 0x401587 - mask const uint64_t =
s gdb - not_mask const uintb4_t
= sign_bit_mask const uintb4_t
6= VAL ap_private<32, true, true.. -42923460
* indata in_data_t* 0x28fcd8 o
[1 3
< 1 r ||«)

hamming_window.cpp & @l ap_inth | ap_privateh | [¢ hamming_window_test. | ™% = O 8z Outline &2 LR o ~—0
/4 ANniLlalliseun das d MU, 1o 1S FELUIENUEU LiidL Lnie gari'yd diiitldliizacivi . .
o o hamming_window.h

// be done in a sub-function with global (wrt this source file) scope. s) o
hamming_rom_init(window_coeff); £ hamming_rom_init(in_data_t[]) : voi(
® hamming_window(out_data_t[], in_c

for (i =0; 1 < WINDOW_LEM; i++) { © * hamming_rom_init(in_data_t[]) : voir
62 #pragma AP pipeline
outdata[i] = (out_data_t)window_coeff[i] * (out_data_t)indata[i];

m

4 L} 3 4 1L} 2
Figure 3-22: Arbitrary Precision Variables

Arbitrary precision types are a powerful means to create high-performance, bit accurate
hardware designs. However, in a debug environment, your productivity can be reduced by
stepping through the header file definitions. Use breakpoints and the step return feature to
skip over the low-level calculations and view the value of variables in the Variables tab.

Conclusion

In this tutorial, you learned:

« The importance of the C test bench in the simulation process.
+ How to use the C debug environment, set breakpoints and step through the code.

+ How to debug C and C++ arbitrary precision types.

High-Level Synthesis www.xilinx.com Send Feedback 62
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=62

& XILINX

ALL PROGRAMMABLE.

Chapter 4

Interface Synthesis

Overview

Interface synthesis is the process of adding RTL ports to the C design. In addition to adding
the physical ports to the RTL design, interface synthesis includes an associated I/0O protocol,
allowing the data transfer through the port to be synchronized automatically and optimally
with the internal logic.

This tutorial consists of four lab exercises that cover the primary features and capabilities of
interface synthesis.

Lab 1 Description

Review the function return and block-level protocols.

Lab 2 Description

Understand the default I/O protocol for ports and learn how to select an I/O protocol.

Lab 3 Description

Review how array ports are implemented and can be partitioned.

Lab 4 Description

Create an optimized implementation of the design and add AXI4 interfaces.

Tutorial Design Description

Download tutorial design file from the Xilinx website. See Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado HLS TutoriallInterface Synthesis.

High-Level Synthesis www.xilinx.com Send Feedback 63
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=63

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

About the Labs

» The sample design used in the first two labs in this tutorial is a simple one, which helps
the focus to remain on the interfaces.

» The final two lab exercises use a multichannel accumulator.

« This tutorial explains how to implement I/O ports and protocols using High-Level
Synthesis.

« In Lab 4, you create an optimal implementation of the design used in Lab3.

Lab 1: Block-Level 1/O Protocols

Overview

This lab explains what block-level I/O protocols are and how to control them.

ﬁ IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

o On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 4-1).

High-Level Synthesis www.xilinx.com Send Feedback 64
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=64

§: XI LI NX Chapter 4:

ALL PROGRAMMABLE

Vivado 2016.1
"f,'-: Add Design Tools or Devices 2016.1
i__ Manage Xilinx Licenses
$.. Uninstall 2016.1
Bl Vivado 2016.1 Tcl Shell
¢ Vivado 20161
System Generator

m

Vivado HLS
Bl Vivado HLS 2016.1 Command Promp
7] vivado HLS 2016.1 -
1 Back
| Search programs and files jo |

Figure 4-1: Vivado HLS Command Prompt

o In Linux, open a new shell.

Interface Synthesis

2. Using the command prompt window (Figure 4-2), change directory to the Interface

Synthesis tutorial, lab1l.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado hls

—-f run hls.tcl, as shown in Figure 4-2.

C:\VUivado_HLS_Tutorial>cd Interface_Synthesis

C:\VUivado_HLS_Tutorial\Interface_Synthesis>cd labl

C:\Uivado_HLS_Tutorial\Interface_Synthesis\labl>vivado_hls -f run_hls.tcl

A ([111

Figure 4-2: Setup the Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the

command vivado hls -p adders prj, as shown in Figure 4-3.

@I [LIC-101] Checked in feature [HLS]
Generating csim.exe
10+20+30=60
20+30+40=90
30+40+50=120
4+50+60=150
50+60+70=180

@I [SIM-1] CSim done with O errors.
@I [LIC-101] Checked in feature [HLS]

C:\Uivado_HLS_Tutorial\Interface_Synthesis\labl>vivado_hls -p adders_prj

A ([111

Figure 4-3: Initial Project for Interface Synthesis Lab 1

High-Level Synthesis www.xilinx.com Send Feedback 65
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=65

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

Step 2: Create and Review the Default Block-Level I/O Protocol

1. Double-click adders.c in the Source folder to open the source code for review
(Figure 4-4).

This example uses a simple design to focus on the I/O implementation (and not the logic in
the design). The important points to take from this code are:

« Directives in the form of pragmas have been added to the source code to prevent any
I/O protocol being synthesized for any of the data ports (inA, inB and inC). I/O port
protocols are reviewed in the next lab exercise.

« This function returns a value and this is the only output from the function. As seen in
later exercises, not all functions return a value. The port created for the function return
is discussed in this lab exercise.

[t5 Explorer &2 v = O|([c adders.e &3 =0
=5 adders_prj int adders(int inl, int in2, int in3) { -
! Includes
£S . .
ouree 1// Prevent I0 protocols on all input ports
d adders.c 2 #pragma HLS INTERFACE ap_none port=in3
= Test E%ench 3 #pragma HLS INTERFACE ap_none port=in2
= solutiont 4 #pragma HLS INTERFACE ap_none port=inl

constraints

W directives.tcl
7 int sum;

W scripticl
= csim . . .
i sum = inl + in2 + in3;
= build
= report 1 return sum; E

< 1 3

Figure 4-4: C Code for Interface Synthesis Lab 1

2. Execute the Run C Synthesis command using the dedicated toolbar button or the
Solution menu.

When synthesis completes, the synthesis report opens automatically.

3. To review the RTL interfaces scroll to the Interface summary at the end of the synthesis
report.

The Interface summary and Outline tab are shown in Figure 4-5.

High-Level Synthesis www.xilinx.com Send Feedback 66
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=66

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

= O|(8= Outline %2 &4 Directive ¥ =4

= 2| General Information

iz Performance Estimates
B Timing (ns)
B Latency (clock cycles)

-l Summary
RTL Ports Dir Bits Protocol Source Object C Type

ap_clk in 1 ap_ctrl_hs adders return value = Utilization Estimates
ap_rst in 1 ap_ctrl_hs adders return value = Summary
ap_start n 1 ap_ctri_hs adders return value % Detail

ap_done out 1 ap_ctrl_hs adders return value :=| Interface

ap_idle out 1 ap_ctrl_hs adders return value B Summary
ap_ready out 1 ap_ctrl_hs adders return value

ap_return out 32 ap_ctrl_hs adders return value

inl in 32 ap_none inl scalar p

in2 in 32 ap_none in2 scalar 1

in3 in 32 ap_none in3 scalar

Figure 4-5: Interface Summary

There are four types of ports to review:

« The design takes more than one clock cycle to complete, so a clock and reset have been
added to the design: ap_clk and ap_rst. Both are single-bit inputs.

» A block-level I/O protocol has been added to control the RTL design: ports ap _start,
ap_done, ap_idle and ap_ready. These ports will be discussed shortly.

« The design has four data ports.

o Input ports Inl, In2, and In3 are 32-bit inputs and have the I/O protocol
ap_none (as specified by the directives in Figure 4-5).

o The design also has a 32-bit output port for the function return, ap_return.

The block-level I/O protocol allows the RTL design to be controlled by additional ports
independently of the data I/O ports. This I/O protocol is associated with the function itself,
not with any of the data ports. The default block-level I/O protocol is called ap ctrl hs.
Figure 4-6 shows this protocol is associated with the function return value (this is true even
if the function has no return value specified in the code).

Table 4-1 summarizes the behavior of the signals for block-level I/O protocol ap _ctrl hs.

High-Level Synthesis www.xilinx.com Send Feedback 67
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=67

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

Note: The explanation here uses the term “transaction”. In the context of high-level synthesis, a
transaction is equivalent to one execution of the C function (or the equivalent operation in the
synthesized RTL design).

Table 4-1: Block Level 1/0 protocol ap_ctrl_hs

Signals Description

ap_start This signal controls the block execution and must be
asserted to logic 1 for the design to begin operation.

It should be held at logic 1 until the associated output
handshake ap _readyis asserted. When ap_ready goes
high, the decision can be made on whether to keep
ap_start asserted and perform another transaction or
set ap_start to logic 0 and allow the design to halt at
the end of the current transaction.

If ap_start is asserted low before ap _ready is high,

the design might not have read all input ports and might
stall operation on the next input read.

ap_ready This output signal indicates when the design is ready for
new inputs.

The ap_ready signal is set to logic 1 when the design is
ready to accept new inputs, indicating that all input reads
for this transaction have been completed.

If the design has no pipelined operations, new reads are
not performed until the next transaction starts.

This signal is used to make a decision on when to apply
new values to the inputs ports and whether to start a new
transaction should using the ap_start input signal.

If the ap_start signal is not asserted high, this signal
goes low when the design completes all operations in the
current transaction.

ap_done This signal indicates when the design has completed all
operations in the current transaction.

A logic 1 on this output indicates the design has
completed all operations in this transaction. Because this
is the end of the transaction, a logic 1 on this signal also
indicates the data on the ap_return port is valid.

Not all functions have a function return argument and
hence not all RTL designs have an ap _return port.

ap_idle This signal indicates if the design is operating or idle (no
operation).

The idle state is indicated by logic 1 on this output port.
This signal is asserted low once the design starts
operating.

This signal is asserted high when the design completes
operation and no further operations are performed.

You can observe the behavior of these signals by viewing the trace file produced by RTL
cosimulation. This is discussed in Chapter 8, RTL Verification tutorial, but Figure 4-6 shows
the waveforms for the current synthesis results.

High-Level Synthesis www.xilinx.com Send Feedback 68
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=68

§: X”_INX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

E adders.wcfg* x [

=4 ™ ap_return[31:0]
I 1 ap_idle

Al

Figure 4-6: RTL Waveforms for Block Protocol Signals

The waveforms in Figure 4-6 show the behavior of the block-level I/O signals.

» The design does not start operation until ap_start is set to logic 1.
+ The design indicates it is no longer idle by setting port ap_idle low.

« Five transactions are shown. The first three input values (10, 20, and 30) are applied to
input ports In1, In2, and In3 respectively.

« Output signal ap_ready goes high to indicate the design is ready for new inputs on
the next clock.

« Output signal ap_done indicates when the design is finished and that the value on
output port ap_return is valid (the first output value, 60, is the sum of all three
inputs).

« Because ap_start is held high, the next transaction starts on the next clock cycle.

Note: In RTL cosimulation, all design and port input control signals are always enabled. For example,
in Figure 4-6 signal ap start is always high.

In the 2nd transaction, notice on port ap_return, the first output has the value 70. The result
on this port is not valid until the ap _done signal is asserted high.

Step 3: Modify the Block-Level 1/0 protocol

The default block-level I/O protocol is the ap ctrl hs protocol (the Control Handshake
protocol). In this step, you create a new solution and modify this protocol.

High-Level Synthesis www.xilinx.com Send Feedback 69
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=69

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE-

1. Select New Solution from the toolbar or Project menu to create a new solution.
2. Leave all settings in the new solution dialog box at their default setting and click Finish.

3. Select the C source code tab (adders.c) in the Information pane (or re-open the C source
code if it was closed).

4. Activate the Directives tab and select the top-level function adders, as shown in

Figure 4-7.
¢ adders.c &2 = O |[8= Outline [Directive &3 =0
46 #include "adders.h" - 4| ® adders
. -
@ inl
Sint ELL] int inl, int in2, int in3
o FEEE(int inl, int in2, int in3) { # HLS INTERFACE ap_none port=inl
@ in2
/ Prevent I0 protocols on all input ports # HLS INTERFACE ap_none port=in2
2 #pragma HLS INTERFACE ap_none port=in3 @ in3
3 #pragma HLS INTERFACE ap_none port=in2 # HLS INTERFACE ap_none port=in3

int sum;

sum = inl + in2 + in3;

m

return sum;

4 (1L} 4

Figure 4-7: Top-Level Function Selected

Because the block-level I/O protocols are associated with the function, you must specify
them by selecting the top-level function.

5. In the Directive tab, mouse over the top-level function adders, right-click, and select
Insert Directive.

The Directives Editor dialog box opens. Select the INTERFACE option from the Directive
pull-down list.

Figure 4-8 shows this dialog box with the drop-down menu for the interface mode
activated.

High-Level Synthesis www.xilinx.com Send Feedback 70
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=70

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE-

+ | Vivado HLS Directive Editor [

Directive

INTERFACE v

Destination
(") Source File

(@) Directive File

Options
mode (optional):
register (optional): [

depth (optional):

num_read_outstanding (optional):
num_write_outstanding (optional):
mayx_read_burst_length (optional):

max_write_burst_length (optional):

Help] l Cancel] l OK

Figure 4-8: Directive Dialog Box for ap_ctrl_none

The drop-down menu shows there are four options for the block-level interface protocol:

« ap_ctrl none: No block-level I/O control protocol.
« ap_ctrl hs: The block-level I/O control handshake protocol we have reviewed.

« ap_ctrl chain:The block-level I/O protocol for control chaining. This I/O protocol is
primarily used for chaining pipelined blocks together.

High-Level Synthesis www.xilinx.com Send Feedback 71
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=71

i: X”_INX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE-

*+ s _axilite: May be applied in additionto ap_ctrl hs orap ctrl chainto
implement the block-level I/O protocol as an AXI Slave Lite interface in place of
separate discrete I/O ports.

The block-level I/O protocol ap ctrl chain is not covered in this tutorial. This protocol
is similar to ap_ctrl hs protocol but with an additional input signal, ap_continue,
which must be high when ap done is asserted for the next transaction to proceed. This
allows downstream blocks to apply back-pressure on the system and halt further processing
when they are unable to continue accepting new data.

6. In the Destination section of the Directives Editor dialog box, select Source File.

By default, directives are placed in the directives. tcl file. In this example, the directive
is placed in the source file with the existing I/O directives.

7. From the mode options, select ap_ctrl_none from the drop-down menu.
8. Click OK.

The source file now has a new directive, highlighted in both the source code and directives
tab in Figure 4-9.

The new directive shows the associated function argument/port called return. All
interface directives are attached to a function argument. For block-level I/O protocols, the
return argument is used to specify the block-level interface. This is true even if the
function has no return argument in the source code.

[¢ *adders.c &2 = O |[8= Outline [Directive &3 =0
A6 #include "adders.h" - 4 ® adders
A7 i i . i . i . # HLS INTERFACE ap_ctrl_none port=return
int adders(int inl, int in2, int in3) { -
2t
HLS INTERFACE ap_none port=inl
1 @ in2
2// Prevent I0 protocols on all input ports # HLS INTERFACE ap_none port=in2
3 #pragma HLS INTERFACE ap_none port=in3 2 in3
4 #pragma HLS INTERFACE ap_none port=in2 # HLS INTERFACE ap_none port=in3

5#pragma HLS INTERFACE ap_none port=inl

int sum;

m

sum = inl + in2 + in3;

return sum;

<[I 3

Figure 4-9: Block-Level Interface Directive ap_ctrl_none

9. Click the Run C Synthesis toolbar button or use the menu Solution > Run C Synthesis
to synthesize the design.

High-Level Synthesis www.xilinx.com Send Feedback 72
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=72

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

Adding the directive to the source file modified the source file. Figure 4-9 shows the source
file name as *adders.c. The asterisk indicates that the file is modified but not saved.

10. Click Yes to accept the changes to the source file.

When the report opens, the Interface summary appears, as shown in Figure 4-10.

=l adders_csynth.rpt i3 =g

- Summary

RTL Ports Dir Bits Protocol Source Object C Type

ap_clk in 1 ap_ctrl_none adders return value

ap_rst in 1 ap_ctrl_none adders return value

ap_return out 32 ap_ctrl_none adders return value

inl in 32 ap_none inl scalar

in2 in 32 ap_none in2 scalar =
in3 in 32 ap_none in3 scalar

Figure 4-10: Interface Summary for ap_ctrl_none

When the interface protocol ap _ctrl none is used, no block-level I/O protocols are
added to the design. The only ports are those for the clock, reset and the data ports.

Note that without the ap done signal, the consumer block that accepts data from the
ap_return port now has no indication when the data is valid.

In addition, the RTL cosimulation feature requires a block-level I/O protocol to sequence the
test bench and RTL design for cosimulation automatically. Any attempt to use RTL
cosimulation results in the following error message and RTL cosimulation with halt:

@E [SIM-345] Cosim only supports the following 'ap ctrl none' designs: (1)
combinational designs; (2) pipelined design with task interval of 1; (3) designs with
array streaming or hls stream ports.

@E [SIM-4] *** C/RTL co-simulation finished: FAIL ***

Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: Port I/O Protocols

Overview

This exercise explains how to specify port I/O protocols.

High-Level Synthesis www.xilinx.com Send Feedback 73
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=73

2: X”_INX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the 1ab2 directory as
shown in Figure 4-11.

2. Type vivado hls -f run hls.tcl to create a new Vivado HLS project.

C:\Vivado_HLS_Tutorial\Interface_Synthesis\labl>cd ..

C:\Vivado_HLS_Tutorial\Interface_Synthesis>cd lab2

A ([111

C:\Uivado_HLS_Tutorial\Interface_Synthesis\lab2>vivado_hls -f run_hls.tcl

Figure 4-11: Setup for Interface Synthesis Lab 2
3. Typevivado hls -p adders io prj to open the Vivado HLS GUI project.

4. Open the source code as shown in Figure 4-12.

[25 Explorer & v = O [¢] adders._io.c &3 =g
'bcadders_io_prj __15=-?—=~=~=->-2-=~=~=-=-?—=~=~>-=-?—=~=~=~>->-2-=~=~=-=-2-=~=~=-=-?—=~=~>->-?—=~=~=-=-?—=~=~=-=-=-?—=~=~=-=-?—=~=~hh?—aaﬁﬁﬁ-aaﬁﬁﬁ-hahhﬁﬁ-ahﬁ*—;' -
) Includes 46 #include "adders_io.h"
47
' 2 Source ol L.
- A8 void adders_io(int inl, int in2, int *in_outl) {
le| adders_io.c 19
&= Test Bench 50 *in_outl = inl + in2 + *in_outl;
i = solution1 57
« & constraints 52
U directives.tcl 53}
& scripticl 54
W script. o I
=] e I
& build 57
= report 58

Figure 4-12: C Code for Interface Sythesis Lab 2

The source code for this exercise is similar to the simple code used in Lab 1. For similar
reasons, it helps focus on the interface behavior and not the core logic.

This time, the code does not have a function return, but instead passes the output of the
function through the pointer argument *in out1l. This also provides the opportunity to
explore the interface options for bidirectional (input and output) ports.

The types of I/O protocol that you can add to C function arguments by interface synthesis
depends on the argument type. These options are fully described in the Vivado Design Suite
User Guide: High-Level Synthesis (UG902) [Ref 2].

The pointer argument in this example is both an input and output to the function. In the RTL
design, this argument is implemented as separate input and output ports.

High-Level Synthesis www.xilinx.com Send Feedback 74
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=74

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

For the code shown in Figure 4-12, the possible options for each function argument are
described in Table 4-2.

Table 4-2: Port Level 1/0 Protocol Options for Lab 2

Function Argument 1/0 Protocol Options

Inl and In2 These are pass-by-value arguments that can be
implemented with the following I/O protocols:

« ap_none: No I/O protocol. This is the default for inputs.

« ap_stable: No I/O protocol.

« ap_ack: Implemented with an associated output
acknowledge port.

+ ap_vld: Implemented with an associated input valid
port.

 ap_hs: Implemented with both input valid and output
acknowledge ports.

in_outl This is a pass-by-reference output that can be
implemented with the following I/O protocols:

« ap_none: No I/O protocol. This is the default for inputs.

+ ap_stable: No I/O protocol.

« ap_ack: Implemented with an associated input
acknowledge port.

 ap_vld: Implemented with an associated output valid
port. This is the default for outputs.

« ap_ovld: Implemented with an associated output valid
port (no valid port for the input part of any inout
ports).

 ap_hs: Implemented with both input valid port and
output acknowledge ports

« ap_fifo: A FIFO interface with associated output write
and input FIFO full ports.

+ ap_bus: A Vivado HLS bus interface protocol.

Note: The port directives applied in Lab 1 were not actually necessary because ap_none is the
defaultI/O protocol for these C arguments. The directives were provided to avoid addressing any I/O
port protocol behavior in that exercise, default behavior or not.

In this exercise, you implement a selection of I/O protocols.

Step 2: Specify the 1/O Protocol for Ports

1. Ensure that you can see the C source code in the Information pane.

2. Activate the Directives tab and select input inl, as shown in Figure 4-13.

High-Level Synthesis www.xilinx.com Send Feedback 75
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=75

i: X”_INX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE-

[€ adders_jo.c 2 = O||g= Outline |24 Directive &3 =8

A5 FRAKAKK KKK KA KKK KKK AR KA KK KKK KK AR KKK AR R K AR A AR AR A KA KR AKK KR KEKK KK | 4

. 4 @ adders_io
46 #include "adders_io.h"

a7 @ inl

7]

void adders_io(:a5ll, int in2, int *in_outl) { 4 !n2 ;
@ in_out

*in_outl = inl + in2 + *in_outl;

3}

m

56
57
58 -

Figure 4-13: Adding Port I/O Protocols
3. Right-click and select Insert Directive.
4. When the Directives Editor opens leave the Directive drop-down menu as INTERFACE.

a. Leave the destination at the default value. This time, the directives are stored in the
directives.tcl file.

b. Select ap_vld from the mode drop-down menu
c. Click OK.
5. Select argument in2 and add an interface directive to specify the I/O protocol ap ack.

6. Select argument in_outl and add an interface directive to specify the I/O protocol
ap_ hs.

7. In the Explorer pane, expand the Constraints folder and double-click the
directives.tcl file to open it, as shown in Figure 4-14.

[25 Explorer & ' = O|[[¢ adders_io.c < directives.tel & =0

=5 adders_io_prj

& Includes 2 ## This file is generated automatically by Vivado HLS.
= Source 3 Pleasg DO NOT edit 1t)
i 4 ## Copyright (C) 2014 Xilinx Inc. All rights reserved.
¢l adders_io.c 5 S
fiz Test Bench 6 set directive interface -mode ap vld "adders io" inl
= solution1 7 set_directive_interface -mode ap_ack "adders_io" in2
constraints 8 set_directive_interface -mode ap_hs "adders_io" in_outl
& directives.tcl 9
W scripttcl
= csim
& build
= report i

Figure 4-14: Directives for Lab 2
8. Synthesize the design.

9. Review the Interface summary when the report file opens (Figure 4-15).

High-Level Synthesis www.xilinx.com Send Feedback 76
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=76

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

[¢ adders_io.c |9 directives.tel |z adders_io_csynth.rpt i3 =0

- Summary
Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs adders_io return value
ap_rst in 1 ap_ctrl_hs adders_io return value
ap_start in 1 ap_ctrl_hs adders_io return value
ap_done out 1 ap_ctrl_hs adders_io return value
ap_idle out 1 ap_ctrl_hs adders_io return value
ap_ready out 1 ap_ctrl_hs adders_io return value
inl in 32 ap_vld inl scalar
inl_ap_vid in 1 ap_vld inl scalar
in2 in 32 ap_ack in2 scalar
in2_ap_ack out 1 ap_ack in2 scalar
in_outl_i in 32 ap_hs in_outl pointer
in_outl_i_ap_vid in 1 ap_hs in_outl pointer
in_outl_i_ap_ack out 1 ap_hs in_outl pointer =
in_outl_o out 32 ap_hs in_outl pointer
in_outl_o_ap_vid out 1 ap_hs in_outl pointer
in_outl_o_ap_ack in 1 ap_hs in_outl pointer

Figure 4-15: Interface Summary for Lab 2
« The design has a clock and reset.
« The default block-level I/O protocol signals are present.
« Portinlis implemented with a data port and an associated input valid signal.
« The data on port inl is only read when port inl_ap_vld is active-High.
+ Portin2isimplemented with a data port and an associated output acknowledge signal.
« Portin2_ap_ack will be active-High when data port in2 is read.

« The inout i identifies the input part of argument inoutl. This has associated input
valid port inoutl i ap vld and output acknowledge port inoutl i ap ack.

« The output part of argument inoutl is identified as inout_o. This has associated output
valid port inoutl o ap vld and input acknowledge port inoutl_o_ap_ack.

10. Exit the Vivado HLS GUI and return to the command prompt.

Lab 3: Implementing Arrays as RTL Interfaces

Introduction

This exercise shows how array arguments on the top-level function interface can be
implemented as a number of different types of RTL port.

High-Level Synthesis www.xilinx.com Send Feedback 77
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=77

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE-

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt window used in the previous lab, change to the
lab3 directory.

2. Create a new Vivado HLS project by typing vivado hls -f run hls.tcl.
3. Open the Vivado HLS GUI project by typing vivado hls -p array io prj.

4. Open the source code as shown in Figure 4-16.

This design has an input array and an output array. The comments in the C source explain
how the data in the input array is ordered as channels and how the channels are
accumulated. To understand the design, you can also review the test bench and the input
and output data in file result.golden.dat.

25 Explorer 2 v = O|([d amay.io.c £3 =8
% array_io_pr1] 46 #include "array_io.h" -
[ni¥ Includes 47
= Source 48 // The data comes in organized in a single array.
—r— 49 // - The first sample for the first channel (CHAN)
= 5@ // - Then the first sample for the 2nd channel etc.
= Test Bench 51// The channels are accumulated independently
= solution1 52// E.g. For & channels
constraints 53// Array Order : ® 1 2 3 4 5 6 7 8 9 10 etc. 16 etc...
% directives.tcl 54 // Sample Order: A® B@ CO D@ EO@ FO GO HE Al Bl c2 etc. A2 etc...
4 scripttcl 55// Output Order: A® B@ C@ DO EQ FO GO HO A@+Al BO+Bl CO+C2 etc. AP+AL+A2 etc...
. 56
= cim 7void array_io (dout t d_o[N], din_t d_i[N]) {
& build 8 int i, rem;
= report

g
0 // Store accumulated data

static dacc_t acc[CHANNELS];

£ =
3 /{ Accumulate each channel

4 For_Loop: for (i=0;i<N;i++) {

5 rem=1%CHANNELS ;

6 acc[rem] = acc[rem] + d_i[i];

7 d_o[i] = acc[rem];

8 ¥

9} <
B 4 [

Figure 4-16: C Code for Interface Synthesis Lab 3

Step 2: Synthesize Array Function Arguments to RAM Ports
In this step, you review how array ports are synthesized to RAM ports.

1. Synthesize the design and review the Interface summary when the report opens
(Figure 4-17).

The interface summary shows how array arguments in the C source are by default
synthesized into RTL RAM ports.

» The design has a clock, reset, and the default block-level I/O protocol ap ctrl hs
(noted on the clock in the report).

* The d o argument has been synthesized to a RAM port (I/O protocol ap memory).

High-Level Synthesis www.xilinx.com Send Feedback 78
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=78

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

+ A data port (d_o_do).
« An address port (d_o_address0).
« Control ports for a chip-enable (d_o ce0) and a write-enable port (do_we0).

« The d i argument has been synthesized to a similar RAM interface, but has an input
data port (d_i g0) and no write-enable port because this interface only reads data.

In both cases, the data port is the width of the data values in the C source (16-bit integers
in this case) and the width of the address port has been automatically sized to match the
number of addresses that must be accessed (5-bit for 32 addresses).

=l array_io_csynth.rpt &3 =g

1 i -~

- Summary
Dir = Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs array_io return value
ap_rst in 1 ap_ctrl_hs array_io return value
ap_start in 1 ap_ctrl_hs array_io return value
ap_done out 1 ap_ctrl_hs array_io return value
ap_idle out 1 ap_ctrl_hs array_io return value
ap_ready out 1 ap_ctrl_hs array_io return value
d_o_address0 out 5 ap_memory do array
d_o_cel out 1 ap_memory do array
d_o_wel out 1 ap_memory do array
d_o_d0 out 16 ap_memory do array
d_i_address0 out 5 ap_memory d_i array =
d_i_cel out 1 ap_memory d_i array
d_i_g0 in 16 ap_memory d_i array

< 1 3

Figure 4-17: Interface Summary for Initial Lab 3 Design

Synthesizing array arguments to RAM ports is the default. You can control how these ports
are implemented using a number of other options. The remaining steps in Lab 3
demonstrate these options:

¢ Using a single-port or dual-port RAM interface.
« Using FIFO interfaces.

« Partitioning into discrete ports.

Step 3: Using Dual-Port RAM and FIFO Interfaces

High-Level Synthesis allows you to specify a RAM interface as a single-port or dual-port. If
you do not make such a selection, Vivado HLS automatically analyzes the design and selects
the number of ports to maximize the data rate.

High-Level Synthesis www.xilinx.com Send Feedback 79
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=79

g: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

Step 2 used a single-port RAM interface because the for-loop in the source code is by
default left rolled: each iteration of the loop is executed in turn:

* Read the input port.

« Read the accumulated result from the internal RAM.

« Sum the accumulated and new data and write into the internal RAM.
» Write the result to the output port.

« Repeat for the next iteration of the loop.

This ensures only a single input read and output write is ever required. Even if multiple input
and outputs are made available, the internal logic cannot take advantage of any additional
ports.

Note: If you specify a dual-port RAM and Vivado HLS can determine only a single port is required,
it uses a single-port and over-ride the dual-port specification.

In this design, if you want to implement an array argument using multiple RTL ports, the
first thing you must do is unroll the for-loop and allow all internal operations to happen in
parallel, otherwise there is no benefit in multiple ports: the rolled for-loop ensure only one
data sample can be read (or written) at a time.

Select New Solution from the toolbar or Project menu to create a new solution.
Accept the defaults, and click Finish.

Ensure the C source code is visible in the Information pane.

W N

In the Directive tab select For_Loop, and right-click to open the Directives Editor
dialog box.

a. Inthe Directives Editor dialog box activate the Directive drop-down menu at the top
and select UNROLL.

b. With the Directives Editor as shown in Figure 4-18, click OK.

High-Level Synthesis www.xilinx.com Send Feedback 80
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=80

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

Vivado HLS Directive Editor

Directive

UNROLL v

Destination
Source File
@) Directive File

Options
skip_exit_check (optional):

factor (optional):

region (optional):

| Help | | Cancel | [Ok l

Figure 4-18: Directives Editor to Unroll For_Loop

5. Next, specify a dual-port RAM for input reads. The Resource directive indicates the type
of RAM connected to an interface.

a. In the Directive tab, select port d_i and right-click to open the Directives Editor
dialog box.

b. In the Directives Editor activate the Directive drop-down menu at the top and select
RESOURCE.

c. Click the core options box and select RAM_2P_BRAM.

d. Verify that the settings in the Directives Editor dialog box are as shown in
Figure 4-19 and click OK.

High-Level Synthesis www.xilinx.com Send Feedback 81
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=81

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

+ | Vivado HLS Directive Editor =
Directive

RESOURCE ~|

Destination
Source File
@) Directive File

Options

variable (required): d_i

core (optional}: RAM_2P_BRAM

latency (optional}:

metadata (optional):

Figure 4-19: Directives Editor for Specifying a Dual-port RAM
6. Implement the output port using a FIFO interface.

a. In the Directive tab, select port d_o and right-click to open the Directives Editor
dialog box.

b. In the Directives Editor, ensure the directive is Interface.

c. From the Mode drop-down menu, select ap_fifo.

d. Click OK.

The Directive tab shows the directives now applied to the design (Figure 4-20).

High-Level Synthesis www.xilinx.com Send Feedback 82
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=82

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE-

o= Outline |4 Directive =g

4| @ array_io

2 do

9 HLS INTERFACE ap_fifo port=d_o

@ dli

9 HLS RESOURCE variable=d_i core=RAM_2P_BRAM
=1 acc

4 %" For_Loop
9 HLS UNROLL

Figure 4-20: Directives Summary for Lab 2 Solution

7. Synthesize the design.

When the report opens in the Information pane, the Interface summary is as shown in
Figure 4-21.
« The design has the standard clock, reset, and block-level I/O ports.

« Array argument d_o has been implemented as a FIFO interface with a 16-bit data port
(d_o din) and associated output write (d_o write) and input FIFO full
(d o full n) ports.

« Argument d_i has been implemented as a dual-port RAM interface.

=l array_io_csynth.rpt i3 = (=]
Interface -
- Summary
RTL Ports Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs array_io return value
ap_rst in i ap_ctrl_hs array_io return value
ap_start in 1 ap_ctrl_hs array_io return value
ap_done out 1 B ap_ctrl_hs array_io return value
ap_idle out ik ap_ctrl_hs array_io return value
ap_ready out ik ap_ctrl_hs array_io return value
d_o_din out 16 ap_fifo do pointer
d_o_full_n in i ap_fifo do pointer
d_o_write out 1 ap_fifo do pointer
d_i_address0 out 5 ap_memory d.i array
d_i_cel out 1 ap_memory d.i array
d_i_qg0 in 16 ap_memory d.i array =i
d_i_addressl out 5 ap_memory d.i array
d_i_cel out 1 ap_memory d.i array
diqgl in 16 ap_memory d.i array

Figure 4-21: Dual-Port BRAM and FIFO Interfaces

High-Level Synthesis www.xilinx.com Send Feedback 83
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=83

g: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

By using a dual-port RAM interface, this design can accept input data at twice the rate of
the previous design. Because the for-loop was unrolled, the logic in the loop is able to
consume data at this rate. By default, each loop iteration is executed in turn. This
implementation code limits the logic to one read on d_1i in each iteration. Unrolling the
loops allows more reads to be performed (but creates N copies of the logic). However, by
using a single-port FIFO interface on the output the output data rate is the same as before.

Step 4: Partitioned RAM and FIFO Array interfaces
In this step, you learn how to partition an array interface into any arbitrary number of ports.

1. Select New Solution from the toolbar or the Project menu and create a new solution.

2. Accept the defaults, and click Finish. This includes copying existing directives from
solution2.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab, select d_o and right-click to open the Insert Directives Editor
dialog box.

a. Inthe Directives Editor dialog box activate the Directive drop-down menu at the top
and select ARRAY_PARTITION.

b. Activate the options type drop down to partition the array into blocks. Set Type to
Block.

c. Inthe Factor dialog box, set the factor (optional) to 4.

d. With the Directives Editor as shown in Figure 4-22, click OK.

High-Level Synthesis www.xilinx.com Send Feedback 84
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=84

i: X”_INX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE-

Vivado HLS Directive Editor

Directive

ARRAY_PARTITION v

Destination

(7) Source File
(@) Directive File
Options

variable (required): do

type (optional): block hd

factor (optional): 4

dimension (optional): 1

Help] l Cancel] [(]9 l

Figure 4-22: Directives Editor for Partitioning Array d_o

Now, partition the input array into two blocks (not four).

5. In the Directive tab, select d_i and repeat the previous step, but this time partition the
port with a factor of 2.

The directives tab shows the directives now applied to the design (Figure 4-23).

5% Outline |4 Directive &3 € > =0

4 @ array_io
2 do
9 HLS ARRAY_PARTITION partition variable=d_o block factor=4 dim=
9 HLS INTERFACE ap_fifo port=d_o
@ dli
9% HLS ARRAY_PARTITION variable=d_i block factor=2 dim=1
9 HLS RESOURCE variable=d_i core=RAM_2P_BRAM
®[1 acc
4% For_Loop
9 HLS UNROLL

Figure 4-23: Directives Summary for Lab 2 Solution3

High-Level Synthesis www.xilinx.com Send Feedback 85
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=85

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE.-
6. Synthesize the design.

When the report opens in the Information pane, the Interface summary is as shown in
Figure 4-24.

« The design has the standard clock, reset, and block-level I/O ports.

« Array argument d_o has been implemented as a four separate FIFO interfaces.

« Argument d i has been implemented as a two separate RAM interfaces, each of which
uses a dual-port interface. (If you see four separate RAM interfaces, confirm a partition
factor for d_1i is two and not four).

=l array_io_csynth.rpt i3 =8
Interface i
- Summary
RTL Ports Dir Bits Protocol Source Object C Type

ap_clk in 1 ap_ctrl_hs array_io return value
ap_rst in 1 ap_ctrl_hs array_io return value
ap_start in 1 ap_ctrl_hs array_io return value
ap_done out 1 ap_ctrl_hs array_io return value
ap_idle out 1 ap_ctrl_hs array_io return value
ap_ready out 1 ap_ctrl_hs array_io return value
d_o_0_din out 16 ap_fifo do0 pointer
d_o_0_full_n in 1 ap_fifo do0 pointer
d_o_0_write out 1 ap_fifo do0 pointer
d_o_1_din out 16 ap_fifo dol pointer
d_o_1_full_n in 1 ap_fifo dol pointer
d_o_1_write out 1 ap_fifo dol pointer
d_o_2_din out 16 ap_fifo do?2 pointer
d_o_2_full_n in 1 ap_fifo do?2 pointer
d_o_2_write out 1 ap_fifo do?2 pointer
d_o_3_din out 16 ap_fifo do 3 pointer
d_o_3_full_n in 1 ap_fifo do 3 pointer
d_o_3_write out 1 ap_fifo do 3 pointer
d_i_0_address0 out 4 ap_memory d.i0 array
d_i_0_cel out 1 ap_memory d.i0 array
d_i_0_ gl in 16 ap_memory d.i0 array
d_i_0_addressl out 4 ap_memory d.i0 array

d_i_0_cel out 1 ap_memory d.i0 array =
d_i0qgl in 16 ap_memory d.i0 array
d_i_1_address0 out 4 ap_memory dlil array
d_i_1l_cel out 1 ap_memory dlil array
d_i_l gl in 16 ap_memory dlil array
d_i_1_addressl out 4 ap_memory dlil array
dli_lcel out 1 ap_memory dlil array
dilaqgl in 16 ap_memory dlil array

Figure 4-24: Interface Report for Partitioned Interfaces

High-Level Synthesis www.xilinx.com Send Feedback 86
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=86

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

If input port d_i was partitioned into four, only a single-port RAM interface would be
required for each port. Because the output port can only output four values at once, there
would be no benefit in reading eight inputs at once.

The final step in this tutorial is to partition the arrays completely.

Step 5: Fully Partitioned Array Interfaces

This step shows you how to partition an array interface into individual ports.

1.
2.

Select New Solution from the toolbar and create a new solution.

Click Finish and accept the defaults. This includes copying existing directives from
solution3.

Ensure the C source code is visible in the Information pane.

In the Directive tab, select the existing partition directive for d_o as shown in
Figure 4-25.

Right-click and select Modify Directive.

o= Outline |4 Directive =g

4 @ array_io

2 do
%, HLS ARRAY PARTITION variable=d_o complete factor=4 dim=1
06| & Modify Directive Ld o

2 ¥ Remove Directive

% HLS ARRAY_PARTITION partition variable=d_i complete dim=1
% HLS RESOURCE variable=d_i core=RAM_2P_BRAM
=1 acc
4 %" For_Loop
% HLS UNROLL

Figure 4-25: Modifying the Directive for d_o
In the Directives Editor dialog box:

a. In the Factor dialog box, delete the value 4. Since this array will be completely
partitioned into registers, the partitioning factor is no longer relevant. (If you leave
it there, it will be ignored).

b. Activate the type (optional) drop down and modify the partitioning type to
Complete.

c. With the Directives Editor as shown in Figure 4-26, click OK.

High-Level Synthesis www.Xilinx.com I Send Feedback I 87

UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=87

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE-

Vivado HLS Directive Editor

Directive

ARRAY_PARTITION v

Destination
() Source File
(@) Directive File

Options
variable (required): do
type (optional): complete hd

factor (optional):

dimension (optional): 1

l Help] l Cancel] [(0]4 l

Figure 4-26: Directives Editor for Partitioning Array d_o

7. Inthe Directive tab, select d_1i and repeat the previous step to completely partition the
d i array.

8. In the Directive tab, select the RESOURCE directive on d_ i, right-click with the mouse
and select Remove Directive. If the array is partitioned into individual elements, it
cannot be assigned to a block RAM.

The Directives tab shows the directives now applied to the design (Figure 4-27).

High-Level Synthesis www.xilinx.com Send Feedback 88
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=88

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

2= Qutline | (4 Directive &2 « =8

4| @ array_io
® do
% HLS INTERFACE ap_fifo port=d_o
% HLS ARRAY_PARTITION variable=d_o complete dim=1
® di
% HLS ARRAY_PARTITION variable=d_i complete dim=1
®[1 acc
® temp
4 %" For_Loop
% HLS UNROLL

Figure 4-27: Directives Summary for Lab 2 Solution4
9. Synthesize the design.

10. When the report opens in the Information pane, review the interface summary. Note the
following:

« The design has the standard clock, reset, and block-level I/O ports.
« Array argument d_o has been implemented as 32 separate FIFO interfaces.

« Argument d_i has been implemented as 32 separate scalar ports. Because the default
interface for input scalars is not in the I/O protocol, they have the I/O protocol
ap_none.

Although this tutorial has focused exclusively on the I/O interfaces, at this point it is worth
examining the differences in performance across all four solutions.

11. Select Compare Reports from the toolbar or the Project menu to open a comparison of
the solutions.

12.In the Solution Selection dialog box, add each of the four solutions to the Selected
Solutions pane (Figure 4-28).

13. Click OK.

High-Level Synthesis www.xilinx.com Send Feedback 89
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=89

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE-

J ESqution Selection Dialog @
Solution Selection
Please select the solutions you want to compare
Available solutions: Selected solutions:
solutionl
Add== solution?
<<Remove solution3
solutiond
[Ok l l Cancel]

Figure 4-28: Compare All Solutions for Lab 3

When the solutions comparison report opens (Figure 4-29), it shows that solution4, using a
unique port for each array element, is much faster than the previous solutions. The internal
logic can access the data as soon as it is required. (There is no performance bottleneck due
to port accesses.)

£7 compare reports i3 = B

Performance Estimates

=l Timing (ns)
Clock solutionl solution2 solution3 solutiond
ap_clk Target 4.00 4.00 4.00 4.00
Estimated 2.39 270 340 340

1

-1 Latency (clock cycles)

solutionl solution2 solution? solutiond

Latency min 129 33 11 2
max 129 33 11 2
Interval min 130 34 12 3
max 130 34 12 3

Figure 4-29: Performance Comparisons for All Lab 3 Solutions

Scroll further down the comparison report (Figure 4-30) and note that solutions with more
I/O ports (solutions 2, 3, and 4), allows more parallel processing, but also use considerably
more resources.

High-Level Synthesis www.xilinx.com Send Feedback 90
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=90

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

£F compare reports = B

Utilization Estimates

solutionl solution? solution3 solutiond

BRAM_18K 0O 0 0 0

DSP48E 0 0 0 0

FF 186 1266 1228 1155 =
LUT 55 1322 1195 1058

Figure 4-30: Resource Comparisons for All Lab 3 Solutions

In the next exercise, you implement this same design with an optimum balance between the
ports and resources. In addition to this more optimal implementation, the next exercise
shows how to add AXI4 interfaces to the design.

14. Exit the Vivado HLS GUI and return to the command prompt.

Lab 4: Implementing AXI4 Interfaces

Introduction

This exercise explains how to specify AXI4 bus interfaces for the I/O ports. In addition to
adding AXI4 interfaces this exercise also shows how to create an optimal design by using
interface and logic directives together.

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt window used in the previous lab, change to the
lab4 directory.

2. Create a new Vivado HLS project by typing vivado hls -f run hls.tcl.
3. Openthe Vivado HLS GUI project by typing vivado hls -p axi interfaces prj.

4. Open the source code as shown in Figure 4-31.

High-Level Synthesis www.xilinx.com Send Feedback 91
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=91

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE-

le| axi_interfaces.c & =0
46 #include "axi_interfaces.h" -
47

48 // The data comes in organized in a single array.

49 // - The first sample for the first channel (CHAN)

50 // - Then the first sample for the 2nd channel etc.

51// The channels are accumulated independently

52// E.g. For 8 channels:

53// Array Order : @ 1 2 3 4 5 6 7 8 9 10 etc. 16 etc...

54 // Sample Order: A® BO CO DO EO FO GO He Al Bl c2 etc. A2 etc...

55// Output Order: A® B@ CO DO EO FO GO HO A@+Al BO+Bl CO+(2 etc. AO+A1+A2 etc...
56

57void axi_interfaces (dout_t d_o[N], din_t d_i[N]) {

58 int i, rem;

59

60 // Store accumulated data

61 static dacc_t acc[CHANNELS];

62

63 // Accumulate each channel =
64 For_Loop: for (i=@;i<M;i++) {

65 rem=i%CHANNELS;

66 acc[rem] = acc[rem] + d_i[i];

67 d_o[i] = acc[rem];

68 }

69}

70 s

Figure 4-31: Source Code for Lab 4

This design uses similar source C code as Lab 3: with the design renamed to
axi interfaces.

Step 2: Create an Optimized Design with AXI4-Stream Interfaces

In the optimal performance implementation of this design, the data for each channel would
be processed in parallel, with dedicated hardware for each channel.

The key to understanding how best to perform this optimization is to recognize that the
channels in the input and output arrays lend themselves to cyclic partitioning. Cyclic
partitioning is fully explained in the Vivado Design Suite User Guide: High-Level Synthesis
(UG902) [Ref 2], but basically means each array element is, in turn, sorted into a different
partition.

In this exercise, you specify the array arguments to be implemented as AXI4-Stream
interfaces. If the arrays are partitioned into channels, you can stream the samples for each
channel through the design in parallel.

Finally, if the I/O ports are configured to supply and consume individual streams of channel
data, partial unrolling of the for-loop can ensure dedicated hardware processes each
channel.

First, partition the arrays:

1. Ensure the C source code is visible in the Information pane.

High-Level Synthesis www.xilinx.com Send Feedback 92
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=92

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

2. Inthe Directive tab, select d_o and right-click to open the Insert Directives Editor dialog
box.

a. Select the Type drop-down menu at the top and select ARRAY_PARTITION.
b. Click the Type (optional) drop-down menu to specify cyclic partitioning.

c. In the Factor (optional) box, enter the value 8, to create eight separate partitions.
(This results in eight ports.)

d. With the Directives Editor dialog box filled in as shown in Figure 4-32, click OK.

Vivado HLS Directive Editor

Directive

ARRAY_PARTITION v

Destination
Source File
@) Directive File

Options

variable (required): do

type (optional): cyclic hd
factor (optional): 8

dimension (optional): 1

| Help | | Cancel | [(0]4 l

Figure 4-32: Directives Editor for Cyclic Partitioning

3. In the Directive tab, select d_o again and right-click to open the Insert Directives Editor
dialog box.

a. Activate the Directive drop-down menu at the top and select INTERFACE.
b. Click the Mode drop-down menu to specify an axis interface.
c. Click OK.

4. In the Directive tab, select d_i and repeat steps 2 and 3 above.

a. Apply Array Partition.

High-Level Synthesis www.xilinx.com Send Feedback 93
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=93

g: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

b. Apply Cyclic with a factor of 8.
c. Apply Interface.
d. Apply an axis interface.
5. Next, partially unroll and pipeline the for-loop:

a. In the Directive tab, select For_Loop and right-click to open the Insert Directives
Editor dialog box.

b. Select Activate the Directive drop-down menu at the top and select UNROLL.
Select a factor of 8 to partially unroll the for-loop. This is equivalent to re-writing the

C code to execute eight copies of the loop-body in each iteration of the loop (where
the new loop only executes for four iterations in total, not 32).

Click OK.

c. Inthe Directive tab, select For_Loop again and right-click to open the Insert
Directives Editor dialog box.

Activate the Directive drop-down menu at the top and select PIPELINE. Leave the
interval (II) blank and let it default to 1.

d. Select enable loop rewinding.
e. Click OK.
When the top-level of the design is a loop, you can use the pipeline rewind option. This

informs Vivado HLS that when implemented in RTL, this loop runs continuously (with no
end of function and function re-start cycles).

After performing the above steps, the Directives tab should be as shown in Figure 4-33. Be
sure to check all options are correctly applied. If not, double-click the directive to re-open
the Directives Editor.

High-Level Synthesis www.xilinx.com Send Feedback 94
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=94

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

&= Outline | Directive 2 - O

@ axi_interfaces
2 do
% HLS INTERFACE axis port=d_o
% HLS ARRAY_PARTITION partition variable=d_o cyclic factor=8 dim=1
@ dli
% HLS INTERFACE axis port=d_i
% HLS ARRAY_PARTITION partition variable=d_i cyclic factor=8 dim=1
®[1 acc
%" For_Loop
% HLS UNROLL factor=8
% HLS PIPELINE rewind

Figure 4-33: Directives Tab for Lab 4 Solutionl

6. Synthesize the design.

When the report opens in the information pane, confirm both d_i and d_o are implemented
as eight separate AXI4-Stream ports.

7. In the performance section of the report, confirm that the for-loop processes one
sample every clock cycle (Interval 1) with a latency of 3 (and max 4), and that the design
has less area than solutions 2, 3, or 4 in Lab 3 (Figure 4-33).

Cyclic partitioning of the array interfaces and partial for-loop unrolling has allowed
implementation of this C code as eight separate channels in the hardware.

Pipelining the for-loop allows the logic in each channel to process 1 sample per clock.
Varying the partitioning and loop unrolling allows you to create a design which is the
optimal balance of area and performance to satisfy your particular requirements.

Step 3: Implementing an AXI4-Lite Interfaces

In this exercise, you group block-level I/O protocol ports into a single AXI4-Lite interface,
which allows these block-level control signals to be controlled and accessed from a CPU.

1. Select New Solution from the toolbar or the Project menu to create a new solution.

2. Accept the defaults and click Finish. This includes copying existing directives from
solutionl.

3. Ensure the C source code is visible in the Information pane.

4. Inthe Directive tab, select the top-level function axi_interfaces and right-click to open
the Insert Directives Editor dialog box.

a. Select the Directive drop-down menu at the top and select INTERFACE.

High-Level Synthesis www.xilinx.com Send Feedback 95
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=95

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE

b. Select the mode drop-down menu and select s_axilite. This specifies that the ports
associated with the function return (the block-level I/O ports) are implemented as an
AXI4-Lite interface. Since the default mode for the function return is ap_ctrl_hs, there
is no requirement to specify this I/O protocol.

c. Click OK.

The Directives tab appears, as shown in Figure 4-34.

o= Qutline |4 Directive &2 i

419 axi interfaces
% HLS INTERFACE s_axilite port=return
2 do
% HLS INTERFACE axis port=d_o
% HLS ARRAY_PARTITION partition variable=d_o cyclic factor=8 dim=1
@ dli
% HLS INTERFACE axis port=d_i
% HLS ARRAY_PARTITION partition variable=d_i cyclic factor=8 dim=1
®[1 acc
4 %" For_Loop
% HLS UNROLL factor=8
% HLS PIPELINE rewind

Figure 4-34: Directives for Specifying AXI4-Lite Interfaces

5. Synthesize the design.

When the report opens, review the interface summary to confirm the block-level I/O
protocol ports (ap_start, ap_done, etc.) have been replaced with an AXI4Lite interface
and that the output interrupt signal has been added to the design. The source of the
interrupt can be selected through the AXI-Lite interface.

6. Select Export RTL from the toolbar or the Solution menu to create an IP package.

7. Leave the Format Selection as IP Catalog and click OK.

You can see the IP package in the solution2/impl folder. Because you used the Vivado
IP Catalog format, the package is in the ip folder.

The ip folder includes the drivers subfolder, as shown in Figure 4-35.

When you add an AXI4-Lite interface to the design, the IP packaging process also creates
software driver files to enable an external block, typically a CPU, to control this block (start
it, stop it, set port values, review the interrupt status).

High-Level Synthesis www.xilinx.com Send Feedback 96
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=96

i: XILINX Chapter 4: Interface Synthesis

ALL PROGRAMMABLE-

%
i
o

L™ Explorer &3
4 125 axi_interfaces_prj
! Includes
= Source
= Test Bench
3 solutionl
= solution2

h

constraints
4 = impl
4= ip

|2 autoimpl.log

B auxiliaryxmi

E componentxmi

= packbat

W run_ippack.tcl

= vivadojou

= vivado.log

=l xilink_com_hls_axi_interfaces_1_0.zip

= bd

constraints

= doc

= drivers

4 = axi_interfaces_v1_0

= data
ER= (o

Makefile
[€ xaxi_interfaces_hw.h
[g] xaxi_interfaces_linux.c
[€ xaxi_interfaces_sinit.c
[€ xaxi_interfaces.c
[€ xaxi_interfaces.h

h

= example
& hdl
= misc
= subcore
= xgui

= verilog

& vhdl

= syn

Figure 4-35: IP Package with AXI4 Interfaces

8. Double-click the xaxi interfaces hw.h file to open it in the Information pane.

This shows the addresses to access and control the block-level interface signals. For
example, setting control register 0x0 bit O to the value 1 will enable the ap_start port, or
alternatively, setting bit 7 will enable the auto-restart and the design will re-start
automatically at the end of each transaction.

The remaining C driver files are used to integrate control of the AXI4 Slave Lite interface
into the code running on a CPU or microcontroller and are included in the packaged IP.

High-Level Synthesis www.xilinx.com Send Feedback 97
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=97

iA X”_INX Chapter 4: Interface Synthesis
ALL PROGRAMMABLE.-
[Explorer &2 = O\ [0 xaxi_interfaces_hw.h 2 =g
4 £ axi_interfaces_prj 1/ -
- &l Includes 2// File generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC
. E Source 3// Version: 2014.1
- 4// Copyright (C) 2014 Xilinx Inc. All rights reserved.
> B Test Bench 5//
» 3 solutionl 6//

4 {= solution2
- # constraints
4 = impl
4 = ip
|2 autoimpllog
2 auxiliary.xml
[2 componentxml
|5 pack.bat
o run_ippacktcl
|5l vivado.jou
|1 vivado.log
|2 xilinx_com_hls_axi_interfaces_1_0.zip
> = bd
: % constraints
> = doc
4 (= drivers
4 (= axi_interfaces_v1_0
> [data
4 (= src
L& Makefile
[¢ xaxi_interfaces_hw.h
[¢ xaxi_interfaces_linux.c
Xaxi_interfaces_sinit.c
[¢ xaxi_interfaces.c
xaxi_interfaces.h
+ = example
> & hdl
+ (= misc
(= subcore

7

8// AXILiteS

9// @xo :
10 //
117/
127/
13//

16// 0x4 :

19 // ox8 :

23 // Oxc :

Control signals
bit @ ap_start (Read/Write/COH)

bit 1 - ap_done (Read/COR)

bit 2 - ap_idle (Read)

bit 3 - ap_ready (Read)

bit 7 - auto_restart (Read/Write)

others - reserved

Global Interrupt Enable Register

bit @ - Global Interrupt Enable (Read/Write)
others - reserved

TP Interrupt Enable Register (Read/Write)
bit @ - Channel @ (ap_done)

bit 1 - Channel 1 (ap_ready)

others - reserved

IP Interrupt Status Register (Read/TOW)
bit @ - Channel @ (ap_done)

bit 1 - Channel 1 (ap_ready)

others - reserved

27 // (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on Handshake)

20 #define
20 #define
21 #define
32 #define
33
34

Figure 4-36:

XAXI INTERFACES_AXILITES_ADDR_AP_CTRL 0x@

XAXI INTERFACES_AXILITES_ADDR_GIE axd
XAXI INTERFACES_AXILITES_ADDR_IER ox8
XAXI_INTERFACES_AXILITES_ADDR_ISR axc

IP Software Driver Files

Conclusion

In this tutorial, you learned:

« What block-level I/O protocols are and how to control them.

« How to specify and apply port-level I/O protocols.

+ How to specify array ports as RAM and FIFO interfaces.

+ How to partition RAM and FIFO interfaces into sub-ports.

+ How to use both I/O directives and optimization directives to create an optimal design

with AXI4 interfaces.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

| Send Feedback I 98

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=98

& XILINX

ALL PROGRAMMABLE.

Chapter 5

Arbitrary Precision Types

Overview

C/C++ provided data types are fixed to 8-bit boundaries:

« char (8-bit)

« short (16-bit)

« int (32-bit)

« long long (64-bit)
« float (32-bit)

« double (64-bit)

« Exact width integer types such as intl6_t (16-bit) and int32_t (32-bit)

When creating hardware, it is often the case that more accurate bit-widths are required.
Consider, for example, a case in which the input to a filter is 12-bit and the accumulation of
the results only requires a maximum range of 27 bits. Using standard C data types for
hardware design results in unnecessary hardware costs. Operations can use more LUTs and

registers than needed for the required accuracy, and delays might even exceed the clock
cycle, requiring more cycles to compute the result.

Vivado High-Level Synthesis (HLS) provides a number of bit accurate or arbitrary precision
data-types, allowing you to model variables using any (arbitrary) width.

This tutorial consists of a two lab exercises:

Lab 1 Description

Synthesize a design using floating-point types and review the results. The design uses
standard C++ floating-point types.

Lab 2 Description

Synthesize the same function used in Lab 1 using arbitrary precision fixed-types
highlighting the benefits in accuracy and results. This exercise shows how this same design

High-Level Synthesis www.xilinx.com Send Feedback 99
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=99

i: X”_INX Chapter 5: Arbitrary Precision Types

ALL PROGRAMMABLE

can be converted to the Vivado HLS ap_fixed types, retaining the required accuracy but
creating a more optimal hardware implementation.

Tutorial Design Description

Download the tutorial design file from the Xilinx website. See the information in Locating
the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado HLS Tutoriall\Arbitary Precision.

Lab 1: Arbitrary Precision

Arbitrary Precision Lab 1: Review a Design using Standard C/C++ types.

In this lab, you synthesize a design using standard C types. You use this design as a
reference for the design using arbitrary precision types, which is the basis for Lab 2.

i? IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 5-1).

b. On Linux, open a new shell.

High-Level Synthesis www.xilinx.com Send Feedback 100
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=100

& XILINX

ALL PROGRAMMABLE

Vivado 2016.1

r'i,"-: Add Design Tools or Devices 2016.1

i__ Manage Xilinx Licenses
$.. Uninstall 2016.1
Bl Vivado 20161 Tcl Shell
¢ Vivado 20161
System Generator
Vivado HLS

Bl Vivado HLS 2016.1 Command Promp

7] Vivado HLS 2016.1

F | -~

Figure 5-1:

Chapter 5:

—

Vivado HLS Command Prompt

Arbitrary Precision Types

2. In the command prompt window (Figure 5-2), change the directory to the Arbitrary
Precision tutorial, labl.

3. Execute the Tcl script to setup the Vivado HLS project, using the command as shown in

Figure 5-2:

vivado hls —-f run hls.tcl

C:\VUivado_HLS_Tutorial>cd Arbitrary_Precision

C:\VUivado_HLS_Tutorial\Arbitrary_Precision>cd labl

C:\Uivado_HLS_Tutorial\Arbitrar

Figure 5-2:

_Precision\labl>vivado_hls -f run_hls.tcl

Setup the Tutorial Project

A ([111

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado hls -p window_ fn prj as shown in Figure 5-3.

hw_result
hw_result
hw_result
hw_result
hw_result
hw_result
hw_result
hw_result
hw_result

H: H: H: H: H- H- H. H H

Test Passed

38.24289
32.00000
25.75711
19.75413
14.22175
9.37258
5.39297
2.43585
0.61487

sW_result
sW_result
sW_result
sW_result
sW_result
sW_result
sW_result
sW_result
sW_result

@I [SIM-1] CSim done with O errors.
@I [LIC-101] Checked in feature [HLS]

C:\Uivado_HLS_Tutorial\Arbitrar

Figure 5-3:

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

38.24289
32.00000
25.75711
19.75413
14.22175
9.37258
5.39297
2.43585
0.61487

_Precision\lab1>vivado_hls -

p Window_fn_prj

A ([111

Initial Project for Arbitrary Precision Lab1l

| Send Feedback I 101

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=101

8 X”_INX Chapter 5: Arbitrary Precision Types

ALL PROGRAMMABLE-

Step 2: Review Test Bench and Run C Simulation

1. Open the Source folder in the Explorer pane and double-click window_fn_top.cpp to
open the code as shown in Figure 5-4.

[ty Explorer 2 v = O [¢l window_fn_top.cpp &3 =0
4 =% window_fn_prj 45 #include "window_fn_top.h" // Provides typedefs and params i
& Includes 46
4 = Source 47 // Include the entire xhls_window_fn namespace so that scope r¢
[& window_fn_top.cpp 48 // i.e. prepending xhls window_fn:: to everything -- is not ne
49 using namespace xhls_window fn;
= Test Bench 50
4 & solutiont 51 //Vivado HLS fequires a top-level function definition that wraj
4 & constraints 52 // instantiations and method calls to be synthesized as well a
W directives.tcl 53// the top-level I/0 (function arguments) into/out of the meth
W script.tcl 54void window_fn_top(
4 & csim 55 win_fn_out_t outdata[WIN_LEN], ‘E‘
& build 5? win_fn_in_t indata[WIN_LEN]) _
= report o/

58 // Instantiate a window_fn

o R D . O o R W} P S S - - 1

object - types and params defineq_
< | . : »

Figure 5-4: C Code for C Validation Lab 3

2. Hold down the Control key and click the window fn top.h on line 45 to open this
header file.

3. Scroll down to view the type definitions (Figure 5-5).

[¢] window_fn_top.cpp T window_fn_top.h &2 =08
587/ Test parameters)
51 #define FLOAT_DATA // Used to select error tolerance in test pi
52 #define WIN_TYPE xhls_window_fn: :HANN
53 #define WIN_LEN 32
54
55// Define floating point types for input, output and window cos
56 typedef float win_fn_in_t;

57 typedef float win_fn_out_t;

58 typedef float win_fn_coef_t;

59

60 // Top level function prototype - wraps all object, method and

1void window_fn_top(win_fn_out_t outdata[WIN_LEN], win_fn_in_t :

m

#endif // WINDOW FN_TOP H_

oo h O
FENR Ve]

1]

-

(1L} 4

Figure 5-5: Type Definitions for C Validation Lab 3

This design uses standard C/C++ floating-point types for all data operations. Vivado
High-Level Synthesis can synthesize floating-point types directly into hardware, provided
the operations are standard arithmetic operations (+, -, *, %).

When using math functions from math.h or cmath.h, see the Vivado Design Suite User
Guide: High-Level Synthesis (UG902) [Ref 2] for details on which math functions are
supported for synthesis.

High-Level Synthesis www.xilinx.com Send Feedback 102
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=102

g: X”_INX Chapter 5: Arbitrary Precision Types

ALL PROGRAMMABLE

4. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.

5. Accept the default setting (no options selected) and click OK.

The Console pane shows that the design simulates with the expected results.

Step 3: Synthesize the Design and Review Results

1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens automatically. Figure 5-6 shows the
synthesis report.

High-Level Synthesis www.xilinx.com Send Feedback 103
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=103

i: X”_INX Chapter 5: Arbitrary Precision Types

ALL PROGRAMMABLE-

=l Synthesis(solution1) &3 = H

Performance Estimates -
= Timing (ns)
= Summary

Clock Target Estimated Uncertainty
ap_clk 5.00 3.75 0.63
-1 Latency (clock cycles)
= Summary

Latency Interval
min max min max Type
257 257 258 258 none

=1 Detail

111

+ Instance

+ Loop

Utilization Estimates

- Summary
Name BRAM_18K DSP48E FF LUT

DSP - - - -

Expression - - i} 9

FIFO - - - -

Instance - 3 151 148

Memory 1 - 0 0

Multiplexer - - - 10

Register - - 123 -

Total 1 3 274 167

Available 650 600 202800 101400

Utilization (%5) ~0 ~0 ~0 ~0 =

« [T J b

Figure 5-6: Synthesis Report for Floating Point Design

Instances in the top-level design account for most of the area used.

2. Scroll down the report and expand the Instances in the Details section of the Utilization
Estimates (Figure 5-7).

High-Level Synthesis www.xilinx.com Send Feedback 104
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=104

i: X”_INX Chapter 5: Arbitrary Precision Types

ALL PROGRAMMABLE

&l Synthesis(solutionl) 2 = g
Utilization Estimates i
- Summary
Name BRAM_1BK DSP48E FF LT
DSP
Expression - - 0 9
FIFO
Instance - 3 151 148
Memory 1 - 0 0
Multiplexer - - - 10
Register - - 123
Total 1 3 w16 3
Available 630 600 202800 101400
Utilization (%) ~0 ~0 ~0 ~0
- Detail
= Instance
Instance Module BRAM 18K DSP48E FF LUT
window_fn_top_fmul_32ns_32ns_32_5_max_dsp U0 window_fn_top_fmul_32ns_32ns_32_5_max_dsp 0 3 151 148
Total 1 0 3 151 148
DSP48
¥ Memary o

Figure 5-7: Area Details for Floating Point Design

The details show this is a floating-point multiplier (fmul). Floating-point operations are
costly in terms of area and clock cycles. The Analysis perspective (Figure 5-8) shows this
operator is also responsible for most of the clock cycles (It takes five of the eight states to
execute the logic created by loop winfn).

More details on using the Analysis perspective are available in the Chapter 6, Design
Analysis tutorial. For the purposes of understanding this design, two of the operations in
the first state are two-cycle read-from-memory operations, and the operation in the final
state is a write-to-memory operation.

High-Level Synthesis www.xilinx.com Send Feedback 105
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=105

& XILINX

ALL PROGRAMMABLE

Chapter 5: Arbitrary Precision Types

Vivado HLS - window_fn_prj (C\Vivado_HLS Tutorial\Arbitrary_Precision\labl\window_fn_prj)
File Edit Project Solution Window Help

6 &

| Module Hierarchy =0

BRAM DSP FF LUT Latency Interval
269 351 257 258

Eidl~

1 window_fn_top_csynthurpt

Current Module
o window_fn_top 1 3

| Oneration\Control §

& Performance - window_fn_top

: window fn top

PR

% Debug [+ | Synthesis] | ¢~ Analysi

e lcalolealcealelcelcoalce]

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

1 Ewinfn loop

2 1 i(phi mux)

3 exitcond i(icmp)
4 i(4)

5 coeff tabl loa...
6

7

8

{ ' 3

£ Performance Profile | - Resource Profile &2 =a

BRAM DSP FF LUT BitsPO * b tond (v,

= indata load(rea
& /0 Ports(ia
- VOPors(2) 6 | tmp 1 i(fmul)]
s Instances(l) 0 3 151325 node 23 (write)
 Memories(l) 1 00 32 T

¢ » Performance| Resource
Figure 5-8: Performance Details for Floating Point Design

3. Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: Arbitrary Precision

Review a Design using Arbitrary Precision types.

Introduction

This lab exercise uses the same design as Lab 1, however, the data types are now arbitrary

precision types. You first review the design and then examine the synthesis results.

Step 1: Create and Simulate the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as

shown in Figure 5-9.

2. Create a new Vivado HLS project by typing vivado hls -f run hls.tcl.

C:\Vivado_HLS_Tutorial>cd Arbitrary_Precision\labl

C:\VUivado_HLS_Tutorial\Arbitrary_Precision\labl>cd ..

C:\Vivado_HLS_Tutorial\Arbitrary_Precision>cd lab2

C:\Vivado_HLS_Tutorial\Arbitrary_Precision\lab2>vivado_hls -f run_hls.tcl

Figure 5-9: Setup for Interface Synthesis Lab 2

www.Xilinx.com

| Send Feedback I 106

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=106

8 X”_INX Chapter 5: Arbitrary Precision Types

ALL PROGRAMMABLE-~

3. Open the Vivado HLS GUI project by typing vivado _hls -p window fn prj.

4. Open the Source folder in the Explorer pane and double-click window_fn_top.cpp to
open the code as shown in Figure 5-10.

(5 Explorer 2 " = B[[¢) window_fn_top.cpp &3 =0
k§VﬂndOMLﬁLpﬂ 2] 3R R K K RS R SR SR KSR K R SR SR KRR SR K K R SR SRR SRR R KKK KRR KO SRR SR SRR KRR OR KT
@ Includes 45#include "window_fn_top.h" // Provides typedefs and params
= Source 46)))
e 471/ ?nclude the gnthe xh1§_w1ndow_fn namespace so tha? scope resolution --
48// i.e. prepending xhls_window fn:: to everything -- is not necessary
= Test Bench . . N
i 49 using namespace xhls_window_fn;
= solution1 50
constraints 51//Vivado HLS requires a top-level function definition that wraps all obje:
W directives.tcl 52// instantiations and method calls to be synthesized as well as mapping
% scripticl 53// the top-level I/0 (function arguments) into/out of the methods/functior—
& csim 54void wirjdow_fn_top(=
& build 55 win_fn_out_t outdata[WIMN_LEN],
56 win_fn_in_t indata[WIM_LEN])
= report 57{

58 // Instantiate a window_fn object - types and params defined in header +
< | 11 | 3

Figure 5-10: C Code for Arbitrary Precision Lab 2

5. Hold the Control key down and click window_fn_top.h on line 45 to open this header
file.

6. Scroll down to view the type definitions (Figure 5-11).

[¢ window_fn_top.cpp T window_fn_top.h 22 =0

54 // Types and top-level function prototype -
55#include <ap_int.h>

56 // Define widths of fixed point fields

57 #define W_IN 8

58 #define IW_TN 8

590 #define W_OUT 24

60 #define IW OUT B8

61 #define W_COEF 18

62 #define IW_COEF 2

63

64 // Define fixed point types for input, output and coefficients

65 typedef ap_fixed<W IN,IW_IN> win_fn_in_t;

66 typedef ap_fixed<W OUT,IW OUT> win_fn_out_t;

67 typedef ap_fixed<W COEF,IW_COEF> win_fn_coef t;

68 il

< | I | ' r

Figure 5-11: Type Definitions for Arbitrary Precision Lab 2

This header file, window _fn_top.h, is the only file that is different from Lab 1. The data
types have been changed to ap_fixed point types, which are similar to float and double
types in that they support integer and fractional bit representations. These data types are
defined in the header file ap_fixed.h. The definitions in the header file define sizes of
the data types:

High-Level Synthesis www.xilinx.com Send Feedback 107
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=107

i: X”_INX Chapter 5: Arbitrary Precision Types

ALL PROGRAMMABLE

« The first term defines the total word length.
« The second term defines the number of integer bits.

« The number of fractional bits is therefore the first term minus the second.

When you revise C code to use arbitrary precision types instead of standard C types, one of
the most common changes you must make is to reduce the size of the data types. In this
case, you change the design to use 8-bit, 24-bit, and 18-bit words instead of 32-bit float
types. This results in smaller operators, reduced area, and fewer clock cycles to complete.

Similar optimizations help when you change more common C types such as int, short, and
char. For example, changing a data type that only needs to be 18-bit from int (32-bit)
ensures that only a single DSP48 is required to perform any multiplications.

In both cases, you must confirm that the design still performs the correct operation and
that it does so with the required accuracy. The benefit of the arbitrary precision types
provided with Vivado High-Level Synthesis is that you can simulate the updated C code to
confirm its function and accuracy.

7. Open the Test Bench folder in the Explorer pane and double-click window_fn_test.cpp
to open the code.

8. Scroll down to see the view shown in Figure 5-12.

75 Explorer 2 « = B¢ window_fn_top.cpp) window_fn_top.h l¢ window_fn_test.cpp 2 =
= window_fn_prj 76 window_fn_top(hw_result, testdata); B
& Includes 77 .
= source 78 // Check results
- i 79 cout << "Checking results against a tolerance of " << ABS_ERR_THRESH << endl;
& window_fn_top.cpp 30 cout << fixed << setprecision(5);
#a Test Bench 31 for (unsigned i = ©; i < WIN_LEN; i++) {
l¢l window_fn_test.cpp 82 float abs err = float(hw result[i]) - sw result[i];
= solution1 S3#if WINDOW_FN_DEBUG
constraints 84 cout << "1 =" << 1 << "\thw_result = " << hw_result[i];
% directives.tcl 85 cout << "\t sw_result = " << sw_result[i] << endl;
W scripticl BG#endif
. 87 if (fabs(abs_err) > ABS_ERR_THRESH) {
= sim 88 cout << "Error threshold exceeded: 1 = " << i;
= build 89 cout << " Expected: " << sw_result[i];
(= report 90 cout << " Got: " << hw_result[i];
91 cout << " Delta: " << abs_err << endl; E
92 err_cnt++;
93 1
4 }
95

cout << endl; -

Figure 5-12: Test Bench for Arbitrary Precision Lab 2

The test bench for this design contains code to check the accuracy of the results. The
expected results are still generated using float types. The result checking verifies that the
results are within a specified range of accuracy (in this case, within 0.001 of the expected
result).

This allows the updated design to be validated quickly and efficiently in C, with fast compile
and run times.

High-Level Synthesis www.xilinx.com Send Feedback 108
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=108

i: X”_INX Chapter 5: Arbitrary Precision Types

ALL PROGRAMMABLE

9. Click the Run C Simulation toolbar button to open the C Simulation dialog box.

10. Accept the default setting (no options selected) and click OK.

The Console pane shows the results of the C simulation. With the updated data types, the
results are no longer identical to the expected results. However, they are within tolerance.

Bl Console 2 @] Errors| & Warnings X pEE—O
<terminated > window_fn_prj.Debug [C/C++ Application] C\Vivado_HLS_Tutorial\Arbitrary_Precision\lab2\window_fn_prj\solution1\csim\build
i =24 hw result = 32 sw_result = 32.00000 -
i =25 hw_result = 25.757 sw_result = 25.75711
i =26 hw result = 19.754 sw_result = 19.75413
i =27 hw_result = 14.222 sw_result = 14.22175
i = 28 hw_result = 9.3721 sw_result = 9.37258
i =29 hw_result = 5.3926 sw_result = 5.39297
i =30 hw_result = 2.4355 sw_result = 2.43585
i =31 hw_result = 8.61426 sw_result = 0.61487

m

Test Passed

Figure 5-13: C Simulation Results for Fixed Point Types

Step 2: Synthesize the Design and Review Results

1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens automatically. Figure 5-14 shows the
synthesis report.

High-Level Synthesis www.xilinx.com Send Feedback 109
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=109

i: X”_INX Chapter 5: Arbitrary Precision Types

ALL PROGRAMMABLE-

=l Synthesis(solutionl) 3 = O
Performance Estimates -
= Timing (ns)
=1 Summary
Clock Target Estimated Uncertainty
ap_clk 5.00 348 0.63
-I Latency (clock cycles)
=1 Summary
Latency Interval

min max min max Type
129 129 130 130 none

1

=1 Detail
+ Instance

+ Loop

Utilization Estimates

- Summary
MName BRAM_18K DSP48E FF LUT
DsP - 1 - -
Expression - - 0 9
FIFO - - - -
Instance - - - -
Memary 0 - 17
Multiplexer - - -
Register - - 23 -
Total 0 1 40 25
Available 650 600 202800 101400
Utilization (%) 0 ~0 ~0 ~0 4
4 I [3

Figure 5-14: Synthesis Report for Fixed Point Design

Note that through use of arbitrary precision types, you have reduced both the latency and
the area (by 50% and 80% respectively), and the operations in the RTL hardware are no
larger than necessary. Since the total number of bits in the memory is now less than
1024-bit, it is now automatically implemented with LUTs and FFs rather than with a block
RAM.

2. Scroll down the report to the Interface summary (Figure 5-15).

Figure 5-15 shows the data ports are now 8-bit and 24-bit.

High-Level Synthesis www.xilinx.com Send Feedback 110
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=110

i: X”_INX Chapter 5: Arbitrary Precision Types

ALL PROGRAMMABLE-

=l window _fn_top_csynth.rpt i3 =0
Interface ¥
- Summary
RTL Ports Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs window_fn_top return value
ap_rst in i1 ap_ctrl_hs window_fn_top return value
ap_start in 1 ap_ctrl_hs window_fn_top return value
ap_done out s ap_ctrl_hs window_fn_top return value
ap_idle out I ap_ctrl_hs window_fn_top = return value
ap_ready out 1 ap_ctrl_hs window_fn_top return value
outdata_V_address0 out 5 ap_memory outdata_V array
outdata_V_ce0 out 1 ap_memory outdata_V array
outdata_V_we0 out 1 ap_memory outdata_V array
outdata_V_d0 out 24 ap_memory outdata_V array)
indata_V_address0 out 5 ap_memory indata_V array 1
indata_V_cel out 1 ap_memory indata_V array
indata_V_g0 in 8 ap_memory indata_V array
< [i ; »

Figure 5-15: Fixed Point Interface Summary

3. Exit the Vivado HLS GUI and return to the command prompt.

Conclusion

In this tutorial, you learned:

+ How to update the existing standard C types to Vivado High-Level Synthesis arbitrary
precision types.

« The advantages in terms of hardware performance and area of using bit accurate
data-types.

High-Level Synthesis www.xilinx.com Send Feedback 111
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=111

& XILINX

ALL PROGRAMMABLE.

Chapter 6

Design Analysis

Overview

The general design methodology for creating an RTL implementation from C, C++, or
SystemC includes the following tasks:

« Synthesizing the design.
« Reviewing the results of the initial implementation.

» Applying optimization directives to improve performance.

You can repeat the steps above until the required performance is achieved. Subsequently,
you can revisit the design to improve area.

A key part of this process is the analysis of the results. This tutorial explains how to use the
reports and the GUI Analysis perspective to analyze the design and determine which
optimizations to apply.

This tutorial consists of a single lab exercise that:
« Demonstrates the HLS interactive analysis feature.

« Takes you through one design from the initial implementation through six steps and
multiple optimizations to produce the final optimized design.

As demonstrated throughout the tutorial, performing these steps in a single project gives
you the ability to compare the different solutions.

Lab 1 Description

Synthesize and analyze a DCT design. Use the insights from the design analysis to apply
optimizations and judge the effectiveness of the optimization.

High-Level Synthesis www.xilinx.com Send Feedback 112
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=112

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado HLS Tutorial\Design Analysis.

The sample designs used in the lab exercise is a 2-D DCT function. To highlight the design
analysis feature, your goal is to have this design operate with an interval of 125 or less. The
design should be able to process a new set of input data at least every 125 clock cycles.

Lab 1: Design Optimization

This exercise explains the basic operations of the GUI Analysis perspective and how you can
use it to drive design optimization.

ﬁ IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or if it is on a Linux system, adjust the few pathnames
referenced to the location at which you placed the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

- On Windows click Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 6-1).

o On Linux, open a new shell.

High-Level Synthesis www.xilinx.com Send Feedback 113
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=113

§: X”_INX Chapter 6: Design Analysis

ALL PROGRAMMABLE

Vivado 2016.1
r'i,"-: Add Design Tools or Devices 2016.1

i__ Manage Xilinx Licenses

$.. Uninstall 2016.1

Bl Vivado 20161 Tcl Shell

¢ Vivado 20161
System Generator
Vivado HLS
Bl Vivado HLS 2016.1 Command Promp
| vivado HLS 2016.1 ~

m

F | -~

Figure 6-1: Vivado HLS Command Prompt
2. Using the command prompt window (Figure 6-2), change the directory to the Design
Analysis tutorial, labl.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado hls
—-f run hls.tcl, as shown in Figure 6-2.

C:\Vivado_HLS_Tutorial\Arbitrary_Precision>cd ..

C:\VUivado_HLS_Tutorial>cd Design_Analysis

C:\Vivado_HLS_Tutorial\Design_Analysis>cd labl

C:\Uivado_HLS_Tutorial\Design_Analysis\labl1>vivado_hls -f run_hls.tcl

Figure 6-2: Setup the Design Analysis Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado hls -p dct prj as shown in Figure 6-3.

@I [HLS-18] Cleaning up the solution database.

@I [HLS-18] Setting target device to 'xcTk160tfbgi84-1"

@I [SYN-201] Setting up clock ‘'default’ with a period of 8ns.
Compiling ../../../../dct_test.cpp in debug mode
Compiling ../../../../dct.cpp in debug mode
Generating csim.exe

Test passed !

@I [SIM-1] CSim done with O errors.

@I [LIC-101] Checked in feature [HLS]

C:\Uivado_HLS_Tutorial\Design_Analysis\lab1>vivado_hls -

Figure 6-3: Open Design Analysis Project for Lab 1
Step 2: Review the Source Code and Create the Initial Design

1. Double-click the file det.cpp in the Source folder to open the source code for review.

This example uses a DCT function. Figure 6-4 shows an overview of this code.

High-Level Synthesis www.xilinx.com Send Feedback 114
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=114

8 X”_INX Chapter 6: Design Analysis

ALL PROGRAMMABLE-~

Hierarchy Loops Dataflow
RD_Loop_Row:
RD_Loop_Col: \ 4

[a]
=
[
(&)
[a]

}

}
Row_DCT_Loop:
DCT_Outer_Loop:
DCT_Inner_Loop:
H
}
}
Xpose_Row_Outer_Loop:
Xpose_Row_Inner_Loop: °

}

}
Col_DCT_Loop:

Q_ DCT_Outer_Loop: {
I DCT _Inner_Loop:

[

(8] }

= }

}

Xpose_Col_Outer_Loop:
Xpose_Col_Inner_Loop: \
}

}

WR_Loop_Row:
WR_Loop_Col:
}

}

*+

-

Figure 6-4: Overview of the DCT Design
« The left side of Figure 6-4 shows the code hierarchy.
o Top-level function dct has three sub-functions: read_data, dct_2d and write_data.
o Function dct_2d has a single sub-function dct_1d.
» The center of Figure 6-4 shows loops inside each of the functions.

« The right side of Figure 6-4 shows the how the data is processed through the functions
and loops.

o The read_data function executes, and the data is processed through loop
RD_Loop_Row, which has a sub-loop RD_Loop_Col.

o After the read_data function completes, function dct_2d executes.

o In function dct_2d, Row_DCT_Loop processes the data. Row_DCT_Loop has two
nested loops inside it: DCT_output_loop and DCT_inner_loop.

o DCT_inner_loop calls function dct_1d.
And so on, until the function write_data processes the data.

« Click the Run C Synthesis toolbar button to synthesize the design to RTL.

High-Level Synthesis www.xilinx.com Send Feedback 115
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=115

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

Step 3: Review the Performance Using the Synthesis Report

When synthesis completes, the synthesis report opens automatically. Figure 6-5 shows the
performance section of the report.

= dct_csynth.rpt &2 =5
Performance Estimates i

-l Timing (ns)

= Summary

Clock Target Estimated Uncertainty
default 8.00 5.79 1.00

- Latency (clock cycles)

m

= Summary
Latency Interval
min max min max Type
3959 3959 3960 3960 none
= Detail
= Instance
Latency Interval
Instance Module min max min max Type
grp_dct_2d_fu_152 dct_2d 3668 3668 3668 3668 none

-l Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target Trip Count Pipelined
- RD_Loop_Row 144 144 18 - - 8 no
+ RD_Loop_Col 16 16 2 8 no
- WER_Loop_Row 144 144 18 - - 8 no
+ WR_Loop_Col 16 16 2 8 no

Figure 6-5: Report for Initial DCT Design

Figure 6-5 highlights the following information.

« The clock frequency of 8 ns has been met.
« The top-level design takes 3959 clock cycles to write all the outputs.

* You can apply new inputs after 3960 clock cycles. This is one clock cycle after the
output data has been written. This immediately reveals that the design is not pipelined,
but this fact is also noted in the report: type is set to none and not pipelined.

« The top level has a single instance, which has a latency and initiation interval of 3668.
- This block also has no pipelining and accounts for most of the clock cycles.

» Notice that the functions read data and write data are not noted here as
instances of the top level.

- Figure 6-6 shows that, during synthesis, these blocks were automatically inlined
(the hierarchy was removed).

High-Level Synthesis www.xilinx.com Send Feedback 116
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=116

8 X”_INX Chapter 6: Design Analysis

ALL PROGRAMMABLE-

o High-level synthesis might automatically inline small functions to improve the
quality of results (QoR). You can prevent this by adding the Inline directive with the
-off option to any function being automatically inlined.

El Console &2 . 9] Errors| & Warnings EkRgE="10
Vivado HLS Console

WL [AL3~1IY] ILdi'LLiy Lude Lrdaisiurmdoiunts ...

@I [HLS-18] Checking synthesizability ...

[XFORM-602] Inlining function 'read_data' into 'dct' (dct.cpp:128) automatically.
DI [XFORM-602] Inlining function 'write data' into 'dct' (dct.cpp:133) automatically.
@I [HLS-111] Elapsed time: 7.476 seconds; current memory usage: 70.6 MB.

@I [HLS-10] Starting hardware synthesis ...

@I [HLS-10] Synthesizing 'dct' ... -
< | il P

Figure 6-6: Automatic Optimization Reporting

« The loops in the read_data and write_data functions are therefore implemented at the
top level and are reported as loops in the top-level function (Figure 6-5).

« Each loop has a latency of 144 clock cycles. (Because the loops are not pipelined, there
is no initiation interval.)

« Using RD_Loop_Row as an example, you can see why the loop latency is 144.

o Sub-loop RD_Loop_Col has a latency of 2 cycles for each iteration of the loop
(iteration latency) and a tripcount of 8: 2 x 8 = 16 clock cycles total latency for the
loop.

o From RD_Loop_Row, it takes 1 clock to enter loop RD_Loop_Col and 1 clock cycle to
return to RD_Loop_Row. The iteration latency for RD_Loop_Row is therefore (1 + 16
+1) 18 clock cycles.

o RD_Loop_Row has a tripcount of 8 so the total loop latency is 8 x 18 = 144 clock
cycles.

« The total latency for the dct block is therefore:
o 144 clocks for RD_Loop_Row.
o Plus 3668 clock cycles for dct_2d.
o Plus 144 clock cycles for WR_Loop_Row.

o Plus a clock cycle to enter each block.

To review the details of the instantiated sub-blocks dct_2d and dct_1d, open their respective
reports from the syn/report folder under solutionl in the Explorer pane.

You can also use the design analysis perspective to review these details in a more interactive
manner.

Step 4: Review the Performance Using the Analysis Perspective

Invoke the Analysis perspective any time after synthesis completes.

High-Level Synthesis www.xilinx.com Send Feedback 117
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=117

& XILINX

ALL PROGRAMMABLE

Chapter 6: Design Analysis

1. Click the Analysis perspective button (Figure 6-7) to begin interactive design analysis.

E=8 Eol x|
%5 Debug || Synthesis

(]
Figure 6-7: Opening the Analysis Perspective

The Analysis perspective consists of five panes, each of which is highlighted in Figure 6-8.
You use all of these in the tutorial. The module and loops hierarchies are shown expanded
(by default, they are shown collapsed).

¢ Vivado HLS - dct_prj (C\Vivado_HLS_Tutorial\Design_Analysis\lab1\dct_prj)
File Edit Project

RidvmE
| Module Hierarchy

Solution Window Help

0@

BRAM DSP FF LUT Latency Interval Pipeline type

B = O ||g) Synthesis(solutionl)

e
% Debug | Synthesis

&' Performance(solutionl) 2 =0

Current Module : dct
4 @ det 5 1 278 354 3959 3960

4 o dct dct 2d 3 1 209 267 3668 3608
o dct_dct1d2 0 1 117 121 209 209

none

loneration\Controls...| co | c1 | 2 | c3 | ca | cs5
1-...®RD Loop ROW

13 | dct det 2d(func...
1... ¥WR Loop Row

none

none

£F Performance Profile 22 . |- Resource Profile =R

Pipelined Latency Initiation Interval Iteration Latency Trip count

4 @ et 3959 3960 -
4 o RD_Lloop Row no 144 - 18 8
e RD_Loop_Col no 16 - 2 8 . o .
4 o WR_Loop_Row no 144 - 18 8 Pert 5
o WR Loop.Col 10 1) 5 3 erformance | Resource
O Properties % E2Em =0
Property Value
q 1 3
Figure 6-8: Overview of the Analysis Perspective

Use the Module Hierarchy pane to navigate through the hierarchy. The Module Hierarchy
pane shows both the performance and area information for the entire design. The
Performance Profile pane shows the performance details for this level of hierarchy. The
information in these two panes is similar to the information you reviewed earlier in the
report (for the top-level dct block).

High-Level Synthesis www.xilinx.com

UG871 (v2016.2) June 8, 2016

l Send Feedback I 118

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=118

& XILINX

ALL PROGRAMMABLE

Chapter 6:

Design Analysis

The Performance view is also shown (on the right side of Figure 6-9). This view shows how
the operations in this particular block are scheduled into clock cycles.

« The left column lists the resources.
- Sub-blocks are green.
- Operations resulting from loops in the source code are yellow.
- Standard operations are purple.

* Notice that the dct has three main resources:

- Aloop called RD_Loop_Row. The plus symbol (+) indicates that the loop has
hierarchy and that you can expand the loop to view it.

- A sub-block called dct_2d.
- Aloop called WR_Loop_Row.

The top row lists the control states in the design. Control states are the internal states
High-Level Synthesis uses to schedule operations into clock cycles. There is a close
correlation between the control states and the final states in the RTL Finite State Machine
(FSM), but there is no one-to-one mapping.

2. Click loop RD_Loop_Row and sub-loop RD_Loop_Col to fully expand the loop hierarchy
(Figure 6-9).

=' Performance(solutionl) &2 = O

Current Module : dct

|Oneration\Controls...] co | c1 | 2 | 3 | ca | cs5 |
-RD Loop Row
r i(phi mux)
exitcondl i(icmp)
r(+)
- RD Loop Col
c i(phi mux)
exitcond i(icmp)
c(+)

[{oRleRoNRle BV, RNV R SRS

10

1...

tmp 5 i(+)

input load(read)
p addrl (+)

node 41 (write)

dct dect 2d(func...

#WR Loop Row

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

Performance | Resource

Figure 6-9: Expanded View of RD_Loop_Row

From this, you can see that in the first state (C1) of the RD_Loop_Row, the loop exit
condition is checked and an add operation performed. This addition is likely the counter for
the loop iterations, and we can confirm this.

3. Select the adder in state C1, right-click and select Go to Source (Figure 6-10).

www.Xilinx.com

l Send Feedback I 119

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=119

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE-

a. When the dialog box opens, press OK to select item O.

This opens the C source code to highlight the operation in the C source that created this
adder. From the details on screen (also shown in Figure 6-10), you can determine it is
indeed the loop counter. It is the only addition on this line, and the variable is named “r".

&' Performance(solutionl) 2

Current Mcocdule : dct

| Oneration\Contral S...| co | | c2 |l 3 | ca | c5 |
1 EFRD Loop Row
2 r i(phi mux)
3 exitcondl i(icmp)
r (+) _—
-IRD Loop Col

¢ i(phi mux)

exitcond i (icmp)

c(+)

tmp 5 i(+)

input load(read)

p addrl (+)

node 41 (write)
13 | dect dect 2d(func...
1... ®WR Loop Row

=
Do Bwoe N W

Performance | Resource

[Properties | [< C Source 2

File: CA\Vivado_HLS_Tutorial\Design_Analysis\labl\dct.cpp
98 void read_data(short input[N], short buf[DCT_SIZE][DCT_SIZE]) -
894

100 intr, c;

101

102 RD_Loop Row:

103 for(r=0;r < DCT _SIZE; r++) {

104 RD_Loop_Col:

105 for (c =0; ¢c < DCT_SIZE; c++)

106 buf[r][c] = input[r * DCT_SIZE + c];
107 }

108}

109

110 void write_data(short buf[DCT_SIZE][DCT_SIZE], short output[N]) =
4 11} 3

11

Figure 6-10: C Source Code View

In the next state of loop RD_Loop_Row (state C2), loop RD_Loop_Col starts to execute.

4. Click any of the operations in the RD_Loop_Col to see the source code highlighting
update.

High-Level Synthesis www.xilinx.com Send Feedback 120
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=120

& XILINX

ALL PROGRAMMABLE

Chapter 6: Design Analysis

This should help confirm your understanding of how the operations in the C source code

are implemented in the RTL.

« The loop exit condition is checked.

« This is an adder for loop count variable “c”.

« Aread from a RAM performed (one cycle to generate the address, one cycle to read the

data).

« A write operation is performed to a RAM.

Loops in the Performance view mean that the design iterates around these states multiple
times. The number of iterations is noted as the loop tripcount and shown in the

Performance Profile.

To improve performance, these loops should be pipelined. You can review the rest of the
design for other performance optimization opportunities.

5. Click the X in the C Source pane tab to close this window.

6. In the Module Hierarchy pane, click the function dct_dct_2d to navigate into the view

for this function (Figure 6-11).

4 Vivado HLS - dct_prj (C\Vivado_HLS_Tutorial\Design_Analysis\lab1\dct_prj)
File | Edit| Project Solution Window Help

@iRid-&Fai«®
2] Module Hierarchy

BRAM DSP FF LUT Latency Interval Pipeline type
4 o dct 5 1 272 366 3959 3960 none
4 ® dct_dct_2d 3 1 203 275 3668 3668 none
@ dct_dct_1d 0 1 111 123 209 209 none

£7 Performance Profile ©2 . |- Resource Profile

Pipelined Latency Initiation Interval

4 o dct_dct_2d 3668 3668 -
© Row_DCT_Loop no 1688 - 211
> e Xpose_Row_Outer_Loop no 144 - 18
e Col_DCT Loop no 1688 - 211
> ® Xpose_Col_Outer Loop no 144 - 18

Figure 6-11:

High-Level Synthesis

Iteration Latency

= 0

Trip count

8
8
8
8

= Performance(solutionl)

Current Module :

| Oneration\Contral S

dct > det det 2d

[F=5 FoR =
] Synthesis

= 8

© % Debug

co | c1 |l c2 |l ec3 |l cal s | c6 |

1 ERow DCT Loop

2 i(phi mux)

3 exitconds (icmp)

4 i4(+)

5 dct dect 1d(fun...
6-...®Xpose Row Outer. ..
18 ECol DCT Loop

19 i 2(phi mux)

20 exitcond2 (icmp)
21| i 5(#)

22 dct dct 1d(fun...
2... ¥Xpose Col Outer...

Performance| Resource
O Properties 3
Property

Value

DCT_2D Performance View

www.Xilinx.com

UG871 (v2016.2) June 8, 2016

l Send Feedback I 121

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=121

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

Again, you can see a number of loops (shown in yellow in Figure 6-12). Loops ensure the
design will have small area but the design will take multiple iterative states to complete:
each iteration of the loop will complete before the next iteration starts.

You can pipeline the loops to improve the performance. The details in the Performance
Profile show that most of the latency is caused by loops Row_DCT_Loop and Col_DCT_Loop.

7. Click loops Row_DCT_Loop and Col_DCT_Loop in the performance viewer to fully
expand them, as shown in Figure 6-12.

Expanding these loops in Performance view shows both loops call function dct_dct_1d2.
Unless this function itself is pipelined, there is no benefit in pipelining the loop. TheModule
Hierarchy shows the interval for dct_1d is 210 clock cycles, which means it can only accept
a new input every 210 clock cycles.

8. In the Module Hierarchy, click function dct_dct_1d2 to navigate into the view for this
function.

9. Expand the loops in the Performance Profile and Performance view to see the view
shown in Figure 6-12.

High-Level Synthesis www.xilinx.com Send Feedback 122
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=122

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE-

; Vivado HLS - det prj (C\Vivado_HLS, Tutorial\Design_ Analysis\labI\dct_prj) oo s
Fle Edit Project Solution Window Help
I=H R R Bi6ri®: 1Debug | |Synthesis (2 Analysis
¥ Madule Hierarchy * 5 7 O g Synthesis(solution]) | & Performance(solutionl) £ = A
SRAM DSP FFLUT Latency Intenal PIoeineF | o v ont Module : det > det det 2d > det det 142
4 0 qdct 5 1 278353 3959 3960 none
soditdt2d3 1 209266 3668 3668 none | Oneration\Contral S| co | ¢t | 2 | 3| ca |
odctdct 0 1 17121 209 209 none 1 tmp 21 read(read)
2 tmp 2 read(read)
3 GDCT Quter Loop
4 k(phi mux)
5 exitcondl (icmp)
6k 1(+)
7 tmp 5(+)
8 EDCT Imner Loop
9 n(phi mux)
10 tmpl (phi mux)
11 exitcond (icmp)
12 nl@)
¢ M P13 tmp 11(4)
g8 . . = 14 tmp 12(+)
& Performance Profile & | Resource Profile 7 F =0 15 dct coeff tab...
Pipelined Latency Initiation Interval Iterationl | 16 src load(read)
foddddld - 0 00 : 1; gp ;:3
D
> @ DCT_Outer_Loop no 208 - 26 19 tmp 5(+)
20 node 57(write)
Performance Resource
[Properties £ Eeh 7= 4
Property Value
¢ M W M)

Figure 6-12: DCT_1D Performance View

In Figure 6-12 you can see a series of nested loops that can be pipelined.

You can choose to do one of the following:

High-Level Synthesis www.xilinx.com Send Feedback 123
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=123

g: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

« You can pipeline the function and then pipeline the loop that calls it. (Because the
function is pipelined, the loop can take advantage of using a pipelined part.)

» You can pipeline the loops within this function and simply make this function execute
faster.

Pipelining the function unrolls all the loops within it, and thus greatly increases the area. If
the objective is to get the highest possible performance with no regard for area, this may be
the best optimization to perform.

You can find more details on pipelining loops and functions in the Chapter 7, Design
Optimization tutorial. For this case, the approach is to optimize the loops and keep the area
at a minimum.

10. Click the Synthesis perspective button to return to the main synthesis view.

=N Eol =%~
f 3% Debug W‘Analysis

QOutline 2 ~_4 Directive =t]

Figure 6-13: Re-Opening the Synthesis Perspective

Step 5: Apply Loop Pipelining and Review for Loop Optimization
In this step, you create a new solution and add pipelining directives to the loops.

When pipelining nested loops, it is generally best to pipeline the inner-most loop. Typically,
High-Level Synthesis can generally flatten the loop nest automatically (allowing the outer
loop to simply feed the inner loop). For more information on why it is better to perform
certain loop optimizations rather than others, see the Chapter 7, Design Optimization
tutorial.

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution.

2. Click Finish and accept the defaults.

3. Ensure that you can see the C source code in the Information pane.

4. Inthe Directive tab, add a pipeline directive to loop DCT_Inner_Loop in function dct_1d.
a. Right-click DCT_Inner_Loop in the Directive pane and select Insert Directive.

b. Inthe Directives Editor dialog box activate the Directive drop-down menu at the top
and select PIPELINE.

c. Click OK to select the default maximum pipeline rate (II=1).

High-Level Synthesis www.xilinx.com Send Feedback 124
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=124

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE-

5. Repeat step 4 for the following loops:
a. In function dct 2dloop Xpose Row Inner Loop
b. In function dct 2dloop Xpose Col Inner Loop
c. In function read data loop RD_Loop Col

d. In function write data loop WR Loop Col

The Directive pane shows the following (highlighted) optimization directives applied.

o= Outline |4 Directive =8

4 @ dct_1d il
®[1 dct_coeff_table
4 %" DCT_Outer_Loop
4 %" DCT_Inner_Loop
% HLS PIPELINE
4 @ dct_2d
=[] row_outbuf
#[1 col_outbuf
=[] col_inbuf
%" Row_DCT_Loop
4 %" Xpose_Row_Outer_Loop
ad Xpose_Row_Inner_Loop
% HLS PIPELINE
% Col_DCT_Loop
4 %" Xpose_Col_Outer_Loop
4 %" Xpose_Col_Inner_Loop
% HLS PIPELINE
4 @ read_data
4 %" RD_Loop_Row
4% RD_Loop_Col
% HLS PIPELINE
4 @ write_data
4 %" WR_Loop_Row
4% WR_Loop_Col
% HLS PIPELINE
4 @ dct -

Figure 6-14: Optimization Directive for DCT Loop Pipelines

6. Click the Run C Synthesis toolbar button to synthesize the design to RTL. If a file was
modified, please select YES.

7. When synthesis completes, use the Compare Reports toolbar button or the menu
Project > Compare Reports to compare solutions 1 and 2.

Figure 6-15 shows the results of comparing solutionl and solution2. Pipelining the loops
has improved the latency of the design with an almost 50% reduction in solution2.

High-Level Synthesis www.xilinx.com Send Feedback 125
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=125

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

£F compare reports = B

Performance Estimates

=l Timing (ns)
Clock solutionl solution2
default Target 8.00 8.00
Estimated 5.79 5.79

m

-1 Latency (clock cycles)

solutionl solution2

Latency min 3959 1850
max 3959 1850
Interval min 3960 1851
max 3960 1851

Figure 6-15: DCT Solutionl and Solution2 Comparison

Next, you once again open the Analysis perspective, analyze the results, and determine
whether or not there are more opportunities to for optimization.

8. Click the Analysis perspective button to begin interactive design analysis.

When the Analysis perspective opens, you can see that the majority of the latency is still
due to block dct_2d. Before proceeding to analyze further, you can review how the loops at
this level have been optimized.

The Performance Profile (Figure 6-16) shows that the latency of both loops has been
reduced from 144 clock cycles in solutionl to only 64 clock cycles.

E£F performance Profile £ . | . Resource Profile = B

Pipelined Latency InitiationInterval Iteration Latency Trip count

4 ® dct - 1850 1851 - -
@ RD_lLoop_Row RD_Loop_Col yes b4 1 64
@ WER_Loop_Row_WR_Loop_Col yes 64 1 2 64

Figure 6-16: DCT Solution2 Performance of Top-Level Loops

Pipelining loops transforms the latency from

Latency = iteration latency * (tripcount * interval)

to

Latency = iteration latency + (tripcount * interval)

High-Level Synthesis www.xilinx.com Send Feedback 126
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=126

8 XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE-~

Vivado HLS also made this possible by automatically performing loop flattening (there is no
longer any loop hierarchy). You can see this by reviewing the Console pane, or log file, for
solution2. Figure 6-17 shows the loops that have been automatically optimized.

B Console 22 . @] Errors| & Wamnings| BREE<="C0
Vivado HLS Console

ET pTTTiTT TTD§ STSIIITg CITTIISIIT L SIT=rIIm o DiIT TIT o §IIITIFFTITZ STIImIISITEDZ

@I [XFORM-602] Inlining function 'write_data' into "dct' (dct.cpp:94) automatically.]

[XFORM-541] Flattening a loop nest 'RD_Loop Row' (dct.cpp:59) in function 'dct’.
[XFORM-541] Flattening a loop nest 'WR_Loop Row' (dct.cpp:71) in function 'dct’.
[XFORM-541] Flattening a loop nest 'Xpose Row Outer_ Loop"' (dct.cpp:37) in function 'dct_2d'.
[XFORM-541] Flattening a loop nest 'Xpose Col Outer loop' (dct.cpp:48) in function 'dct 2d'.
[HLS-111] Elapsed time: 12.191 seconds; current memory usage: 30.6 MB.

@I [HLS-10] Starting hardware synthesis ...
@T THIS-181 Sunthacizving "drt'
[« 1 | »

Figure 6-17: DCT Solution2 Loop Flattening

9. In the Module Hierarchy, click function dct dct 2d to navigate into the view for
this function.

In the Performance Profile you can see that the latency of all the loops has been
substantially reduced (Row_DCT_Loop and Col_DCT_loop have been approximately halved
from the earlier report in Figure 6-11). However, the majority of the latency is still due to
these two loops, each of which calls the dct_1b block.

10.In the Module Hierarchy, click function dct dct 1d to navigate into the view for
this function.

The Performance Profile (Figure 6-18) shows the loop latencies have been reduced, but
there is still a loop hierarchy here. (There is still loop DCT_Outer_Loop, shown in
Figure 6-18, so no loop flattening occurred).

£° performance Profile 2 . | . Resource Proﬁle} = = O

Pipelined Latency InitiationInterval Iteration Latency Trip count

4 @ dct_dct_1d? - 97 a7 - -
4 o DCT_Outer_Loop no 96 - 12 8
@ DCT_Inner_Loop yes 9 1 3 8

Figure 6-18: DCT Solution2 Performance of dct_1d Loops

Viewing these loops in Performance view shows why this loop was not optimized further.

11.1In the Performance view, click loops DCT Outer Loop and DCT Inner Loop to view
the loop hierarchy (Figure 6-19).

12. Select the write operation in state C3.

13. Right-click and select Go to Source.

High-Level Synthesis www.xilinx.com l Send Feedback l 127

UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=127

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE-

Figure 6-19 shows that this loop was not flattened because additional operations outside of
DCT Inner Loop, atthelevel of DCT Outer Loop, prevented loop flattening. One of the
operations that prevented loop flattening is highlighted in Figure 6-19, below.

= Performance(solution2) &2 = B

Current Medule : dct > dct dect 2d > det det 1d2

| Oneration\Contral 5.1 co | c1 | o2 | | ca |
tmp 21 read(read)

tmp 2 read(read)
s DCT Outer Loop
k(phi mux)
exitcondl (icmp)
k 1(+)
tmp 5(+)
8-...| ¥DCT Inner Loop
19 tmp s (+)

node 60 (write) M

Performance | Resource

RN Rl R, ER RS R S R

[Properties | [<| C Source 2 = 8

File: CA\Vivado_HLS_Tutorial\Design_Analysis\labl\dct.cpp
55).
56 DCT_OQuter_Loop:
57 for (k =0; k< DCT_SIZE; k++) {
58 DCT_Inner_Loop:
59 for(n =0, tmp = 0; n < DCT_SIZE; n++) {
60 int coeff = (int)dct_coeff_table[k][n];
61 tmp += src[n] * coeff;
62 3
63 dst[k] = DESCALE(tmp, CONST_BITS);
64 }
65}
66
67 void dct_2d(dct data tin_block[DCT_SIZE])DCT_SIZE],
68 dct data_t out_block[DCT_SIZEJ[DCT_SIZE])
694
70 dct_data_t row_outbuf[DCT_SIZE]DCT_SIZE];

71 dct data t col outbuf[DCT SIZENDCT SIZE], col inbuf[DCT SIZE] ™
< 1 b

111

Figure 6-19: DCT Solution2 dct_1d Performance View

The write to the array cannot be flattened into the inner loop. To achieve an interval of 1 on
DCT Outer Loop you will need to pipeline the output loop - there is no benefit in simply
pipelining the inner loop itself.

You should pipeline the outer loop instead. This causes the inner loop to be completely
unrolled. An increase in area results, but you are still far from the throughput goal of 125

High-Level Synthesis www.xilinx.com Send Feedback 128
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=128

g: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

and not yet ready to pipeline the entire function (and see an even greater area increase, as
the outer loop is also completely unrolled).

14. Click the Synthesis perspective button to return to the main synthesis view.

Step 6: Apply Loop Optimization and Review for Bottlenecks

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution.

2. Click Finish and accept the defaults to create solution3.
3. Ensure the C source code is visible in the Information pane.
4. In the Directive tab
a. In function dct_1d, select the pipeline directive on loop DCT_Inner_Loop.
b. Right-Click and select Remove Directive.
c. Still in function dct_1d, select loop DCT_Outer_Loop.
d. Right-click and select Insert Directive.

e. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select PIPELINE.

f. Click OK to select the default maximum pipeline rate (II=1).

The Directive pane should show the following (highlighted) optimization directives applied.

High-Level Synthesis www.xilinx.com Send Feedback 129
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=129

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE-

o= Outline |4 Directive =g

4 @ dct_1d -

#[1 dect_coeff_table

%" DCT_Outer_Loop

% HLS PIPELINE
%" DCT_Inner_Loop

4 @ dct_2d

=[1 row_outbuf

#[1 col_outbuf

#[1 col_inbuf

%" Row_DCT_Loop

%" Xpose_Row_Outer_Loop

a Xpose_Row_Inner_Loop
% HLS PIPELINE

%' Col_DCT_Loop

%" Xpose_Col_Outer_Loop

4 %" Xpose_Col_Inner_Loop
% HLS PIPELINE

4 @ read_data

%" RD_Loop_Row

4 %' RD_Loop_Col
% HLS PIPELINE

4 @ write_data

%" WR_Loop_Row

4 % WR_Loop_Col
% HLS PIPELINE

4 @ dct -

h

h

m

h

h

h

Figure 6-20: Updated Optimization Directives for DCT Loop Pipelines
5. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

6. When synthesis completes, click the Compare Reports toolbar button to compare
solutions 2 and 3.

Figure 6-21 shows the results of comparing solution2 and solution3. Pipelining the
outer-loop has in fact resulted in an increase to the performance and the area.

The significant latency benefit is achieved because multiple loops in the design call the
dct_1d function multiple times. Saving latency in this block is multiplied because this
function is used inside many loops.

High-Level Synthesis www.xilinx.com Send Feedback 130
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=130

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

£7 compare reports = B

Performance Estimates

= Timing (ns)
Clock solution2 solution3
ap_clk Target 8.00 8.00
Estimated 5.79 8.74

-1 Latency (clock cycles)

solution? solution3

Latency min 1850 874
max 1850 874

Interval min 1851 875 =
max 1851 875

Utilization Estimates

solution2 solution3

BRAM_18K 5 5
DSP48E 1 8
FF 255 677
LUT 457 532

-

Figure 6-21: DCT Solution2 and Solution3 Comparison

In this case, the report indicates the clock period for solution3 cannot be achieved. Vivado
HLS will sometimes create a design in which the estimated clock period fails to meet the
required clock period. Typically, the design will meet timing after RTL synthesis - in this
case, you can confirm this by using the Export RTL feature and selecting Evaluate. In the
event you encounter a case where the design fails to meet timing after RTL synthesis, use
LATENCY directive in conjunction with regions in the C code to force Vivado HLS to register
intermediate points on the failing RTL path.

Now that all the loops are pipelined, it is worthwhile to review the design to see if there are
performance-limiting "bottlenecks.” Bottlenecks are limitations in the flow of data that can
prevent the logic blocks from working at their maximum data rate.

Such limitations in the data flow can come from a number of sources, for example, I/O ports
and arrays implemented as block RAM. In both cases, the finite number of ports (on the I/O
or block RAM) limits the rate at which data can be read or written.

Another source of bottlenecks is data dependencies in the original source code. In some
cases, these data dependencies are inherent in how the algorithm operates, as when a
calculation cannot be performed until an earlier calculation has completed. Sometimes,
however, the use of an optimization directive or a minor change to the C code can remove
them.

High-Level Synthesis www.xilinx.com Send Feedback 131
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=131

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

The first task is to identify such issues in the RTL design. There are a number of approaches
you can take:

« Start with the largest latency of interval in the Module Hierarchy report and navigate
down the hierarchy to find the source of any large latency or interval.

7. Click the Resource Profile to examine I/O and memory usage.

8. Use the power of the graphical viewer and look for patterns in the Performance view
which indicate a limitation in data flow.

In this case, you will use the latter approach. You can use the Analysis perspective to
identify such places in the design quickly.

9. Click the Analysis perspective button to begin interactive design analysis.
10. In the Module Hierarchy, ensure module dct is selected.

11.In the Performance view, expand the first loop in the design as shown in Figure 6-22,
RD Loop Row RD Loop Col (these loops were flattened and the name is now a
concatenation of both loops).

This loop is implemented in two states. The red arrow in Figure 6-22 shows the path from
the start of the loop to the end of the loop: the arrow is almost vertical (everything happens
in two clock cycles) and this loop is well implemented in terms of latency.

= Performance - dct 2 = [m|
Current Module : dct

|§!neraﬂgg\ggntnﬂ o | |]
-IRD Loop Row RD ...

indvar flatten...
r i(phi mux)

c i(phi mux)
exitcond flatt...
indvar flatten...
exitcond i (icmp)
c 1 mid2(select)
r(+)

r i1 mid2(select)
tmp 5 i(+)

input load (read)
c(+)

p addrl (+)

node 47 (write)

16 @ dct 2d(function)
1... ®WR Loop Row WR ...

PO oOONOUN D WN R
P e — e — —
- . - - O S S S S - ..

Performance Resource

Figure 6-22: Analysis of DCT RD_Loop_Row

High-Level Synthesis www.xilinx.com Send Feedback 132
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=132

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

12.1In the Performance view, expand the WR_Loop_Row and perform similar analysis. It is
similarly well optimized for latency.

13. Double-click function dct_2d and navigate into the dct_2d function.
You can use same analysis process down through the hierarchy. If you perform this analysis

you will discover that all the function blocks and loops have a similar optimal (few cycles)
implementation, until the dct_1d block is examined.

14.1In the Performance view, double-click function dct 1d and navigate into the dct 1d
function.

15. Expand the DCT Outer Loop to see the view shown in Figure 6-23.

Figure 6-23 shows a very different view from the earlier loop schedules (which had only a

few cycles of latency). The schedule shows a long drift from input to output (as shown by
the red arrow).

Figure 6-23 shows the analysis of dct 1d RD Loop Row.

High-Level Synthesis www.xilinx.com Send Feedback 133
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=133

& XILINX

ALL PROGRAMMABLE-~

Chapter 6: Design Analysis

= Performance(solution3) &2 =i (=

Current Module : dct > dect det 2d > det det 142

| Oneration\Control S o o Rl [o 1 O [A [o T I o] [0 [7

1 tmp 21 read(read)
2 tmp 2 read(read)

3 tmp 10(])

4 tmp 12(])

5 tmp 14(])

6 tmp 16(]|)

7 | tmp 18(l)

8 tmp 20(|)

g tmp 23(])

10 EDCT Outer Loop

11 k(phi mux)

12 exitcondl {icmp)
13 k 1({+)

14 tmp 25 (+)

15 dct coeff tabl...
16 src load 1 (read)
ik dct coeff tabl...
18 src load 3 (read)
19 dct coeff tabl...
20 src load (read)

21 dect coeff tabl...
22 det coeff tabl...
23 dct coeff tabl...
24 src load 5 (read)
25 dct coeff tabl...
26 dect coeff tabl...
27 tmp 10 1(*)

28 src load 2 (read)
29 tmp 10 3(*)

30 src load 4 (read)
31 tmp 3 (*)

32 | tmp 10 5(*)

33 src load 6 (read)
34 src load 7 (read)
35 tmpZ (+)

36 tmp 10 2 (*)

37 tmp 10 4(*)

38 tmp3 (+)

39 tmpl (+)

40 tmpS(+)

41 tmp 10 &(*)

42 tmp 10 7(*)

43 tmp7 (+)

44 tmpé (+)

45 tmpd (+)

46 tmp s (+)

47 node 114 (write)
Performance Resource

Figure 6-23: Analysis of dct_1d RD_Loop_Row

There are typically two things that cause this type of schedule: data dependencies in the
source code and limitations due to I/O or block RAM. You will now examine the resources
sharing in this block.

16.In the Performance view, click the Resource tab at the bottom of the window.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

| Send Feedback l 134

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=134

& XILINX

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

Chapter 6: Design Analysis
ALL PROGRAMMABLE
17. Expand the Memory Ports, as shown in Figure 6-24.
= Resource(solution3) 2 = B
Current Module : dct > dct det 2d > det det 1d2
|Resource\Control Sten| co | c1 | c2 | c3 | ca | 5 | c6 | c7 |
1 EI/0 Ports
2 tmp 21 read
3 tmp 2 read
4 src (p0) read read read read
5 src(pl) read read read read
6 dst (p0) write
7 EMemory Ports
8 dct coeff tabl... read
9 dct coeff tabl... read
10 src(pl) read read read read
11 src (p0) read read read read
12 dct coeff tabl... read
13 dct coeff tabl... read
14 dct coeff tabl... read
15 dct coeff tabl... read
16 dct coeff tabl... read
17 dct coeff tabl... read
18 dst (p0) write
1... ¥ExXpressions

Performance | Resource

Figure 6-24: Resource Sharing of Memory Ports in DCT_1d

The Resource view shows how the resources in the design are used in different control
states.

The rows list the resources in the design. In Figure 6-24, the memory resources are
expanded.

The columns show the control states in which the resource is used. If a resource is active in
multiple states, the resource is being re-used in different clock cycles.

Figure 6-24 shows the memory accesses on block RAM src are being used to the maximum
in every clock cycle. (At most, a block RAM can be dual-port and both ports are being used).
This is a good indication the design may be bandwidth-limited by the memory resource. To
determine if this really is the case, you can examine further.

18. Select one of the read operations for the src block RAM.

19. Right-click and select Goto Source to see the view shown in Figure 6-25.

www.Xilinx.com

l Send Feedback I 135

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=135

& XILINX

[Properties | [¢] C Source 3

File: C\Vivado_HLS_Tutorial\Design_Analysis\labl\dct.cpp

56 DCT_Quter_Loop:

57 for (k = 0; k < DCT_SIZE; k++) {

58 DCT _Inner_Loop:

59 for(n =0, tmp = 0; n < DCT_SIZE; n++) {

60 int coeff = (int)dct_coeff_table[k][n];
61 tmp += src[n] * coeff;

62 1}

63 dst[k] = DESCALE(tmp, CONST_BITS);
64 }

65}

Figure 6-25:

Memory Resource SRC and Source Code

Chapter 6: Design Analysis
ALL PROGRAMMABLE
= Resource(solution3) 2 = 8
Current Module : dct > det det 24 > det det 1d2
|Resource\Contral Sten| co | |l c2 l cal cal s |l co | c7 -
1 EI/0 Ports
2 tmp 21 read
3 tmp 2 read
4 src (p0) read read read read
5 src(pl) read read read read
6 dst (p0) write
7 EMemory Ports
8 dct coeff tabl... read i
9 dct coeff tabl... read =
10 src(pl) read read read read
src (p0) read read read
12 dct coeff tabl... read
13 dct coeff tabl... read
14 dct coeff tabl... read
15 dct coeff tabl... read
16 dct coeff tabl... read
17 dct coeff tabl... read
18 dst (p0) write _
4 B . I b
Performance Resource
= 0

m

Figure 6-25 shows this read on the src variable is from the read operation inside loop
DCT Inner Loop. This loop was automatically unrolled when DCT Outer Loop was
pipelined and all operations in this loop can occur in parallel (if data dependencies allow).

The eight reads are being forced to occur over multiple cycles because the array src is
implemented as a block RAM in the RTL and a block RAM can only allow two reads
(maximum) in any one clock cycle. In Figure 6-25, the read operations take 2 clocks cycles:
a cycle to generate the address for the block RAM and a cycle to read the data. Only the

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback I 136

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=136

g: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

launch (address generation cycle) is shown because it overlaps with the operation in the
next clock cycle.

You can optimize the block RAM accesses using optimization directives to partition the
block RAM. The array that function dct 1d accesses is defined as an input argument to the
function and therefore resides outside this block.

« The input array to the first instance of dct 1dis buf 2d_in in function dct.

« The input array to the second instance of dct 1dis col inbuf in function dct 2d.

In both cases, the arrays are 2-dimensional of size DCT_SIZE by DCT_SIZE (8x8). By default,
this results in a single block RAM with 64 elements. Because the arrays are configured in the
code in the form of Row by Column, we can partition the second dimension and create eight
separate Block RAMs: one for each row, allowing the row data to be accessed in parallel.

20. Click the Synthesis perspective button to return to the main synthesis view.

Step 7: Partition Block RAMs and Analyze Concurrency

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution, solution4.

2. Click Finish and accept the defaults to create solution4.
3. Ensure the C source code is visible in the Information pane.
4. In the Directive tab:

a. In function dct, select array buf 2d_in.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box, activate the Directive drop-down menu at the
top and select ARRAY_PARTITION.

d. Leave the type as Complete.

e. Change the dimension setting to 2 to partition the array along the second
dimension.

f. Click OK.

5. Repeat this process for array col inbuf in function dct_2d.

The Directive pane displays optimization directives, as shown in Figure 6-26 (the two new
directives are highlighted).

High-Level Synthesis www.xilinx.com Send Feedback 137
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=137

i: X”_INX Chapter 6: Design Analysis

ALL PROGRAMMABLE-

o= Outline |4 Directive =g

@ dct_1d
#[1 dect_coeff_table
%" DCT_Outer_Loop
96 HLS PIPELINE
%" DCT_Inner_Loop
@ dct_2d
=[1 row_outbuf
#[1 col_outbuf
#[1 col_inbuf
9 HLS ARRAY_PARTITION variable=col_inbuf complete dim=2
%" Row_DCT_Loop
%" Xpose_Row_Outer_Loop
3 Xpose_Row_Inner_Loop
96 HLS PIPELINE
%' Col_DCT_Loop
%" Xpose_Col_Outer_Loop
%" Xpose_Col_Inner_Loop
96 HLS PIPELINE
@ read_data
%" RD_Loop_Row
¥ RD_Loop_Col
96 HLS PIPELINE
@ write_data
%" WR_Loop_Row
%" WR_Loop_Col
96 HLS PIPELINE
@ dct
=[] buf_2d_in
96 HLS ARRAY_PARTITION variable=buf_2d_in complete dim=2
=[] buf_2d_out
@ input
2 output

Figure 6-26: Optimization Directives for Array Partitioning
6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

7. When synthesis completes, use the Compare Reports toolbar button to compare
solutions 3 and 4.

Figure 6-27 shows the results of comparing solution3 and solution4. Improving access to
the data in the src block RAM in the dct_1d block has improved the overall performance
because the dct_1d block executes frequently.

High-Level Synthesis www.xilinx.com Send Feedback 138
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=138

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE-

£F compare reports &2 = 8

Performance Estimates

= Timing (ns)
Clock solution3 solutiond
ap_clk Target 8.00 8.00
Estimated 874 8.93

m

-l Latency (clock cycles)

solution3 solutiond

Latency min 874 508
max 874 508
Interval min 875 509
max 875 509

Figure 6-27: DCT Solution3 and Solution4 Comparison

You can review the impact of the partitioning directive on the device resource.

8. Click the Analysis perspective button to begin interactive design analysis.
9. In the Module Hierarchy, ensure module dct is selected.
10. Select the Resource Profile tab in the lower-left.

11. Expand the Memories and Expressions see the view in Figure 6-28.

High-Level Synthesis www.xilinx.com Send Feedback 139
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=139

& XILINX

ALL PROGRAMMABLE

] Module Hierarchy

4 o dct

BRAM DSP
3 8
- @ detdet2d 2 8
0

@ dct_read data 0

£7 Performance Profile ||

4 @ dct

» g2 /O Ports(2)
+ 12 Instances(?)
4 = Memories(9)

¢
¢
. 4
. 4
¢

&
&
&

¢

buf 2d_out_U
buf 2d_in_6_U
buf 2d_in 5_U
buf 2d_in 4 U
buf 2d_in_3_U
buf 2d_in_7_U
buf 2d_in_2_U
buf 2d_in 1 U
buf_2d_in 0_U

- ', Expressions(9)

- 4t Registers(11)
Channels(0)

+ @ Multiplexers(32)

FF

LuT

1243 625 508
923 445 373

28

54

Resource Profile &

DSP FF

BRAM
3

oo Qo Qo Q Qo QO O O - =N

(= =]

Figure 6-28:

66

1243

951
256
0
32
32
32
32
32
32
32
32
0
36

LUT Bits PO

625

499

[N R L S I = I A T A = R
[=1]

.
[,]

68

DCT Resource Profile

Latency Interval
509
373
66

32

144
16
16
16
16
16
16
16
16
16
36
36
0
68

Pipeline type

none
none
none

Chapter 6: Design Analysis

7B = 8

Bits P1 Bits P2 Banks/Depth Words W*Bits*Banks

41

O -]

128 2048
1024
128
128
128
128
128
128
128
128

GOGOOOOOOOGOGOGO@

The Resource Profile shows the resources being using at the current level of hierarchy (the

block selected in the Module Hierarchy pane). Figure 6-28 shows:

« This block has two I/O ports.

« Most of the area is due to instances (sub-blocks) within this block.

« There are nine memories, eight of which are the partitioned buf_2d_in block RAM. Since
they are less than 1024 bits they are automatically implemented as LUTRAM.

« Most of the logic (expressions) at this level of hierarchy is due to adders, with some due
to comparators and selectors.

The important point from the previous optimization is that you can see there are now

additional memories due to the array partitioning optimization.

You still have a goal to ensure that the design can accept a new set of samples every 125
clock cycles. Figure 6-28, however, shows that you can only accept new data every 525

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback I 140

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=140

g: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

clocks. This is much better than the original, pre-optimized design (approx. 3700 clock
cycles), but further optimization is required.

Up to this point, you have focused on improving the latency and interval of each of the
individual loops and functions in the design. You must now apply the dataflow
optimization, which enables the individual loops and functions to execute in parallel, thus
improving the overall design interval.

12. Click the Synthesis perspective button to return to the main synthesis view.

Step 8: Partition Block RAMs and Apply Dataflow optimization

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution, solution5.

2. Click Finish and accept the defaults to create solution5.
3. Ensure the C source code is visible in the Information pane.
4. In the Directive tab

a. Select the top-level function det.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box activate the Directive drop-down menu and
select DATAFLOW.

d. Click OK.

The Directive pane now displays the following optimization directives (the new directive is
highlighted).

High-Level Synthesis www.xilinx.com Send Feedback 141
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=141

& XILINX

ALL PROGRAMMABLE-

Chapter 6:

o= Outline |4 Directive =g

4 @ dct 1d

®[1 dct_coeff_table
4 %" DCT_Outer_Loop
% HLS PIPELINE
%" DCT_Inner_Loop

4 © dct_2d

=[1 row_outbuf
#[1 col_outbuf
#[1 col_inbuf
9 HLS ARRAY_PARTITION partition variable=col_inbuf complete dim=2
%" Row_DCT_Loop
4 %" Xpose_Row_Outer_Loop
alf Xpose_Row_Inner_Loop
9 HLS PIPELINE
%' Col_DCT_Loop
4 %" Xpose_Col_Outer_Loop
4 %" Xpose_Col_Inner_Loop
9 HLS PIPELINE
@ read_data
4 %' RD_Loop_Row
4 %' RD_Loop_Col
9 HLS PIPELINE
@ write_data
4 %' WR_Loop_Row
4 % WR_Loop_Col
9 HLS PIPELINE

4 @ dct

9 HLS DATAFLOW

=[] buf_2d_in

9b HLS ARRAY_PARTITION partition variable=buf_2d_in complete dim=2
=[] buf_2d_out

@ input

2 output

Figure 6-29:

Dataflow Optimization for the DCT Design

Design Analysis

5. Click the Click the Run C Synthesis toolbar button to synthesize the design to RTL.

6. When synthesis completes, use the Compare Reports toolbar button or the menu
Project > Compare Reports to compare solutions 4 and 5.

Figure 6-30 shows the results of comparing solution4 and solution5, and you can see the
interval has improved. The design takes 525 clocks cycles to produce the outputs but can
now accept new inputs every 374 clocks.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com l Send Feedback l 142

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=142

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE-

£F compare reports i3 = B

Performance Estimates

=1 Timing (ns)
Clock solutiond solution5
default Target 8.00 8.00
Estimated 8.93 8.93

1

-1 Latency (clock cycles)

solutiond solution>

Latency min 508 507
max 508 507
Interval min 509 374
max 509 374

Figure 6-30: DCT Solution4 and Solution5 Comparison

This is still greater than the 125 cycles required, so you must analyze the current
performance.

7. Click the Analysis perspective button to begin interactive design analysis.

8. In the Module Hierarchy, you can see dct_dct_2d accounts for most of the interval.
Ensure module dct_2d is selected to see the view in Figure 6-31.

t=] Module Hierarchy e =
BRAM DSP FF LUT Latency Interval Pipeline type
4 ® dct 4 8 1505 613 507 374 dataflow
@ dct_read_data 0 0 29 55 66 66 none
4| e dct_dct 2d 2 8 924 446 373 373 none
® dct dct.1d 0 8 591 103 13 13 none
e dct_write_data 0 0 32 63 66 66 none
£F Performance Profile #2 | Resource Profile e =
Pipelined Latency Initiation Interval Iteration Latency Trip count
4 o dct_dct 2d - 373 373 - -
@ Row_DCT_Loop no 120 - 15 8
@ Xpose_Row_Outer_Loop_Xpose_Row_Inner_Loop yes 64 1 2 64
@ Col_DCT _Loop no 120 - 15 8
@ Xpose_Col_Outer_Loop_Xpose_Col_Inner_Loop yes 64 1 2 64

4 I 4

Figure 6-31: DCT Analysis View after Dataflow Optimization

Here, you can see two things:

« The interval of the dct block is less than the sum of the individual latencies (for
read data, dct 2dand write data). This means the blocks are operating in
parallel.

High-Level Synthesis www.xilinx.com Send Feedback 143
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=143

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

« The interval of dct is the same as the interval for sub-block dct 2d. The dct_2d
block is therefore the limiting factor.

Because the dct_2d block is selected in the Module Hierarchy and the Performance Profile
shows the details for this block. Figure 6-32 shows the interval is the same as the latency, so
none of these blocks operate in parallel.

One way to have the blocks in dct_2d operate in parallel would be to pipeline the entire
function. This, however, would unroll all the loops, which can sometimes lead to a large area
increase. An alternative is use dataflow optimization on function dct_2d.

Another alternative is to use a less obvious technique: raise these loops up to the top-level
of hierarchy, where they will be included in the dataflow optimization already applied to the
top-level. This can be achieved by using an optimization directive to remove the dct 2d

hierarchy: inline the dct_2d function.

Before performing this optimization, review the area increase caused by using dataflow
optimization.

9. In the Module Hierarchy, ensure module dct is selected.

10. Activate the Resource Profile view.

11. Expand the memories to see the view in Figure 6-32.

=] Maodule Hierarchy 7 B T O
BRAM DSP FF LUT Latency Interval Pipeline type
4 o dct 4 8 1509 621 507 374 dataflow
® dct_read_data 0 0 29 55 66 [+1) none
» @ dct_dct_2d 2 a8 924 454 373 373 none
@ dct_write_data 0 n} 32 63 66 [+1) none
£F Performance Profile [| . Resource Profile &3 + = = B8
BRAF\."'I DSP FF LUT Bits PO Bits P1 Bits P2 Banks/Depth Words W?*Bits*Banks
- @& dct 4 8 1509 621

> g2 IfO Ports(2) 32

- T2 Instances(3) 2 8 985 572

4 B Memories(9) 2 512 32 144 18 128 4096
4+ buf_2d_out_U 2 0 o 16 2 &4 2048
< buf_2d_in_6_L O 64 4 16 2 8 256
4 buf_2d_in_5_L 0O 64 4 16 2 g 256
4 buf_2d_in_4_L 0O 64 4 16 2 8 256
4 buf_2d_in_3_L 0O 64 4 16 2 g 256
4 buf 2d in7 L O 64 4 16 2 8 256
4 buf 2d_in_2_L O 64 4 16 2 g 256
4+ buf_2d_in_1_L O 64 4 16 2 8 256
< buf_2d_in_0_L O 64 4 16 2 8 256

- 2. Expressions(1) 0O 0 0 1 1 1 0

8t Registers(12) 12 12
FIFO(O) 0 0 0 0

- [@ Multiplexers(16) 0 0 16 16 0

Figure 6-32: DCT Resource Profile

High-Level Synthesis www.xilinx.com Send Feedback 144
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=144

g: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

12. Click the Synthesis perspective button to return to the main synthesis view.

Step 9: Optimize the Hierarchy for Dataflow
Select the New Solution toolbar button to create a new solution, solution6.
Click Finish and accept the defaults to create solution6.

Ensure the C source code is visible in the Information pane.

> w N

In the Directive tab:
a. Select function dct_2d.
b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select INLINE.

d. Click OK.

The Directive pane now shows the following optimization directives (the new directive is
highlighted).

High-Level Synthesis www.xilinx.com Send Feedback 145
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=145

& XILINX

ALL PROGRAMMABLE-

Chapter 6:

o= Outline |4 Directive =g

1@

dct_1d
#[1 dect_coeff_table
%" DCT_Outer_Loop
96 HLS PIPELINE
%" DCT_Inner_Loop
dct_2d
9 HLS INLINE
=[1 row_outbuf
#[1 col_outbuf
=[] col_inbuf
9 HLS ARRAY_PARTITION partition variable=col_inbuf complete dim=2
%" Row_DCT_Loop
%" Xpose_Row_Outer_Loop
4 Xpose_Row_Inner_Loop
96 HLS PIPELINE
%' Col_DCT_Loop
%" Xpose_Col_Outer_Loop
1 " Xpose_Col_Inner_Loop
96 HLS PIPELINE
read_data
%" RD_Loop_Row
+ ¥ RD_Loop_Col
96 HLS PIPELINE
write_data
%" WR_Loop_Row
+ ¥ WR_Loop_Col
96 HLS PIPELINE
dct
9b HLS DATAFLOW
=[] buf_2d_in
9b HLS ARRAY_PARTITION partition variable=buf_2d_in complete dim=2
=[] buf_2d_out
@ input
2 output

Figure 6-33: Dataflow Optimization for the DCT Design

Design Analysis

5. Click the Run C Synthesis toolbar button to synthesizes the design to RTL.

6. When synthesis completes, use the Compare Reports toolbar button or the menu
Project > Compare Reports to compare solutions 5 and 6.

Figure 6-34 shows the results of comparing solution5 and solution6. You can see the
interval has improved substantially.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com l Send Feedback l 146

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=146

& XILINX

ALL PROGRAMMABLE-

£7 compare reports

Performance Estimates

= Timing (ns)
Clock
ap_clk Target

Estimated

solution3

8.00
8.93

-l Latency (clock cycles)

Latency min
max
Interval min
max

Figure 6-34: DCT Solution5 and Solution6 Comparison

solutions

507
507
374
374

solutionf

8.00
8.93

solutionf

479
479
106
106

Chapter 6:

i

Design Analysis

The interval is now below the 125 clock target. This design can accept a new set of inputs

data every 106 clock cycles.

ts| Module Hierarchy

4 ® dct
® dct read _data
dct_Loop_Row_DCT_Loop_proc

dct_Loop_Col_DCT_Loop_proc

@ @ @ @ @

dct_write_data

dct_Loop_Xpose_Col_Outer_Loop_proc

dct_Loop_Xpose_Row_Outer_Loop_proc 0

BRAM DSP FF

6 16 2415

0 0 29

0 8 624
0 29

0 8 624

0 0 30

0 0 32

LUT
620
55
141
57
141
65
63

Latency
407

66

69

66

69

66

66

Figure 6-35: DCT Solutioné Module Hierarchy

High-Level Synthesis

www.Xilinx.com

UG871 (v2016.2) June 8, 2016

Interval

70
66
69
66
69
66
66

BB~ d

Pipeline type
dataflow
none

none

none

none

none

none

| Send Feedback I 147

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=147

i: XILINX Chapter 6: Design Analysis

ALL PROGRAMMABLE

Conclusion

In this tutorial, you learned:

+ How to analyze a design using the analysis perspective.
* How to cross-link operations in the views with the C code.
« How to apply and judge optimizations.

« A methodology for taking the initial design results and creating an implementation
which satisfies the design goals.

High-Level Synthesis www.xilinx.com Send Feedback 148
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=148

& XILINX

ALL PROGRAMMABLE.

Chapter 7

Design Optimization

Overview

A crucial part of creating high quality RTL designs using High-Level Synthesis is having the
ability to apply optimizations to the C code. High-Level Synthesis always tries to minimize
the latency of loops and functions.To achieve this, within the loops and functions, it tries to
execute as many operations as possible in parallel. At the level of functions, High-Level
Synthesis always tries to execute functions in parallel.

In addition to these automatic optimizations, directives are used to:

« Execute multiple tasks in parallel, for example, multiple executions of the same function
or multiple iterations of the same loop. This is pipelining.

« Restructure the physical implementation of arrays (block RAMs), functions, loops and
ports to improve the availability of data and help data flow through the design faster.

« Provide information on data dependencies, or lack of them, allowing more
optimizations to be performed.

The final optimization technique is to modify the C source code to remove unintended
dependencies in the code that may limit the performance of the hardware.

This tutorial consists of two lab exercises. You may perform the analysis in these lab
exercises using the Analysis perspective. A prerequisite for this tutorial is completion of the
Chapter 6, Design Analysis tutorial.

Lab 1 Description

Contrast the uses of loop and function pipelining to create a design that can process one
sample per clock. This lab includes examples that give you the opportunity to analyze the
two most common causes for designs failing to meet performance requirements: loop
dependencies and data flow limitations or bottlenecks.

Lab 2 Description

This lab shows how modifications to the code from Lab 1 can help overcome some
performance limitations inherent, but unintended, in the code.

High-Level Synthesis www.xilinx.com Send Feedback 149
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=149

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

For this tutorial you use the design files in the tutorial directory
Vivado HLS Tutoriall\Design Optimization.

The sample design you use in the lab exercise is a matrix multiplier function. The design
goal is to process a new sample every clock period and implement the interfaces as
streaming data interfaces.

Lab 1: Optimizing a Matrix Multiplier

This exercise uses a matrix multiplier design to show how you can fully optimize a design
heavily based on loops. The design goal is to read one sample per clock cycle using a FIFO
interface, while minimizing the area.

The analysis includes a comparison of a methodology that optimizes at the loop level with
one that optimizes at the function level.

ﬁ IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

- On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 7-1).

o On Linux, open a new shell.

High-Level Synthesis www.xilinx.com Send Feedback 150
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=150

§: X”_INX Chapter 7: Design Optimization

ALL PROGRAMMABLE

Vivado 2016.1
r'i,"-: Add Design Tools or Devices 2016.1

i__ Manage Xilinx Licenses

$.. Uninstall 2016.1

Bl Vivado 20161 Tcl Shell

¢ Vivado 20161
System Generator
Vivado HLS
Bl Vivado HLS 2016.1 Command Promp
| vivado HLS 2016.1 ~

m

F | -~

Figure 7-1: Vivado HLS Command Prompt

2. Using the command prompt window (Figure 7-2), change directory to the Design
Optimization tutorial, labl.

3. Execute the Tcl script to set up the Vivado HLS project, using the command
vivado hls —-f run hls.tcl, as shown in Figure 7-2.

C:\VUivado_HLS_Tutorial>cd Design_Optimization

C:\Vivado_HLS_Tutorial\Design_Optimization>cd labl

4 [

C:\Uivado_HLS_Tutorial\Design_Optimization\labl>vivado_hls -f run_hls.tcl

Figure 7-2: Setup the Design Optimization Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado hls -p matrixmul prj, as shown in Figure 7-3.

@I [HLS-18] Creating and opening solution 'C:/Uivado_HLS_Tutorial/Design_Optimizjg

ation/labl/matrixmul _prj/solutionl’.

@I [HLS-18] Cleaning up the solution database.

@I [HLS-18] Setting target device to 'xcTk160tfbgi84-1"

@I [SYN-201] Setting up clock ‘'default’ with a period of 13.3333ns.
Compiling ../../../../matrixmul_test.cpp in debug mode
Compiling ../../../../matrixmul.cpp in debug mode
Generating csim.exe

Test passes.

@I [SIM-1] CSim done with O errors.

@I [LIC-101] Checked in feature [HLS]

4 [

C:\Uivado_HLS_Tutorial\Design_Optimization\labl>vivado_hls -p matrixmul_prj

Figure 7-3: Open Design Optimization Project for Lab 1

5. Expand the Sources folder in the Explorer pane and double-click matrixmul.cpp to
view the source code (Figure 7-4).

High-Level Synthesis www.xilinx.com Send Feedback 151
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=151

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

Scroll down the file to see that the source code has two input arrays, a and b, and output
array res. Hold the mouse over the macros (as shown in Figure 7-4) to see that each is
three-by-three for a total of nine elements.

[t5 Explorer &2 v = O [£] matrixmul.cpp &3 =8
=5 matrixmul_prj 46 #include "matrixmul.h” -
it Includes a7
S source 48 void matrixmul(
" & matrixmul o 49 mat_a t a[MAT A ROWS][MAT A COLS],
o Tect ench 50 mat_b_t b[MAT_B_ROWS][[acro Expansion
= festbenc 51 result_t res[MAT_A_ROW, 1
= solution1 52 {
. . . Press 'F2' for focus
constraints 53 // Iterate over the rows oT—erme—rEmaTrix
< directives.tcl 54 Row: for(int i = @; i < MAT_A_ROWS; i++) { 1
4 scripttcl 55 // Iterate over the columns of the B matrix 3
o 56 Col: for(int j = @; j < MAT_B_COLS; j++) {
= csim - ST
o 57 res[1][j] = @;
& build 58 // Do the inner nroduct of a row of A and col nf R T
= report] 1l b

Figure 7-4: Source Code for the Matrix Multiplier

Step 2: Synthesize and Analyze the Design

1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens (Figure 7-5), and the Performance
Estimates appears:

« The interval is 80 clock cycles. Because there are nine elements in each input array, the
design takes approximately nine cycles per input read.

« The interval is one cycle longer than the latency, so there is no parallelism in the
hardware at this point.

« The latency/interval is due to nested loops.

o The inner loop called Product:
- Has a latency of 2 clock cycles.
- Has 6 clock cycles total for all iterations.

o The Col loop:
- It requires 1 clock to enter loop Product and 1 clock to exit.
- It takes 8 clock cycles for each iteration (1+6+1).
- Has 24 cycles for all iterations to complete.

o The top-level loop has a latency of 26 clock cycles per iteration, for a total of 78
clock cycles for all iterations of the loop.

High-Level Synthesis www.xilinx.com Send Feedback 152
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=152

& XILINX

ALL PROGRAMMABLE

=l Synthesis(solution1) &2

Performance Estimates

= Summary
Clock Target Estimated
ap_clk 13.33 8.18
-| Latency (clock cycles)
= Summary
Latency Interval
min max min max
79 79 80 80
= Detail
+ Instance
=l Loop
Latency
Loop Name min max
- Row 78 78
+ Col 24 24
++ Product 6 6
Figure 7-5:

Uncertainty
167

Type
none

Iteration Latency
26

Initiation Interval

achieved

target

Chapter 7:

Trip Count
3
3
3

Synthesis Report for the Matrix Multiplier

Design Optimization

m

Pipelined
no
no

no

You can do one of two things to improve the initiation interval: Pipeline the loops or
pipeline the entire function. You begin by pipelining the loops and then compare those
results to pipelining the entire function.

When pipelining loops, the initiation interval of the loops is the important metric to

monitor. As seen in this exercise, even when the design reaches the stage at which the loop
can process a sample every clock cycle, the initiation interval of the function is still reported
as the time it takes for the loops contained within the function to finish processing all data

for the function.

Step 3: Pipeline the Product Loop

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution, solution?.

2. Click Finish and accept the defaults to create solution?2.

3. Ensure the C source code is visible in the Information pane.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback I 153

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=153

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

When pipelining nested loops, you realize the greatest benefit by pipelining the inner-most
loop, which processes a sample of data. High-Level Synthesis automatically applies loop
flattening, collapsing the nested loops, removing the loop transitions (essentially creating a
single loop with more iterations but overall fewer clock cycles).

4. In the Directive tab:
a. Select loop Product.
b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box, activate the Directive drop-down menu at the
top and select PIPELINE.

d. Click OK. With the default options, an initiation interval (II) of 1 (one new loop
iteration per clock) will be the default.

The Directive pane should show the following optimization directives. (The new directive is
highlighted.)

o= Outline |4 Directive &3 =08

4 @ matrixmul
2 a
@b
? res
2% Row
2% Col
4% Product
% HLS PIPELINE

Figure 7-6: Initial Pipeline Directive

5. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

During synthesis, the information reported in the Console pane shows loop flattening was
performed on loop Row and that the default initiation internal target of 1 could not be
achieved on loop Product due to a dependency.

INFO: [XFORM 203-541] Flattening a loop nest 'Row' (matrixmul.cpp:54:37) in function
'matrixmul'.

INFO: [SCHED 204-61] Pipelining loop 'Product'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint (II = 1,
distance = 1)

High-Level Synthesis www.xilinx.com Send Feedback 154
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=154

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

between 'store' operation (matrixmul.cpp:60) of variable 'tmp 8', matrixmul.cpp:60
on array 'res' and 'load' operation ('res load', matrixmul.cpp:60) on array 'res'.
INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 2.

The synthesis report (Figure 7-7) shows that although the Product loop is pipelined with an
interval of 2, the interval of top-level loop is not pipelined.

=1 Synthesis(solution2) &2 = 5
Performance Estimates

- Timing (ns)

-| Summary

Clock ~ Target Estimated Uncertainty
ap_clk 13.33 10.57 167

m

-I Latency (clock cycles)

= Summary

Latency Interval
min max min max Type
82 82 83 83 none

= Detail
+ Instance

= Loop
Latency Initiation Interval
Loop Name min max [teration Latency achieved target Trip Count Pipelined
- Row_Col 81 81 9 - - g no
+ Product 6 6 2 2 1 3 yes

Figure 7-7: Matrixmul Initial Pipeline Report

The reason the top-level loop is not pipelined is that loop flattening only occurred on loop
Row. There was no loop flattening of loop Col into the Product loop. To understand why
loop flattening was unable to flatten all nested loops, use the Analysis perspective.

6. Open the Analysis perspective.

7. In the Performance View, expand loops Row_Col and Product.
8. Selectthe write operation in state Cl1.
9

Right-click and select Goto Source to see the view in Figure 7-8.

The write operation in state C1 is due to the code that sets res to zero before the Product
loop. Because res is a top-level function argument, it is a write to a port in the RTL: This
operation must happen before the operations in loop Product are executed. Because it is

High-Level Synthesis www.xilinx.com Send Feedback 155
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=155

& XILINX

ALL PROGRAMMABLE-

Chapter 7:

Design Optimization

not an internal operation but has an impact on the I/O behavior, this operation cannot be
moved or optimized. This prevents the Product loop from being flattened into the Row_Col

loop.

= Performance(sclution2) &2

Current Module

| Oneration\Control S...

: matrixmul

co | | o2 | &

[Y
NohBwo N w A

j (phi mux)
exitcond flatt...
indvar flatten...
exitcondl (icmp)
] midZ2 (select)
5(+}
mid2 (select)
addr7 (-)

addrB (+)

node 35(write)
Product

j 1(+)

o e e

Performance | Resource

[Properties | [< C Source 2

File: C\Vivado_HLS_Tutorial\Design_Optimization\labl\matrixmul.cpp

// lterate over the columns of the B matrix
Col: for(int] =0;) <« MAT_B_COLS; j++){

55
56
57
58
59
60
61
62
63
64
65}

res(i](] = 0;

/I Do the inner product of a row of A and col of B
Product: for(int k = 0; k < MAT_B_ROWS; k++) {
res[i]j] += a[i][k] * bIk][];

}
¥
}

I

Figure 7-8: Matrixmul Initial Performance View

11

11

More importantly, it is worth addressing why only an II of 2 was possible for the Product
loop (as shown in Figure 7-7).

The message SCHED-68 in the console pane (and file vivado hls.log) tells you:

WARNING:
distance

[SCHED 204-68] Unable to enforce a carried dependency constraint

1)

(IT

1,

between 'store' operation (matrixmul.cpp:60) of variable 'tmp 8', matrixmul.cpp:60

on array

High-Level Synthesis

'res'

and 'load' operation

www.Xilinx.com

('res load', matrixmul.cpp:60)

on array 'res'.

UG871 (v2016.2) June 8, 2016

| Send Feedback I 156

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=156

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

« The issue is a carried dependency. This is a dependency between an operation in one
iteration of a loop and an operation in a different iteration of the same loop. For
example, an operation when k=1 and when k=2 (where k is the loop index).

« The first operation is a store (memory read operation) on array res on line 60.

« The second operation is a load (memory write operation) on array res on line 60.

From Figure 7-9 you can see line 60 is a read from array res (due to the += operator) and a
write to array res. An array is mapped into a block RAM by default and the details in the
Performance View can show why this conflict occurred.

The Performance view shows in which states the operations are scheduled. Figure 7-9
shows a number of copies of the schedule for the Product loop to highlight how this issue
can be understood. The operations on the res array, a two-cycle read and write, are
highlighted.

In the successful schedule, the next iteration of the Product loop appears as shown below.
In this schedule, the initiation interval (II)=2 and the loop operations re-start every two
cycles. There is no conflict between any block RAM accesses. (None of the highlighted cells
overlap across iterations.)

The unsuccessful schedule shows why the loop cannot be pipelined with an II=1. In this
case, the next iteration would need to start after 1 clock cycle. The write to the block RAM
in the first iteration is still occurring when the second iteration tries to apply an address for
a read operation. These addresses are different. Both cannot be applied to the block RAM
at the same time.

High-Level Synthesis www.xilinx.com Send Feedback 157
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=157

& XILINX

ALL PROGRAMMABLE-

First Loop
lteration (k=0)

Second Loop
lteration (k=1)

JProduct
exitcond (icmp)
k 1(+)

p addrl (+)

a load(read)

p addr3(-)

p addrd (+)

b load(read)
tmp 7(*)

res load(read)
tmp 8 (+)

node 68 (write)
j 1(4)

JProduct
exitcond (icmp)
k 1(+)

p addrl(+)

a load(read)

p addr3(-)

p addrd (+)

b load(read)
tmp 7(*)

res load(read)
tmp 8 (+)

node 68 (write)
j 1(4)

Figure 7-9:

Successful

Schedule
L o | 3

|1=2

Chapter 7: Design Optimization

Unsuccessful
Schedule

Lo | 3|

Carried Dependency Analysis

You cannot pipeline the Product loop with an initiation interval of 1. The next lab exercise
shows how re-writing the code can remove this limitation. In this lab exercise you will
continue to optimize the code as it is.

The next step is to pipeline the loop above, the Col loop. This automatically unrolls the
Product loop and creates more operators and hence more hardware resources, but it
ensures there is no dependency between different iterations of the Product loop.

10. Return to the Synthesis perspective.

Step 4: Pipeline the Col Loop

1. Select the New Solution toolbar button to create a new solution, solution3.

2. Because solution2 already has a directive added, use the drop-down menu to select
solutionl as the source for existing directives and constraints (solutionl has none).

High-Level Synthesis

UG871 (v2016.2) June 8, 2016

www.Xilinx.com

| Send Feedback I 158

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=158

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

3. Click Finish and accept the default solution name, solution3.
4. OpentheC source code matrixmul.cpp to make it visible in the Information pane.
5. In the Directive tab:

a. Select loop Col.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select PIPELINE.

d. Click OK. With the default options, an initiation interval (II) of 1 (one new loop
iteration per clock) becomes the default.

The Directive pane, shown below, displays the following optimization directives (the new
directive is highlighted).

o= Outline |4 Directive &3 =g

@ matrixmu
@ a
@b
P res
4 %" Row
4% Col
% HLS PIPELINE
%" Product

Figure 7-10: Col Pipeline Directive

6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

During synthesis, the information reported in the Console pane shows that loop Product
was unrolled, loop flattening was performed on loop Row, and the default initiation internal
target of 1 could not be achieved on loop Row Col due resource limitations on the
memory for array a.

INFO: [XFORM 203-502] Unrolling all sub-loops inside loop 'Col' (matrixmul.cpp:56) in
function 'matrixmul' for pipelining.

INFO: [XFORM 203-501] Unrolling loop 'Product' (matrixmul.cpp:59) in function
'matrixmul' completely.

INFO: [XFORM 203-541] Flattening a loop nest 'Row' (matrixmul.cpp:54:37) in function
'matrixmul’.

INFO: [SCHED 204-61] Pipelining loop 'Row Col'.

WARNING: [SCHED 204-69] Unable to schedule 'load' operation ('a load 1°',
matrixmul.cpp:60) on array 'a' due to limited memory ports.

INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

High-Level Synthesis www.xilinx.com Send Feedback 159
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=159

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

Reviewing the synthesis report shows, as noted above, that the interval for loop Row_Col is
only two: the target is to process one sample every cycle. Once again, you can use the
Analysis perspective to highlight why the initiation target was not achieved.

7. Open the Analysis perspective.

8. In the Performance View, expand the Row Col loop

The operations on array a (mentioned in the SCHED-69 message above) are highlighted in
Figure 7-11. There are three read operations on array a. Two operations start in state C1 and
a third read operation starts in state C2.

Arrays are implemented as block RAMs and arrays which are arguments to the function are
implemented as block RAM ports. In both cases a block RAM can only have a maximum of
two ports (for dual-port block RAM). By accessing array a through a single block RAM

interface, there are not enough ports to be able to read all three values in one clock cycle.

High-Level Synthesis www.xilinx.com Send Feedback 160
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=160

& XILINX

ALL PROGRAMMABLE-

= Performance(solution3) 2

Chapter 7: Design Optimization

Current Module : matrixmul
| Oneration\Control S__ co |

1 FRow Col
2 indvar flatten...
3 i(phi mux)
4] (phi mux)
5 exitcond flatt...
6 indvar flatten...
7 i 1(+)
8 exitcond (icmp)
o] J mid2 (select)
10 tmp mid2 vi(sel...
11 tmp 1(-)
12 tmp 8 (+)
13 tmp s(+)

a load(read)
15 b load(read)

a load 2(read)
17 b load 2 (read)
18 tmp 4(+)
19 tmp 9(+)
20 tmp 10 (+)
21 tmp 7 (*)

a load 1(read)
23 b load 1(read)
24 tmp 7 2(*)
25 tmpl (+)
26 j 1(+)
27 tmp 7 1(*)
28 tmp 8 2(+)
29 node 69 (write)

Performance | Resource

Figure 7-11: Matrixmul Pipeline Col Performance View

Another way to view this resource limitation is to use to the Resource pane.

9. Click the Resource tab.

10. Expand the Memory Ports to see the view shown in Figure 7-12.

In Figure 7-12 the 2-cycle read operations in state C1 overlap with those starting in state C2
and so only a single cycle is visible: however, it is clear that this resource is used in multiple

states.

In looking at this view, it is clear that even when the issue with port a is resolved, the same

issue occurs with port b: it also has to perform 3 reads.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

| Send Feedback I 161

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=161

g: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

High-Level Synthesis can only report one schedule error or warning at a time, because, as
soon as the first issue occurs, the actions to create an achievable schedule invalidates any
other infeasible schedules.

= Resource(solution3) & = 8

Current Module : matrixmul

|R95err_9\Cnn‘rm| Sten| CO | C1 | (0 | C3 |
1-6 ®I/0 Ports
7 EMemory Ports

8 a(pl) read read

9 a(pl) read

10 b(pl) read

11 b (p0) read read

12 res (p0) write

1... ¥EXpressions
Performance | Resource
Figure 7-12: Matrixmul Pipeline Col Resource View

High-Level Synthesis allows arrays to be partitioned, mapped together and re-shaped.
These techniques allow the access to array to be modified without changing the source
code.

11. Return to the Synthesis perspective.

Step 5: Reshape the Arrays

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution, solution4.

2. Click Finish and accept the default solution name solution4.

Because the loop index for the Product loop is k, both arrays should be partitioned along
their respective k dimension: the design needs to access more than two values of k in each
clock cycle.

For array a, this is dimension 2 because its access patternsis a[i] [k]; for array b, this is
dimension 1 because its access patternisb[k] [J].

Partitioning these arrays creates k arrays - in this case, k number ports. Alternatively, we can
use re-shape instead of partition allowing one wide array (port) to be created instead of k
ports.

After this transformation, the data in the block RAM outside this block must be reshaped in
an identical manner: if this process is not done by HLS, the data must be arranged as:

« For array a: i elements, each of width data_word_size times k.

High-Level Synthesis www.xilinx.com Send Feedback 162
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=162

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

« For array b: j elements, each of width data_word_size times k.
2. Open the C source code matrixmul.cpp to make it visible in the Information pane.
3. In the Directive tab

a. Select variable a.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select ARRAY_RESHAPE.

d. Set the dimension to 2.
e. Click OK.

4. Repeat this process for variable b, but set the dimension to 1.

The Directive pane should show the following optimization directives.

o= Outline |4 Directive &3 -

@ matrixmul

2 a

% HLS ARRAY_RESHAPE reshape variable=a complete dim=2

b

% HLS ARRAY_RESHAPE reshape variable=b complete dim=1

d res

% Row

% Col
% HLS PIPELINE
% Product

Figure 7-13: Array Reshape Directive
5. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

The synthesis report shows the top-level loop Row_Col is now processing data at 1 sample
per clock period (Figure 7-14).

High-Level Synthesis www.xilinx.com Send Feedback 163
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=163

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

=l Synthesis{solution3) 2 = g

Performance Estimates

-1 Timing {ns)
=l Summary
Clock Target Estimated Uncertainty
ap_clk 13.33 11.13 167 =

- Latency (clock cycles)
=l Summary

Latency Interval
min max min max Type
12 12 13 13 none

= Detail
+ Instance
-l Loop
Latency Initiation Interval

Loop Name min max Iteration Latency achieved target Trip Count Pipelined
- Row_Cal 10 10 3 1 1 9 yes

< 11 3

Figure 7-14: Optimized Loop Processing Report
+ The top-level module takes 12 clock cycles to complete.
« The Row_Col loop outputs a sample after 3 cycles (iteration latency).
« It then reads 1 sample every cycle (Initiation Interval).
« After 9 iterations/samples (Trip count) it completes all samples.

« 3+ 9=12clock cycles
The function can then complete and return to start to process the next set of data.

Now, change the block RAM interfaces to FIFO interfaces to allow for streaming data.

Step 6: Apply FIFO Interfaces
Select the New Solution toolbar button to create a new solution.
Click Finish and accept the default solution name, solution5.

Open the C source code matrixmul.cpp to make it visible in the Information pane.

Bl S

In the Directive tab

a. Select variable a.

High-Level Synthesis www.xilinx.com Send Feedback 164
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=164

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE-

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select INTERFACE.

d. Click the mode drop-down menu to select ap fifo.
e. Click OK.

5. Repeat this process for variables b and variable res.

The Directive pane displays the following optimization directives. (The new directives are
highlighted).

o= Outline |4 Directive =g

4 @ matrixmul
@ a
9 HLS ARRAY_RESHAPE reshape variable=a complete dim=2
% HLS INTERFACE ap_fifo port=a
b
% HLS INTERFACE ap_fifo port=b
9 HLS ARRAY_RESHAPE reshape variable=b complete dim=1
d res
9 HLS INTERFACE ap_fifo port=res
4 % Row
% Col

Figure 7-15: Matrixmul FIFO Directives

6. Click the Run C Synthesis toolbar button to synthesizes the design to RTL.

Figure 7-16 shows the Console display after synthesis runs.

El Console &2 . 9] Errors| & Warnings x gf = — O
Vivado HLS Console
@I [HLS-18] Opening project 'C:/Vivado HLS_Tutorial/Design_Optimization/labl/matrixmul_prj'. -

@I [HLS-18] Adding design file 'matrixmul.cpp’ to the project.

@I [HLS-10] Adding test bench file "matrixmul_test.cpp’ to the project.

@I [HLS-18] Opening solution 'C:/Vivado_HLS_Tutorial/Design_Optimization/labl/matrixmul_prj/solution5’
@I [SYN-201] Setting up clock with a period of 13.3333ns.

@I [HLS-18] Setting target device to "xc7kl160tfbgd84-1°

@I [HLS-18] Importing test bench file 'matrixmul_test.cpp’ ...

@I [HLS-10] Analyzing design file 'matrixmul.cpp’ ...

@I [HLS-18] Validating synthesis directives ...

@I [HLS-18] Checking synthesizability ...

@E [SYNCHK-91] Port 'res' (matrixmul.cpp:51) of function 'matrixmul’ cannot be set to a FIFO as it has
@I [SYNCHK-10] 1 error(s), ® warning(s).

m

< 1 »

Figure 7-16: FIFO Synthesis Warning

From the code shown in Figure 7-17, array res performs writes in the following sequence
(MAT_B_COLS = MAT_B_ROWS = 3):

High-Level Synthesis www.xilinx.com Send Feedback 165
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=165

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

« Write to [0][0] on line57.

« Then a write to [0][0] on line 60.

« Then a write to [0][0] on line 60.

« Then a write to [0][0] on line 60.

« Write to [0][1] on line 57 (after index J increments).
« Then a write to [0][1] on line 60.

+ Etc.

Four consecutive writes to address [0][0] does not constitute a streaming access pattern;
this is random access.

Ll matrixmul.cpp =08
2{ o
3 // Iterate over the rows of the A matrix
Row: for(int i = @; i < MAT_A ROWS; i++) {
// Iterate over the columns of the B matrix
Col: for(int j = @; j < MAT_B_COLS; j++) {
res[1][j] = @;
// Do the inner product of a row of A and col of B
Product: for(int k = @; k < MAT_B_ROWS; k++) {
res[1][J] += a[il[k] * b[k][]l;

[V I S WU R s R Ua T+ L R, T =

1 3

Figure 7-17: Matrixmul Code

Examining the code in Figure 7-17 reveals that there are similar issues reading arrays a and
b. It is impossible to use a FIFO interface for data access with the code as written. To use a
FIFO interface, the optimization directives available in Vivado High-Level Synthesis are
inadequate because the code currently enforces a certain order of reads and writes. Further
optimization requires a re-write of the code, which you accomplish in Lab 2.

Before modifying the code, however, it is worth pipelining the function instead of the loops
to contrast the difference in the two approaches.

Step 7: Pipeline the Function

1. Select the New Solution toolbar button to create a new solution, solution6.

f IMPORTANT: /n this step, copy the directives from solution4 as this solution does not have FIFO
interfaces specified.

2. Select solution4 from both the drop down menus in the Options section. The Solution
Wizard appears as shown in Figure 7-18.

High-Level Synthesis www.xilinx.com Send Feedback 166
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=166

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

4 Solution Wizard = @
Solution Configuration

Create Vivado HLS solution for selected technology

Solution Name: solution6

Clock

Period: 75MHz Uncertainty:

Part Selection

Part: xc7k160tfbgd84-1 | J

Options

[¥] Copy directives and constraints from solution: m hd

[Finish l l Cancel

Figure 7-18: New Solution Based on Solution4 Directives

3. Click Finish and accept the default solution name, solutioné.

4. Open the C source code matrixmul.cpp to make it visible in the Information pane.

5. In the Directive tab:

a.

b.

f.

Select the pipeline directive on loop Col.
Right-click and select Remove Directive.
Select the top-level function matrixmul.
Right-click and select Insert Directive.

In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select PIPELINE.

Click OK.

The Directives tab should appear as Figure 7-19.

High-Level Synthesis www.Xilinx.com I Send Feedback I 167

UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=167

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE-

o= Outline |4 Directive =g

4 @ matrixmul
% HLS PIPELINE
@ a
9 HLS ARRAY_RESHAPE reshape variable=a complete dim=2
b
9 HLS ARRAY_RESHAPE reshape variable=b complete dim=1
d res
4% Row
% Col

Figure 7-19: Directives for Solution6
6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.
7. Click the Compare Reports toolbar button.
a. Add solutiond.
b. Add solutioné.
c. Click OK.

The comparison of solutions 4 and 6 is shown in Figure 7-20.

High-Level Synthesis www.xilinx.com Send Feedback 168
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=168

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

£7 compare reports = B8

Performance Estimates

= Timing (ns)
Clock solutiond solutiond
ap_clk Target 13.33 13.33
Estimated 11.13 11.13

-l Latency (clock cycles)

solutiond solutionf

Latency min 12 6
max 12 6

Interval min 13 5 |
max 13 5]

Utilization Estimates

solutiond solutiond

BRAM_18K O 0
DSP48E 3 27
FF 56 503
LuT 32 47

Figure 7-20: Loop Versus Function Pipelining

The design now completes in fewer clocks and can start a new transaction every 5 clock
cycles. However, the area and resources have increased substantially because all the loops
in the design were unrolled.

INFO: [XFORM 203-502] Unrolling all sub-loops inside loop 'Col' (matrixmul.cpp:56) in
function 'matrixmul' for pipelining.

INFO: [XFORM 203-501] Unrolling loop 'Product' (matrixmul.cpp:59) in function
'matrixmul' completely.

INFO: [XFORM 203-541] Flattening a loop nest 'Row' (matrixmul.cpp:54:37) in function
'matrixmul’'.

Pipelining loops allows the loops to remain rolled, thus providing a good means of
controlling the area. When pipelining a function, all loops contained in the function are
unrolled, which is a requirement for pipelining. The pipelined function design can process a
new set of 9 samples every 5 clock cycles. This exceeds the requirement of 1 sample per
clock because the default behavior of High-Level Synthesis is to produce a design with the
highest performance.

The pipelined function results in the best performance. However, if it exceeds the required
performance, it might take multiple additional directives to slow the design down.
Pipelining loops gives you an easy way to control resources, with the option of partially
unrolling the design to meet performance.

High-Level Synthesis www.xilinx.com Send Feedback 169
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=169

8 XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE-~

Lab 2: C Code Optimized for I/O Accesses

In Lab 1, you were unable to use streaming interfaces. The nature of the C code, which
specified multiple accesses to the same addresses, prevented streaming interfaces being
applied.

« In a streaming interface, the values must be accessed in sequential order.

« Inthe code, the accesses were also port accesses, which High-Level Synthesis is unable
to move around and optimize. The C code specified writing the value zero to port res
at the start of every product loop. This may be part of the intended behavior. HLS
cannot simply decide to change the specification of the algorithm.

The code intuitively captured the behavior of a matrix multiplication, but it prevented a
required behavior in the hardware: streaming accesses.

This lab exercise uses an updated version of the C code you worked with in Lab 1. The
following explains how the C code was updated.

Figure 7-21 shows the I/O access pattern for the code in Lab 1. Out of necessity the address
values are shown in a small font.

As variables 1, j and k iterate from 0 to 3, the lower part of Figure 7-21 shows the
addresses generated to read a, b and write to res. In addition, at the start of each Product
loop, res is set to the value zero.

Rovi - (I (L B
| T e e ——_—m—
ot kil ks kGl Uk ik ikl ks
I o oo [0 o [[o [0 0 o | o [[0

b OOBCDE OB e o b s s

s H‘MHMHMFEF“ ﬂ:o a..a_.g

=0 =0

Figure 7-21: Matrix Multiplier Address Accesses

To have a hardware design with sequential streaming accesses, the ports accesses can only
be those shown highlighted in red. For the read ports, the data must be cached internally to
ensure the design does not have to re-read the port. For the write port res, the data must
be saved into a temporary variable and only written to the port in the cycles shown in red.

The C code in this lab reflects this behavior.

High-Level Synthesis www.xilinx.com Send Feedback 170
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=170

2: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as
shown in Figure 7-22.

2. Create a new Vivado HLS project by typing vivado hls -f run hls.tcl.

C:\Vivado_HLS_Tutorial\Design_Optimizationilabl>cd ..

C:\Vivado_HLS_Tutorial\Design_Optimization>cd lab2

4 (M

C:\Uivado_HLS_Tutorial\Design_Optimization\lab2>vivado_hls -f run_hls.tcl

Figure 7-22: Setup for Interface Synthesis Lab 2
3. Open the Vivado HLS GUI project by typing vivado hls -p matrixmul prij.

4. Open the Source folder in the Explorer pane and double-clickmatrixmul.cpp to open
the code as shown in Figure 7-23.

¢ matrixmul.cpp =0
2 -
)3 #pragma HLS ARRAY_RESHAPE variable=b complete dim=1

»/ #pragma HLS ARRAY_RESHAPE variable=a complete dim=2

5 #pragma HLS INTERFACE ap_fifo port=a

6 #pragma HLS INTERFACE ap_fifo port=b

7 #pragma HLS INTERFACE ap_fifo port=res

mat_a_t a_row[MAT_A ROWS];

mat_b_t b_copy[MAT_B_ROWS][MAT_B_COLS];

int tmp = 8;

// Iterate over the rowa of the A matrix
Row: for(int i = @; i < MAT_A ROWS; i++) {
// Iterate over the columns of the B matrix
Col: for(int j = @; j < MAT_B_COLS; j++) {
#pragma HLS PIPELINE

// Do the inner product of a row of A and col of B
tmp=0;

// Cache each row (so it's only read once per function)
if (j == @)

Cache_Row: for(int k = 0; k < MAT_A ROWS; k++)
a_rowl[k] = a[i][k];

m

// Cache all cols (so they are only read once per function
if (i == 0)
Cache_Col: for(int k = @; k < MAT_B_ROWS; k++)
b_copy[k][3j] = b[k][]1;

Product: for(int k = @; k < MAT_B_ROWS; k++) {

tmp += a_row[k] * b_copy[k][i]; A
4 1 3

Figure 7-23: C Code with Updated I/O Accesses

High-Level Synthesis www.xilinx.com Send Feedback 171
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=171

i: XILINX Chapter 7: Design Optimization

ALL PROGRAMMABLE

Review the code and confirm the following:

The directives from Lab 1, including the FIFO interfaces, are specified in the code as
pragmas.

For-loops have been added to cache the row and column reads.

A temporary variable is used for the accumulation and port res is only written to when
the final result is computed for each value.

Because the for-loops to cache the row and column would require multiple cycles to
perform the reads, the pipeline directive has been applied to the Col for-loop, ensuring
these cache for-loops are automatically unrolled.

Synthesize the design and verify the RTL using co-simulation.

5.
6.

7.

Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, use the Run C/RTL Cosimulation toolbar button to launch
the Cosimulation Dialog box.

Click OK to start RTL verification.

The design has been now been fully synthesized to read one sample every clock cycle using
streaming FIFO interfaces.

Conclusion

In this tutorial, you learned:

How to analyze pipelined loops and understand exactly which limitations prevent
optimizations targets from being achieved.

The advantages and disadvantages of function versus loop pipelining.

How unintended dependencies in the code can prevent hardware design goals from
being realized and how they can be overcome by modifications to the source code.

High-Level Synthesis www.Xilinx.com I Send Feedback I 172

UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=172

& XILINX

ALL PROGRAMMABLE.

Chapter 8

RTL Verification

Overview

The High Level Synthesis tool automates the process of RTL verification and allows you to
use RTL verification to generate trace files that show the activity of the waveforms in the
RTL design. You can use these waveforms to analyze and understand the RTL output. This
tutorial covers all aspects of the RTL verification process.

To perform RTL verification, you use both the RTL output from High-Level Synthesis
(Verilog, VHDL or SystemC) and the C test bench. RTL verification is often called
cosimulation or C/RTL cosimulation; because both C and RTL are used in the verification.

This tutorial consists of three lab exercises.

Lab 1 Description

Perform RTL verification steps and understand the importance of the C test bench in
verifying the RTL.

Lab 2 Description

Create RTL trace files and analyze them using the Vivado Design Suite.

Lab 3 Description

Create RTL trace files and analyze them using a third-party RTL simulator. This lab requires
a license for Mentor Graphics ModelSim simulator. (You can use an alternative, third-party
simulator with minor modifications to the steps).

Tutorial Design Description

You can download the tutorial design file from the Xilinx website. See the information in
Locating the Tutorial Design Files.

High-Level Synthesis www.xilinx.com Send Feedback 173
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=173

i: XILINX Chapter 8: RTL Verification

ALL PROGRAMMABLE

This tutorial uses the design files in the tutorial directory
Vivado HLS Tutorial\RTL Verification.

The sample design used in the lab exercise is a DUC (digital up converter) function. The
purpose of this lab is to demonstrate and explain the features of RTL verification. There are
no design goals for these lab exercises.

Lab 1: RTL Verification and the C Test Bench

This exercise explains the basic operations for RTL verification and highlights the
importance of the C test bench.

ﬁ IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

o On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 8-1).

o On Linux, open a new shell.

Vivado 2016.1
_if: Add Design Tools or Devices 2016.1
‘n__w Manage Xilinx Licenses
$.. Uninstall 2016.1
B Vivado 2016.1 Tcl Shell
¢ Vivado 20161
System Generator
Vivado HLS
Bl Vivado HLS 2016.1 Command Promp
| vivado HLS 2016.1 ~

m

A o
Figure 8-1: Vivado HLS Command Prompt

2. Using the command prompt window (Figure 8-2), change directory to the
RTL_Verification tutorial, 1ab1l.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado hls
-f run hls.tcl, as shown in Figure 8-2.

High-Level Synthesis www.xilinx.com Send Feedback 174
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=174

§: X”_INX Chapter 8: RTL Verification

ALL PROGRAMMABLE

C:\Vivado_HLS_Tutorial>cd RTL_Uerification

C:\Vivado_HLS_Tutorial\RTL_Verification>cd labl

1 (I

C:\Uivado_HLS_Tutorial\RTL Uerification\labl>vivado_hls -f run_hls.tcl

Figure 8-2: Setup the RLTL Verification Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado hls -p duc_prj, as shown in Figure 8-3.

@I [LIC-101] Checked in feature [HLS] -
Generating csim.exe

*xx DUC hardware test PASSED ! seex

BI [SIM-1] CSim done with © errors.
@I [LIC-101] Checked in feature [HLS]

1 (1M

C:\Uivado_HLS_Tutorial\RTL_Uerification\labl>vivado_hls -

Figure 8-3: Open RTL Verification Project for Lab 1

Step 2: Perform RTL Verification

1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

2. When synthesis completes, use the Run C/RTL Cosimulation toolbar button
(Figure 8-4) to launch the Cosimulation dialog box.

File Edit Project Solution Window Help

-

® e =B B v V)&

Figure 8-4: Run C/RTL Cosimulation Toolbar Button

The Cosimulation Dialog box opens, as shown in Figure 8-5.

High-Level Synthesis www.xilinx.com Send Feedback 175
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=175

i: XILINX Chapter 8: RTL Verification

ALL PROGRAMMABLE

¢# Co-simulation Dialog @

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

Auto -

RTL Selection

@ Verilog () VHDL
Options

[] Setup Only

Dump Trace \lnone =

[Optimizing Compile

|| Reduce Diskspace

Compiled Library Location Browse...

Input Arguments

[] Do not show this dialog box again.

[OK l l Cancel

Figure 8-5: Cosimulation Dialog Box

The drop-down menu allows you to select the RTL simulator for HDL simulation. For this

exercise, you use the default Auto selection (Auto selects the Vivado Simulator) with Verilog
RTL for cosimulation.

3. Click OK to start RTL verification.

When RTL Verification completes, the simulation report opens automatically (Figure 8-6).

The report indicates if the simulation passed or failed. In addition, the report indicates the
measured latency and interval.

High-Level Synthesis www.xilinx.com Send Feedback 176
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=176

i: XILINX Chapter 8: RTL Verification

ALL PROGRAMMABLE

£l Simulation(solution1) 2 = 0

Cosimulation Report for "duc’

Result
Latency Interval iy
RTL Status min avg max min avg max
VHDL NA NA NA NA NA NA NA
Verilog Pass 30 31 38 31 32 39 -

Figure 8-6: Cosimulation Report (TH: Update Screenshot)

RTL simulation completes in three steps. To better understand how the RTL verification
process is performed, scroll up in the console window to confirm that the messages
described below were issued.

First, the C test bench is executed to generate input stimuli for the RTL design.

INFO: [COSIM 212-14] Instrumenting C test bench ...

< C simulation executes to generate input stimuli >

At the end of this phase, the simulation shows any messages generated by the C test bench.
The output from the C function is not used in the C test bench at this stage, but any
messages output by the test bench can be seen in the console.

INFO: [COSIM 212-302] Starting C TB testing ...
% DUC hardware test PASSED ! *

An RTL test bench with newly generated input stimuli is created and the RTL simulation is
then performed.

INFO: [COSIM 212-333] Generating C post check test bench ...
INFO: [COSIM 212-12] Generating RTL test bench ...

Finally, the output from the RTL simulation is re-applied to the C test bench to check the
results. Once again, you can see any message output by the C test bench in the console.
Finally, RTL verification issues message SIM-1000 if the RTL verification passed.

INFO: [COSIM 212-316] Starting C post checking ...
% DUC hardware test PASSED ! *
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS **x*

To fully understand why the C test bench should check the results and how message
SIM-1000 is generated, you will modify the C test bench.

High-Level Synthesis www.xilinx.com Send Feedback 177
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=177

8 X”_INX Chapter 8: RTL Verification

ALL PROGRAMMABLE-

Step 3: Modify the C test bench
1. Expand the Test Bench folder in the Explorer pane (Figure 8-7).

2. Double-click duc_test.c to open the C test bench in the Information pane.

&5 Explorer 22 & = 0| [duc teste &3 =g
) od /™ Lheck the result */
=d I
.uc_prj 61 int retl = system("diff --brief duc_i.dat golden/duc_i.d:
! Includes 62 int ret2 = system("diff --brief duc_g.dat golden/duc_g.d:
£ Source 63
fim Test Bench 64 if (retl | ret2) {
¢ duc_testc 65 printf("\n *** DUC hardware test FAILED ! *** \n\n"),
& golden 66} else {
¢= solution{ 67 printf("\n *** DUC hardware test PASSED | *#* \n\n"),
constraints zi ;
BC_Sim 70 return ((retl | ret2) ? 1 : @);
& sim 71//return 1; =
= syn 72}
7

[FERy N
1

4| Il | b
Figure 8-7: RTL Test Bench
3. Scroll to the end of the file to see the code shown in Figure 8-8.

4. Edit the return statement to match Figure 8-8 and ensure the test bench always returns
the value 1.

[¢ *duc_test.c & = O
g /7 Check the result ¥/ Pl
int retl = system("diff --brief duc_i.dat golden/duc_i.d:

2 int ret2 = system("diff --brief duc_g.dat golden/duc_qg.d:
3
A if (retl | ret2) {
5 printf("\n *** DUC hardware test FAILED ! *** \n\n");
6 } else {
7 printf("\n *** DUC hardware test PASSED ! *** \n\n");
8 }
9
@//return ({retl | ret2) ? 1 : @); | _
| return 1; =
2}

73 7

4 | 1] ' P

Figure 8-8: Modified RTL Test Bench
5. Save the file.
6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

High-Level Synthesis www.xilinx.com Send Feedback 178
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=178

& XILINX

ALL PROGRAMMABLE-

7.

Chapter 8: RTL Verification

Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog

box.

Leave the Cosimulation options at their default value and click OK to execute the RTL

cosimulation.

When RTL cosimulation completes, the cosimulation report opens and says the verification
has failed (Figure 8-9).

= Simulation(solution1) &
Cosimulation Report for 'duc’

Result

Latency Interval

RTL Status min avg max min avg
VHDL NA NA NA NA NA NA
Verilog Fail NA NA NA NA NA

Export the repart(html) using the Export Wizard

& Console 2 . @] Errors & Warnings
Vivado HLS Console

max
NA
NA

INFO: [COSIM 212-302] Starting C TB testing ...

*#% DUC hardware test PASSED | ***
CRITICAL WARNIMNG:

CRITICAL WARNING:

= B ||E Outline % I Directive v =8
An outline is not available.

= [H = = =
kel s ME-OY 4L

]

COSIM 212-359] Aborting co-simulation: C TB simulation failed, nonzero return value '1'.

COSIM 212-4] *** (/RTL co-simulation finished: FAIL ***

[
CRITICAL WARNING: [COSIM 212-328] C TB testing failed, stop generating test vectors. Please check C TB or re-run cosim.
[

command 'ap_source' returned error code|
while executing

"source C:/Vivado HLS Tutorial/RTL Verification/labl/duc_prj/solutionl/cosim.tcl”

invoked from within

"hls::main C:/Vivado HLS_Tutorial/RTL_Verification/labl/duc_prj/solutionl/cosim.tcl"

("uplevel” body line 1)
invoked from within
"uplevel 1 hls::main {*}$args"
¢ I

4 |11

Figure 8-9: Cosimulation Report Failure

In Figure 8-9, you can see from the message printed to the console (DUC hardware test
PASSED) that the results are correct, however, the verification report says the RTL
verification failed.

If required, you can confirm the results are correct. To do this, compare the output files
created by the RTL simulation with the golden results. The RTL simulation is executed in the
simulation directory wrapc, which is inside the solution directory. Figure 8-10 shows the

solution directory, with the output files highlighted.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback I 179

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=179

& XILINX

ALL PROGRAMMABLE

{5 Explorer &3
i Includes
+ = Source
» = Test Bench
a = solution1
4 @ constraints

4 directives.tcl
& scripttcl

> = csim
4 = s5im

» & autowrap
» (= report
A=A

4 [= wrapc

m

Chapter 8: RTL Verification

le AESL_pkg.h

le| apatb_duc.cpp

l¢| apatb_duch

|5 apcc.log

b cosim.tv.exe

cosim.tv.mk

l¢| dds.c_pre.ctb.c
duc_ldat
duc_g.dat

l¢ duc_test.c_pre.ctb.c
duc.autotvin.dat
duc.autotvout.dat

lel duc.c_pre.ctb.c

lel imfl.c_pre.ctb.c

lel imf2.c_pre.ctb.c

Figure 8-10: Cosimulation Output Files

RTL Cosimulation only reports a successful verification when the test bench returns a value
of 0 (zero). Modifying the test bench to return a non-zero value ensures RTL verification
(and C simulation if it was performed) would always report a failure.

To ensure that the RTL results are automatically verified: the C test bench must always check
the output from the C function to be synthesized and return a 0 (zero) if the results are
correct OR return any other value if they are not correct.

When RTL Verification is performed, the same testing occurs in the test bench, and the
output from the RTL block is automatically checked. This is why it is important for the C test
bench to check the results and return a zero value only if they are correct (or return a

non-zero value if they are incorrect).

9. Exit the Vivado HLS GUI and return to the command prompt.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback I 180

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=180

§: X”_INX Chapter 8: RTL Verification

ALL PROGRAMMABLE

Lab 2: Viewing Trace Files in Vivado

This exercise explains how to generate RTL trace files and how to view them using the
Vivado Design Suite tools.

Step 1: Create an RTL Trace File using Vivado Simulator

1. From the Vivado HLS command prompt you used in Lab 1, change to the lab2 directory
as shown in Figure 8-11.

2. Create a new Vivado HLS project by typing vivado hls -f run hls.tcl.

@I [HLS5-10] Running 'C:/Xilinx/Uivado_HLS$/2014.1/bin/unwrapped/wing4.o/vivado_hl
Ss.exe’

for user ‘duncanm’ on host ‘xsjduncanm38’ (Windows NT_amd&4 version

6.1) on Tue Apr 08 15:46:41 -0T00 2014
in directory °'C:/Uivado_HLS_Tuterial/RTL_Uerification/labl’

@I [HLS-18] Bringing up Uivado HLS GUI ...
C:\Uivado_HLS_Tutorial\RTL_Uerification\labl>cd ..

C:\Uivado_HLS_Tutorial\RTL_Uerification>cd lab2

4 |1

C:\Uivado_HLS_Tutorial\RTL_Uerification\lab2>vuivado_hls -f run_hls.tcl

Figure 8-11: Setup for RTL Verification Lab 2
3. Open the Vivado HLS GUI project by typing vivado hls -p duc prj.
4. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

5. Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog
box.

In this case, you will produce a trace file you can open using the Vivado Simulator.

6. In the Co-simulation Dialog box:
a. Leave the default auto selection (using Vivado Simulator and Verilog).

b. Activate the Dump Trace drop-down menu and select the all option, to have the
options shown in Figure 8-12.

c. Click OK to execute RTL cosimulation.

High-Level Synthesis www.xilinx.com Send Feedback 181
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=181

i: XILINX Chapter 8: RTL Verification

ALL PROGRAMMABLE

¢# Co-simulation Dialog @

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

Auto -

RTL Selection

@ Verilog () VHDL
Options

[] Setup Only

Dump Trace |all -

[Optimizing Compile

|| Reduce Diskspace

Compiled Library Location Browse...

Input Arguments

[] Do not show this dialog box again.

[OK l l Cancel

Figure 8-12: Cosimulation Dialog Box for Lab 2

When RTL verification completes, the cosimulation report automatically opens. The report
shows that the Verilog simulation has passed (and the measured latency and interval). In
addition, because the Dump Trace option was used with the Vivado Simulator simulator
option and because Verilog was selected, two trace files are now present in the Verilog
simulation directory. These are shown highlighted in Figure 8-13.

High-Level Synthesis www.xilinx.com

l Send Feedback I 182
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=182

8 X”_INX Chapter 8: RTL Verification

ALL PROGRAMMABLE-

[t Explorer &2 = O
4 (= s5im &
» = autowrap
» = report
= tv
4 = verilog
“@ check_sim.tcl
ait duc_am_submul_16s_16s_18s_32 4v
st duc_ama_addmuladd_18s_18s_16s5 325 32 3w
rit duc_ama_submuladd_18s_18s_165_32s_32 3
duc_c_2 rom.dat

i

ad duc_c_2v

= duc_c_ 3 rom.dat

ad duc_c_3wv

= duc_imf2_c_ 1 rom.dat

rrd duc_imf2_c_lw

=l duc_imf2_shift_reg_p_ram.dat
st duc_imf2_shift_reg_p.v

it duc_imf2y

[

duc_imf3_c_0_rom.dat

duc_imf3_c 0w

E]
2
="

m

duc_imf3_c_rom.dat

[

E]
2
="

duc_imf3_cv
duc_imf3_shift_reg_p0_ram.dat
st duc_imf3_shift_reg_pO.v

[

rit duc_imf3.v

st duc_mac_muladd_18s_18s 38ns_38 4w
=l duc_mixer_dds_table_rom.dat

s duc_mixer_dds_tablew

= duc_mixer_DI_cache_ram.dat

s duc_mixer DI cachev

it duc_mixery

|=l duc_shift_reg_p_1_ram.dat

st duc_shift_reqg_p_lv

|=l duc_shift_reg_p_2_ram.dat

st duc_shift_reqg_p_2.v

sl duc.autotby
duc.performance.result.transaction.xml

= duc.prj

|5l ducresultlatrb

W ductcl

arit ducy

|5 ducwcfg

=l ducwdb gl

Figure 8-13: Verilog Vivado Simulator Cosimulation Results

High-Level Synthesis www.xilinx.com Send Feedback 183
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=183

i: XILINX Chapter 8: RTL Verification

ALL PROGRAMMABLE
The next step is to view the trace files inside the Vivado Design Suite.

Since waveform trace data has been generated for the Vivado Simulator, the Open Wave
Viewer toolbar button is now highlighted, as shown in Figure 8-14.

Note: The Open Wave Viewer toolbar button can only be used when Vivado Simulator is selected
as the Verilog/VHDL Simulator.

File Edit Project Solution Window Help
R o R OB RO Pyd @ |8

Figure 8-14: Opening the Trace File in Vivado

7. Click on the Open Wave Viewer toolbar button to open the Vivado IDE with the RTL
waveforms traces.

Note: The only functionality provided by the Vivado IDE by this action is the viewing and analysis of
RTL waveforms.

You can then view the waveforms in the waveform viewer. Figure 8-15 shows the zoomed
waveforms where the output data ports and their associated I/O protocol signals (output
valid signals) are expanded to view.

High-Level Synthesis www.xilinx.com Send Feedback 184
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=184

& XILINX Chapter 8: RTL Verification

ALL PROGRAMMABLE

Simulation Result - ducwdb X

B EdllCde* X LA

B

0

¢ 77,450 ns

3 _| -| --l --I -I-
I'-| -'I| --'-| I B

1]

<.

B 8 done_cnt{31:0]
(8 I8 AESL_ready_cntf31:0]
1N ready_cni[31:0]
i ready_initial
i ready_initial_n

i ready_delay_last_n

s done_delay last n

& interface_done
1 M AESL_REG_din_i[17:0]
B AESL_REG _freq[15:0]

s AESL_REG_dout_i_ap_vid
I8 AESL_REG_dout_[17:0]

s AESL_REG_dout_q_ap_vid
1B AESL_REG_dout_q[17:0]

I
WWWWwWWW

Figure 8-15: Analyzing the RTL Trace File
8. Exit the Vivado IDE.
9. Exit and close the Vivado GUIL

10. Type exit to close the Vivado Tcl command prompt.

High-Level Synthesis www.xilinx.com Send Feedback 185
UG871 (v2016.2) June 8, 2016 L\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=185

i: XILINX Chapter 8: RTL Verification

ALL PROGRAMMABLE

Lab 3: Viewing Trace Files in ModelSim

This exercise explains how you can generate and view RTL trace files and using the Mentor
Graphics ModelSim RTL simulator. Other third-party simulators are supported, and similar
process can be used if another RTL simulator is selected.

C CAUTION! This lab exercise requires that the executable for ModelSim is defined in the system search
path and that the required license to perform HDL simulation is available on the system.

Step 1: Create an RTL Trace File using ModelSim

1. From the Vivado HLS command prompt you used in Lab 2, change to the 1ab3
directory.

Create a new Vivado HLS project by typing vivado hls —-f run hls.tcl.
Open the Vivado HLS GUI project by typing vivado hls -p duc prj.
Click the Run C Synthesis toolbar button to synthesize the design to RTL.

v~ wWN

Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog
box.

This exercise uses the Mentor Graphics ModelSim RTL simulator. The path to the simulator
executable must be set in your system search path.

6. In the Co-simulation Dialog box:
a. Select ModelSim from the Verilog/VHDL Simulator Selector.
b. Select VHDL.

c. Activate the Dump Trace drop-down menu and select the all option, to have the
options shown in Figure 8-16.

d. Click OK to execute RTL cosimulation.

High-Level Synthesis www.xilinx.com Send Feedback 186
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=186

i: XI LI NX Chapter 8:

ALL PROGRAMMABLE-

RTL Verification

¢# Co-simulation Dialog @

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

ModelSim -

RTL Selection

() Verilog @ VHDL
Options

[] Setup Only

Dump Trace

[Optimizing Compile

|| Reduce Diskspace

Compiled Library Location

Input Arguments

[] Do not show this dialog box again.

[OK l l Cancel

Figure 8-16: Cosimulation Dialog Box for Lab 3

When RTL verification completes, the cosimulation report automatically opens, showing the
VHDL simulation has passed (and the measured latency and interval). In addition, because
the Dump Trace option was used with the ModelSim simulator option and because VHDL

was selected, a trace file is now present in the VHDL simulation directory. The trace file is
shown highlighted in Figure 8-17.

High-Level Synthesis www.xilinx.com

l Send Feedback I 187
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=187

& XILINX

ALL PROGRAMMABLE-

Chapter 8: RTL Verification

[Explorer &2 ¥ = B
4 2 duc_prj -
e Includes
= Source

= Test Bench
a4 Y= solution1
& constraints
= csim
4 = sim
= autowrap
= report
= tv
4 = vhdl
st AESL_sim_pkg.vhd
W check_sim.tcl
E compile_modelsim.sh

11

= cosim.modelsim.scr

s duc_c_l.whd

s duc_c.vhd

s duc_mul_175_18s_32 4.vhd

s duc_mul_18s_17ns_35_3.vhd

rrd duc_mul_18s 18s 36 3.vhd

sl duc_mul_19s_16s_32 3.vhd

s duc_shift_reg_p_lvhd

s duc_shift_reg_p.vhd

s duc.autotb.vhd

El duc.performance.result.transaction.xml
=l duc.resultlatrb

s ducvhd

= duc.wlf

sl imf2_c_2.vhd

st iImf2_shift_reg_p_2vhd -

Figure 8-17: VHDL ModelSim Trace File

The next step is to view the trace files inside ModelSim.

7. Exit the Vivado HLS GUI and return to the command prompt.

Step 2: View the RTL Trace File in ModelSim

1. Launch the Mentor Graphics ModelSim RTL Simulator.

2. Click the menu File > Open.

3. Select Log Files as the file type (Figure 8-18).

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com l Send Feedback I 188

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=188

i: X”_INX Chapter 8: RTL Verification

ALL PROGRAMMABLE-

4. Navigate to the VHDL simulation directory and select duc.wlf.

5. Click Open.
ﬁOpen File @
@Ov‘ « OSDisk (C) ¥ Vivado_HLS Tutorial » RTL Verification » lab3 ¥ duc_prj » solutionl ¥ sim » vhdl » v‘ﬁH Search vhal pl
Organize = New folder =+ 0 @
* Name Date modified Type Size
| work 3/6/2013452PM File folder
ducwif 3/6/2013452PM WLFFile 3936 KB
R l
=
.‘/
_J\', =
LN
&
Fv
File name: ducwlf v |LogFiles (~wif) v
’ Open ‘v Cancel ‘

Figure 8-18: ModelSim Open File WLF

6. Add the signals to the trace window and adjust to see a view similar to Figure 8-19.

High-Level Synthesis www.xilinx.com Send Feedback 189
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=189

i: XILINX Chapter 8: RTL Verification

ALL PROGRAMMABLE

ﬂ Wave s ﬁ ﬂ >

4

ap_clk
B’ ap_csfsm

“ ap_done

/ ap_idle
B’ ap_ns fsm

“ ap_ready

4 ap_rst

“ ap_start
B c_1_addressd

Y ¢l ced
B’ c 1 load reg 601
B ociq
B’ ¢ addressD

4 ¢ cel
B’ c load_reg 618
B cq0
B ch
B chi
B ch_1_load_req ...
B’ ch_load_reg_607
B ot
B dini
ﬁ’dout_i

v) dout_i_ap_vid
1;v)d0ut_q

¥ dout_q_ap_vld
freq
grp_fu_400_ce
qrp_fu_400_p0
arp_fu_400_p1
arn_fi_4ni_n?

IO T T O I T T I T T

I T T T I T T T T

(E o PP L N T S P - S S TS Y ST S S PSS S - L P PN PO P S)

..o Foaalin o Yo o fe1se7 [ol lo

2/ FPPI -0 AT § T u

o .00

-7 -
0 2 . P PO |

B 15%) 55) STV ST ST T Evi [2 C 10 I 20 2 OO (T R) EN T A

(WD Sy S A P L L P T S ST . N VAN = S P L Y- P N P S v P

TP T (Y 0 Ty o - i e Y Y it . . o |

-1

FOTIE T2 PFY F-000 w TPl ¥ 200 u

e 5 ps 00 ps I
[

L A (3K »

< x o = X EHFEMISHEES X O X X O O X X © O X XM O 0o O - O O =2 o o o

Figure 8-19: Viewing the Trace File in ModelSim

7. Exit and close the ModelSim RTL simulator.

High-Level Synthesis www.xilinx.com Send Feedback 190
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=190

i: XILINX Chapter 8: RTL Verification

ALL PROGRAMMABLE

Conclusion

In this tutorial, you learned how to:

« Perform RTL verification on a design synthesized from C and the importance of the test
bench in this process.

« Create and open waveform trace files using the Vivado Design Suite.

« Create and open waveform trace files using a third-party HDL simulator (ModelSim)
and view the trace file created by RTL verification.

High-Level Synthesis www.xilinx.com Send Feedback 191
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=191

& XILINX

ALL PROGRAMMABLE.

Chapter 9

Using HLS IP in IP Integrator

Overview

You can package the RTL from High-Level Synthesis and use it inside IP Integrator. This
tutorial demonstrates how to take HLS IP and use it in IP Integrator as part of a larger
design.

This tutorial consists of a single lab exercise.

Lab 1 Description

Complete the steps to generate two HLS blocks for the IP catalog and use them in a design
with Xilinx IP, an FFT. You validate and verify the final design using an RTL test bench.

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory Vivado HLS Tutorial\
Using IP with IPI.

The design blocks in this tutorial process the data for a complex FFT.

« The Xilinx FFT IP block only operates on complex data. Although you can perform an
FFT of real data on a complex data set with all imaginary components set to zero, it can
be done more efficiently by pre-processing the data.

» The front-end HLS block in this lab applies a Hamming windowing function to the 1024
(N) real data samples and sends even/odd pairs to an N/2-point XFFT as though they
are complex data.

« The back-end HLS block takes bit-reverse ordered data, puts it in natural order and
applies an O(N) transformation to FFT output to extract the spectral data for the
N-point real data set. Note, the first output pair packs the Oth and 512th (purely real)
spectral data point into the real and imaginary parts, respectively.

High-Level Synthesis www.xilinx.com Send Feedback 192
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=192

i: XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE

« The designs are fully pipelined, streaming designs for high throughput; intended for
continuous processing of data, but with throttling capability (stalls if input stalls).

« AXI4 Streaming interfaces are used to connect all blocks in IP Integrator (IPI).

Lab 1: Integrate HLS IP with a Xilinx IP Block

This lab exercise shows how two HLS IP blocks are combined with a Xilinx IP FFT in IP
Integrator and the design verified in the Vivado Design Suite.

ﬁ IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create Vivado HLS IP Blocks

Create two HLS blocks for the Vivado IP Catalog using the provide Tcl script. The script runs
HLS C-synthesis, RTL co-simulation and package the IP for the two HLS designs
(hls real2xfft andhls xfft2real).

1. Open the Vivado HLS Command Prompt.

- On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt.

o On Linux, open a new shell.

Vivado 2016.1
_lf Add Design Tools or Devices 2016.1
1|___w Manage Xilinx Licenses
$. Uninstall 2016.1
B Vivado 2016.1 Tcl Shell
¢ Vivado 20161
System Generator
Vivado HLS
Bl Vivado HLS 2016.1 Command Promp
| vivado HLS 2016.1 ~

r| -~
Figure 9-1: Vivado HLS Command Prompt

m

2. Using the command prompt window, change the directory to
Vivado HLS Tutoriall\Using IP with IPI\labl\hls designs (Figure 9-2).

3. Type vivado hls -f run hls.tcl to create the HLS IP (Figure 9-2).

High-Level Synthesis www.xilinx.com Send Feedback 193
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=193

§: XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE

C:\Vivado_HLS_Tutorial>cd Using_IP_with_IPI

C:\Vivado_HLS_Tutorial\Using_IP_with_IPI>cd lab1l

C:\Vivado_HLS_Tutorial\Using_IP_with_IPI\labl1>cd hls_designs

C:\Vivado_HLS_Tutorial\Using_IP_with_IPI\lab1\hls_designs>vivado_hls -f run_hls.
tecl

4 [

Figure 9-2: Create the HLS Design for IPI

When the script completes, there are two Vivado HLS project directories, fe vhls pr]
and be _vhls prj, which contain the HLS IP, including the Vivado IP Catalog archives for
use in Vivado designs.

« The "front-end” IP archive is located at fe_vhls prj/IPXACTExport/impl/ip/

« The "back-end” IP archive is located at be vhls prj/IPXACTExport/impl/ip/

The remainder of this tutorial shows how the Vivado HLS IP blocks can be integrated into a
design (in IP Integrator) and verified.

Step 2: Create a Vivado Design Suite Project

1. Launch the Vivado Design Suite (not Vivado HLS):

o On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado 2016.1.

o On Linux, type vivado in the shell.

2. From the Welcome screen, click Create New Project (Figure 9-3).

High-Level Synthesis www.xilinx.com Send Feedback 194
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=194

& XILINX

ALL PROGRAMMABLE-

File Flow Tools Window Help

Chapter 9:

Using HLS IP in IP Integrator

Vl\/ADO Productivity. Multiplied.
Quick Start

Create New Project Open Project Open Example Project
Tasks
Y. gi: \’i‘
= #
MBEEP Open Hardware Manager Xilinx Tel Store

Information Center

9 & &

Documentation and Tutorials Quick Take Videos Release Notes Guide

£ XILINX

|2 Tcl Console

Figure 9-3:

Create a Vivado Project

3. Click Next on the first page of the Create a New Vivado Project wizard.

4. Click the ellipsis button to the right of the Project location text entry box and browse to

and select the tutorial directory (Figure 9-4).

High-Level Synthesis www.xilinx.com

UG871 (v2016.2) June 8, 2016

| Send Feedback I 195

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=195

i: XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-

A

42 Choose Project Location
Recent: | = Cf T OH=gAMEEXD

(31
(%]

Directory: C:\Vivado_HLS_Tutorial\Using_IP_with_IPT\lab1

Titus -
Users

Vivado_HLS
Vivado_HLS_Tutorial
Arbitrary_Precision
C_Validation
Design_Analysis
Design_Optimization
Interface_Synthesis
Introduction
RTL_Verification
Using_IP_with_IPI
--miﬂs_designs
E=8 verilog_tb
Using_IP_with_SysGen -
Lisina TP with Fwnn (=]

m

’ Select ” Cancel

Figure 9-4: Path to the Vivado Design Suite Project
5. Click Next to move to the Project Type page of the wizard.
a. Select RTL Project.
b. Select Do not specify sources at this time (if not the default).
c. Click Next.

6. On the Default Part page, under Specify, click Boards and select the ZYNQ-7 ZC702
Evaluation Board, as shown in Figure 9-5 and press Next.

High-Level Synthesis www.xilinx.com Send Feedback 196
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=196

8 X”_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-~

¢ New Project @

Default Part

Choose a default Xilinx part or board for your project. This can be changed later. ‘
Select: @ Parts |@ Boards
4 Filter

Vendor: All -

Display Name: | All -

Board Rev: Latest A

Reset All Filters
Search: v
Display Mame Vendor Board Rev Part /O Pin Count File Version
@ ZedBoard Zynq Evaluation and Development Kit em.avnet.com d @ xc7z020clg484-1 484 1.3 1
@ Artix-7 AC701 Evaluation Platform xilinx.com kil % xc7a200tfbg676-2 676 1.2 3
@ Kintex-7 KC705 Evaluation Platform xilinx.com 1.1 @ xc7k325tffg900-2 900 1.2 4
M Kintex-Ultrascale KCU105 Evaluation Platform xilinx.com 1.0 @ xcku040-ffvall56-2-e 1,156 1.1 £
@ Virtex-7 VC707 Evaluation Platform xilime.com 1.1 @ xcAnastffg1761-2 1,761 1.2 1
@ Virtex-7 VC709 Evaluation Platform xilinx.com 1.0 & xcIvx690tfigl1761-2 1,761 1.7 1
@ Virtex-Ultrascale VCU108 Evaluation Platform xilinx.com 1.0 @ xowu095-ffva2104-2-e-es2 2,104 1.0 1
' Z¥YNQ-7 ZC702 Evaluation Board i xc72020clg484-1 i
@ Z¥NQ-7 ZC706 Evaluation Board xilinx.com 1.1 @ xc7z045ffgo00-2 900 1.2 g
<| i} =
[<Back || Next> 1§ Finish

Figure 9-5: Vivado Project Specification

7. On the New Project Summary Page, click Finish to complete the new project setup.

The Vivado workspace populates and appears as shown in Figure 9-6.

High-Level Synthesis www.xilinx.com Send Feedback 197
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=197

& XILINX

ALL PROGRAMMABLE-

Project Manager - project_1
Sources

0 = &
QL=

Toill |

+I5 Design Sources

| Constraints

[=HE Simulation Sources
i eim_1

Hierarchy | Libraries | Compile Order
¢ Sources | § Templates

Properties

%k

Select an object to see properties

Design Runs

X hame

&=

a1 B2 gynth 1
= Simpld

Constraints

constrs_1
constrs_1

] B

2] A

Status

Not started
Not started

Chapter 9: Using HLS IP in IP Integrator
X
L Project Summary X orx
= .
=2 Project Settings Edit #
o Project name: project_1
Project location: C:/vivado_HLS_Tutorial/Using_IP_with_IPY/lab1/project 1
Product family: Zyng-7000
Project part: ZYNQ-7 7702 Evaluation Board (xc7z020clg484-1)
Top module name: Mot defined
Target lanquage: Verilog
Simulator lanquage: Mixed
Board Part £
Display name: ZYNQ-7 ZC702 Evaluation Board
Board part name: xilinx.com:zc702:part0:1.2 =
Repository path: ~ C:/Xilinx/Vivado,2015.3/data/boards/board_files
URL: vavew.xilimx. com/zc702
Board overview: ZYNQ-7 ZC702 Evaluation Board
Synthesis % Implementation £
Status: Mot started Status: Not started
Messages: Mo errors or warnings Messages: No errors or warnings
Fart: xc72020clg484-1 Part: xc7z020clgd84-1
Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Defaults L]
Incremental compile: None
Timing % Utilization %
Run Imnlamantation tn caa timing raculte Run Synthacic tn cas utilizatinn ragulte X
= EFETE
WNS TNS WHS THS TPWS FalledRoutes LUT FF BRAM URAM DSP Start Elapsed Strategy
Vivado Synthesis
Vivado Implemer

I}

Figure 9-6: Vivado Project

Step 3: Add HLS IP to an IP Repository

1. In the Project Manager area of the Flow Navigator pane, click IP Catalog.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

| Send Feedback I 198

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=198

& XILINX

ALL PROGRAMMABLE-

Chapter 9:

Using HLS IP in IP Integrator

File Edit Flow
f? sl W L

Tools Window

Flows Mavigator

e
T

4 Project Manager
@ Project Settings
O‘{ﬁ‘ Add Sources
%/ Language Templates
1F 1F Catalog

4 JP Integrator
i Create Block Design
% Open Block Design

%9 Generate Block Design

4 Simulation

Layout View

$ P % # K| X S X Default Layout

<

Help

Project Manager - project_1
Sources
A= wer R

- Design Sources

[Constraints

= Simulation Sources
1sim_1

Hierarchy | Libraries | Compile Order

& Sources | 7 Templates

Figure 9-7: Open the IP Catalog

2. The IP Catalog appears in the main pane of the workspace. Click the IP Settings icon.

1) %5 2| B (5 | IS Default Layout

Project Manager - project_1
Sources

a2 ek BE

i Design Sources
[Constraints (1)
=117 Simulation Sources (1)

Hierarchy | Libraries | Compile Crder
& Sources | 7 Templates
Properties

Figure 9-8: Open the IP Catalog Settings

O = E. Project Summary X |1F IP Catalog X
L | search: |
By 1
=5 yame AXI4
g
- - Automotive & Industrial
& ; A3 Infrastructure
= BaselP
Fiel
= Basic Elements
-.\} Communication & Mebworking
1 Debug & Yerification
D Digital Signal Processing
ﬁ Embedded Processing
+-[FPGA Features and Design
IP Settings
Settings for IP Catalog, IP Generation, and IP Packager
[#-[= Standard Bus Interfaces
[#-[= Yideo & Image Processing
| E
Details

3. In the IP section of the Project Settings dialog, select the Repository Manager tab and
click on the “+"” symbol to Add Repository.

4. In the IP Repositories dialog:

a.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

Browse to the tutorial directory,

Using IP with IPI\labl\hls designs\fe vhls prj\IPXACTExport\im
pl\ip as shown in Figure 9-9.

www.Xilinx.com

| Send Feedback I 199

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=199

8 X”_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-~

b. Click Select to close the IP Repositories window.

¢ [P Repositories @
Recent: |1 C:/Vivado_HLS_Tutorial/Using_IP_with_IPY/labi/his_designs/fe_vhis_pri/IPXACTExport/impl..v (7 = 54 W | X I 2 5

Directory: |C:\Vivado_HLS_Tutorial\ L5yl BT 1

T\lab1\hls_designs\fe_vhls_prj

= | Vivado_HLS_Tutorial "
--, Arbitrary_Precision
i | C_Validation
--, Design_Analysis
--, Design_Optimization
--, Interface_Synthesis
--, Introduction Al
[| RTL_Verification
5| Using_IP_with_IPI
B | lab1
B Xi
| hls_designs
--, be_vhls_prj
= | fe_vhls_prj
5 | PXACTExport
--, .autopilot
--, csim
B"I impl

111

i | il

£ | bd

:--, constraints -
#- | doc

l Select H Cancel]

Figure 9-9: Create a New IP Repository
5. Press Select to accept the new repository.

6. Follow the same procedure to add the second HLS IP package:
labl/hls designs/be vhls prj/IPXACTExport/impl/ip/.

7. Click OK to exit the dialog box.

A Vivado HLS IP category now appears in the IP Catalog as HLS IP (Figure 9-10).

High-Level Synthesis www.xilinx.com Send Feedback 200
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=200

8 XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-

L Project Summary x |iF IP Catalog x Or x
Cores | Interfaces Search:
3 =l i
-H Name AXT4 Status License VLNV
E E}r User Repository (c:/Vivado_HLS_Tutorial/Using_IP_with_IP/labl/hls_designs/fe_vhls_prj/IPXACTExport -
N Bl— VIVADO HLS P
P 4F Hls_real2xfft AXI4-Stream Pre-Produ... Included silinx.com...
\\ E}r User Repository (c:/Vivado_HLS_Tutorial/Using_IP_with_IP/labl/hls_designs/be_vhls_prj/IPXACTExport
Bl Bw VIVADO HLS P
e 4F Hls_xfft2real AXI4-Stream Pre-Produ... Included xilinx.com...
I =+ Vivado Repository
[+ Alliance Partners
'E“ I [Automotive & Industrial
& & AXIInfrastructure =
& 5 BaselP I
[+ Basic Elements
BHE communication & Networking
[+ Debug & Verification
[Digital Signal Processing
[Embedded Processing
) FPGA Features and Design
» Math Functions
HHE Memories & Storage Elements 4
B 0CLP
[Partial Reconfiguration =
[Standard Bus Interfaces]
[wnl el P - -
Details

Select an IP or Interface or Repository to see details

Figure 9-10: IP Catalog with HLS IP

Step 4: Create a Block Design for RealFFT

1. Click Create Block Design under IP Integrator in the Flow Navigator.
a. In the resulting dialog box, name the design RealFFT.

b. Click OK.

High-Level Synthesis www.xilinx.com Send Feedback 201
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=201

& XILINX

ALL PROGRAMMABLE-

File Edit Flow Tools Window Layout View Help

Chapter 9:

AR M0RBR X P DY S XK X S| 5 efaul Layout - FeR®

Flow Navigator < | | Project Manager - project_1
QA= Sources

A2 ez BE
] iject Ma“ager g G @d | |] .
I Design Sources

ﬁ Project Settings " Constraints

& Add Sources =} Simulation Sources
|/ Lanquage Templates el sim_1
1F IP Catalog

4 [P Integrator
ﬁ; Create Block Design

Using HLS IP in IP Integrator

-Ouex L Project Summary x |iFIP Catalog X
| Search:
e Y]
“| Name
i
- | ECC

$F & Ethernet 1000BASE-X PCS/PMA or SGMII
- |£F Ethernet PHY MII to Reduced MII

iF Fast Fourier Transform

£ |ZF FIFO Generator
. |k FIR Compiler
& Fixed Interval Timer

3 Open Block Design

& Generate Biock Design Hierarchy | Libraries | Com

4 Simulation 4 Sources | ¥ Templat

ﬁ Simulation Settings P Properties

@[Run Simulation &9 Q} [} Design name:
4 RTL Analysis £F Hls_realdft Directory:

» 6% Open Elaborated Design

Version: 1.0 (Rev. 1411| Specify source set:

¢.. Create Block Design

Please specify name of block design.

ReaIFFI'I
[<Local to Project> v | N
| Design Sources "

4 Synthesis Interfaces: AXH4-Stream
ﬁ Synthesis Settings Description: An IP generate)
$ Run Synthesis Status: Pre-Production
> ¥ Open Synthesized Design License: Included l oK] l Cancel] o HLS
a1 Il AR Pra-Frodirfion

4 Tmnlamantatinn

Figure 9-11: Create Block Design

The upper-right pane now has a Diagram tab. Add a Xilinx FFT IP block to the design and

customize it.

2. In the Diagram tab click the Add IP link (Figure 9-12).

a. Inthe Search box type fourier.
b. Select Fast Fourier Transform.

c. Press Enter.

High-Level Synthesis www.xilinx.com

UG871 (v2016.2) June 8, 2016

| Send Feedback I 202

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=202

8 X”_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-~

£= Diagram X |

#] & RealFFT

[P
e

Search: | .- fourier] (3 matches)

LTE Fast Fourier Transform

ENTER to select, ESC to cancel, Ctrl+Q for IP details

This design is empty. Press the ¥ button to add IF.

BCgaQR S,y BHALD =TSR

Figure 9-12: Add the Xilinx FFT IP

The Xilinx IP block FFT is now instantiated in the design, as shown in Figure 9-13.

High-Level Synthesis www.xilinx.com Send Feedback 203
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=203

& XILINX

ALL PROGRAMMABLE-~

Chapter 9:

Using HLS IP in IP Integrator

= Diagram X
#] £ RealFFT

m|ERR

-

XY ELn VT

£3

-

xfft_0

-

M_AXIS_DATAHs =

event_frame_started

9= 5_AXIS_DATA evert_tlast_unexpected
=4 5_AXIS_CONFIG event_tlast_missing
aclk event_status_channel_halt
event_data_in_channel_halt

event_data_out_channel_halt

Fast Fourier Transform

»

m

Figure 9-13: Xilinx FFT IP

3. Double-click the new Fast Fourier Transform IP symbol to open the Re-customize IP

dialog box.

4. On the Configuration tab (Figure 9-14):

a. Change the Transform Length to 512.

b. Select Pipelined, Streaming I/O in the Architecture Choice section.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

| Send Feedback l 204

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=204

i: XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE

1 F Re-customize IP @
Fast Fourier Transform (9.0) ‘

ﬁﬂ Documentation | IP Location

IP Symbol | Implementation Detz 4 » B Component Name RealFFT_xfft_0_0
|| Show disabled ports Configuration | Implementation | Detailed Implementation
Mumber of Channels 1 -

Transform Length 512 -

Architecture Configuration
Target Clock Frequency (MHz) | 250 [1-550]
Target Data Throughput (MSPS) |50 [1-550]
Architecture Choice

() Automatically Select

M_AXIS DATA LfE
event_frame_started
o 15_ANIS_DATA event_tlast_unerpected
E|_15_AKIS_CONFIG event_tlast_missing

(@) Pipelined, Streaming IO

: | Radix-4, Burst IJO

aclk event_status_channel_halt
ewent_data_in_channel_halt

() Radi-2, Burst /O

event_data_our_channel_hal

(") Radix-2 Lite, Burst /O

["] Run Time Configurable Transform Length

OK] l Cancel

Figure 9-14: Xilinx FFT Configuration
5. Select the Implementation tab (Figure 9-15):
a. Select ARESETN (active low) in the Control Signals group.
b. Verify that Non Real Time is selected as Throttle Scheme.

c. Click OK to exit the Re-customize IP dialog box.

High-Level Synthesis www.xilinx.com Send Feedback 205
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=205

& XILINX

ALL PROGRAMMABLE-

Chapter 9:

Using HLS IP in IP Integrator

1F Re-customize IP
Fast Fourier Transform (9.0)

ﬁﬂ Documentation |- IP Location

["] show disabled ports

event_frame_started

-5 _ANIS_DATA

ERET event_tlast_unerpected

= ""If‘ = event_tlast_missing
al

event_status_channel_halt
ewent_data_in_channel_halt

event_data_out_channel_halt

IP Symbol | Implementation Detz 4 » B

M_AKIS_DATA 1

Companent Name | RealFFT_xfft_0_0

Configuration” Implementation | Detailed Implementation

‘_] Auto) Data Format | Fixed Point

Scaling Options Scaled v

Rounding Modes Truncation hd

Precision Options
(@) Alto) Input Data Width | 16
Control Signals

[] Aciken ARESETn (active low)

ARESETn must be asserted for a minimum of 2 cycles
Output Ordering Options
Output Ordering | Bit/Digit Reversed Order ~

Cyclic Prefix Insertion

Optional Output Fields Throttle Scheme

[Ixx_mpoex || ovrLo

Phase Factor Width |16~

(@) Non Real Time () Real Time

Figure 9-15: Xilinx FFT Implementation

Add one instance of each of the HLS generated blocks to the design.

6. Right-click in any space in the canvas and select Add IP (Figure 9-16).

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback I 206

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=206

& XILINX

ALL PROGRAMMABLE-~

Chapter 9:

Using HLS IP in IP Integrator

Z= Diagram X

#] & RealFFT
&
o
! B Fropertie Ctrl+E
= ® Delete) xfft_0)
i : EI: *5 M_AXIS_DATA
E S Search... Ctrl+F [<rS_AXIS_DATA MT:;T:_:::
- | & selectan Ctri+A [FSAXISCONFIG event_tiast_missing
=~ |2 adrF. Ctrl+I D:Jk evernt_status_channel_halt
= [@ settngs... Faein event_data_in_channel_halt
Es: @ Validate Design F6 event_data_out_channel_halt
¥ Create Hierarchy... Fast Fourier Transform

Create Comment
¥ Create Port... Ctrl+K
e Create Interface Port... Ctrl+L
3 @ Regenerate Layout
-, ¥ Save as PDF File...

11

Figure 9-16: Add IP Blocks

7. Type “hls” into the Search text entry box.

a. Highlight both IPs. (Click the control key and select both.)

b. Press Enter.

The design block now has three IP blocks, as shown in Figure 9-17.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback l 207

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=207

& XILINX

ALL PROGRAMMABLE-~

Chapter 9:

Using HLS IP in IP Integrator

I= Diagram X
#| # RealFFT

Z|ERR

>

hls_xfft2real_0

[EQE I IEH LD

@

£
+

His_xfft2real { Fre-Production)

his_real2xfft_0

Yivada™ LS
' doutk =

Hls_real2xfft (Pra-Production)

O =
"
xfft_0
M_AXIS DATASF =
= s AYIS BATA event_frame_started
—| T event_tlast_unexpected
=+ S_AXIS_CONFIG event_tlast_missin
aclk AEsnk
event_status_channel_hailt
o = & L
event_data_in_channel_halt
event_data_out_channel_halt
—
Fast Fourier Transform
8

The next step is to connect HLS blocks to the FFT block and ports.

Figure 9-17:

RealFFT IP Blocks

8. Hover the cursor over the dout interface connector of the H1s real2xftt block until
pencil cursor appears.

a. Left-click and hold down the mouse button to start a connection.

b. Drag the connection line to the S_AXIS_DATA port connector of FFT block and
release (when green check mark appears next to it).

9. In a similar fashion, connect the FFT's M_AXIS _DATA interface to the din interface of
the H1s xfft2real block.

The two connections are shown in Figure 9-18.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

| Send Feedback l 208

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=208

8 X”_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-~

= Diagram X T
#] 4 RealFFT
Q‘ o
iy hls_xfft2real_0 his_real2xfft_0
A [||4=ap_etd = Dladinvy =
= - Jth Yivada™ 4LS r ctﬂ Yivada™ ALS xﬁt 0
: = dout_ vk “":; doutsk 5 2
= :m‘_n ' :rsu ' M_AXIS_DATAZE (2 =
ﬁ . §_AXIS_DATA event_frame_started
o Hls_xfft2real { Pre-Production) Hls_real2xfft (Pre-Production) 3 I event_tlast unexpected
K] 3 5_AXIS_CONFIG v

etk event_tlast_missing
i event_status_channel_halt

=laresetn
[;, event_data_in_channel_halt
% event_data_out_channel_halt
@ Fast Fourier Transfarm
&f
<IIl+

K

Figure 9-18: Connecting Ports on the IP Blocks

To create I/O ports for the design, make some external connections.

10. Right-click the din_V_V interface connector on the hls real2xfft block and select
Make External (Figure 9-19).

High-Level Synthesis www.xilinx.com Send Feedback 209
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=209

8 XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-~

M
E

 : Diagram X O
3 & RealFFT

his_xfft2real 0 his_real2«fft 0
din V.V -hap_drl - g .

m

His_xffit2real (Pre-Production)

Fast Fourier Transform

R SQQEFRIIHL O D= BRR

>

Ea

Figure 9-19: Make External Connections
11. Give the new interface port a clearly unique name.
a. Click the port symbol to highlight it.

b. In the External Interface Properties pane (Figure 9-20), click in the Name text entry
box to highlight din_V.

c. Type real2xfft din and press Enter.

f IMPORTANT: Property changes might not take effect if this re-naming step is not done.

High-Level Synthesis www.xilinx.com Send Feedback 210
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=210

i: XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-

Block Design - RealFFT *

Design N B E 4 5= Diagram X
Q= 5= [& RealFFT
&, RealFFT a
=M= External Interfaces _
g real2xtt_din o=
[+ Interface Connections [l
=HF hls_real2xfft_0 (Hls_real2udfft:1.0) =
’E’ ap_ctrl r
----- I din_v_v i
..... E. dout '[t‘vl
----- = ap_clk -
..... = ap_rst n :
FHF hls_xfft2real_0 (Hls_xfft2real:1.0) =8
H-4F xfft_0 (Fast Fourier Transform:9.0) =
? real2xfft_din
~
¥
&
£ Sources-, H Design Signals | @ Board <]
External Interface Properties S i I E D
« » Bk ¢
= real2xfft_din oy
Name: real2xfft_din
Mode: SLAVE
Connection: | <= din_V_V_1
Clock Port: There are no clock ports in this design.
General | Properties ¢

Figure 9-20: Port Naming

12.In a similar manner to the previous step:

a. Make the dout V interface of the H1s xfft2real block external and rename it
xfft2real _dout.

13. Right-click the ac1k connector of FFT block and select Make External.
14. Right-click the aresetn connector of the FFT block and select Make External.
15. Tie the ap_start ports of both HLS blocks High.

a. Right-click the canvas and select Add IP.

b. Type const into the Search text entry box.

c. Select Constant IP.

d. Double-click the Constant IP symbol (Figure 9-21) and verify that Const Width and
Const Val are set to 1.

High-Level Synthesis www.xilinx.com Send Feedback 211
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=211

i: XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-

e. Click OK to close Re-customize IP dialog box.

1F Re-customize IP @

Constant (1.1) '

fifd pocumentation [TP Location

[] show disabled ports Component Name | xlconstant_0
Const Width | 1| [1 - 4096
Constval |1
dout{0:0]

[0K H Cancel]

Figure 9-21: Constant IP Properties

f. Expand the ap ctrl bus port on both hls xfft2real and hls real2xfft
(click the plus symbol associated with each port).

g. Connect ap_start in both HLS blocks to the Constant block (Figure 9-22).

High-Level Synthesis www.xilinx.com Send Feedback 212
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=212

8 X”_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-~

JEE Diagram X | | E
3| 4 RealFFT
OQ' -
Q;
X
ﬁi A0
'[:]' resl 2t _din| - his_realbdt O _I .
@ = Vivade™ HLS = fidrenl _dout
C)\ m::':D_ 2 ﬁ
E 4
i P
ij:_
&
B
@ dconstant_0
al
<+ Consta
4 k ;

Figure 9-22: Connect AP_START to Constant
16. Make the remaining connections.

a. Click and drag from the aclk connector of hls real2xfft and hls xfft2real
blocks to the aclk external port (or aclk connector on FFT block or anywhere on
“wire"” connecting them).

b. Connect ap rst nofthehls real2xfft and hls xfft2real blocks to the
aresetn network.

17. Click the Regenerate Layout icon to clean up and reorganize the Block Design.

High-Level Synthesis www.xilinx.com Send Feedback 213
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=213

i: XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-

5= Diagram X O
#[| & RealFFT

T
*

real o[

0 Hs_afrea 0
woorstart O =

o /

aresein [

|||]—-|

L 0RIS QW N LB 7S

Regenerate Layout
Discard current layout and regenerate.

Figure 9-23: Re-generated Design Diagram

18. Click the Validate Design button to validate the design is correct.

The vlaidate design will show some warnings. These are related to the s_axis_config pin of
the FFT.

a. The XFFT configuration interface is left unconnected because this design always
operates in the default mode of the core.

b. Click OK to close the messages..
19. Click File > Save Block Design.
20. Close the Block Design.
21. The next step is to generate output products.

a. Inthe Sources tab of Project Manager pane (Figure 9-24), right-click RealFFT.bd and
select Generate Output Products.

b. Click Generate in the resulting dialog to initiate the generation of all output
products.

c. Select OK to ignore the warnings discussed above.

High-Level Synthesis www.xilinx.com Send Feedback 214
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=214

i: XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE

| @ % E 5 | ES Default Layout v \t%\ &)

Project Manager - project_1

Sources — O @ = L Project Summary X
el =11 1N = e
A = adl = E = @ Project Settings
=I5 Design Sources (1) }3_;) .
ks = . | Proipck name: projec
-1 Constraints (1) & Source Mode Properties.., Ctrl+E uck Family: Zyng-
=i Simulation Sources (1) | [Open File Alt+0 bct part: AN
Fh-E sim_1 (1)
Create HDL Wrapper module name: Mok O
Wiews Instantiation Template Synthesis
Generate Output Products..,
Reset Cutput Products.., us: = Ready
72020cl948¢
Export Hardware for SDE... Feradaiely
. tegy: Wivado Swnthe
Package Block Design..,

Hierarchy | IF Sources | Lib

&5 Sources | 77 Templ
Source Node Properties Alt+] DRC Yiolations
o > # Remove File fram Project... Delete
|
#, RealFFT (RealFFT.bd) Alt+Equals | pac information

Disable File Alt+Minus
Module: Re. T .

Figure 9-24: Generating Output Products
22. Create an HDL Wrapper.

a. Inthe Sources tab of the Project Manager pane, right-click RealFFT.bd and select
Create HDL Wrapper. (This is the same procedure and menu as described in the
previous step.)

b. Click OK and let Vivado manage the wrapper.

Step 5: Verify the Design

The next step in creating the final design is to verify design with the HDL test bench
provided in the lab exercise: realfft rtl tb.v.

1. Right-click Simulation Sources in the Sources tab of the Project Manager pane
(Figure 9-25).

2. Select Add Sources.

High-Level Synthesis www.xilinx.com Send Feedback 215
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=215

v
iA XI LINX Chapter 9: Using HLS IP in IP Integrator
ALL PROGRAMMABLE.-
P P Tal| W PRy | ALy 53 | ES LEIQUL Layuu > v, |
Block Design - RealFFT
Sources — [Ealis E= Diagram X | ¥ RealFF
AT B B | Cisiliroetutorials(HLS _IF
-7 Design Sources (1) iy ‘t,:i.lm.asc:ale 1 p:
i [E-kES RealFFT_wrapper (FealFFT _wrapper.y) (1) 2// lib IP_Inteq
+ Constrainks (11 3module RealFFT
2- =l Simulation Sou ’ﬁ" 4 {aclk,
Fe-fa sim_1 (1} Ctrl+E e 5 aresetn,
Hierarchy Update :j 3 realZxfEr o
2 4= 7 lzxffr
@ Refresh Hierarchy realextlt f
X| 8 realZxffr_o
Edit Constraints Sets.., il] realZxEfr_¢
Edit Simulation Sets... realdxffr
xfftiZreal ¢
B Add Sources.., Alt+A, 71| 12 xEftzreal
|13 xfftiZreal ¢
& 14 xfftiZreal ¢
@15 xEftZreal ¢
Hierarchy | IP Sources | Libraries | Compile Order 8 16 input aclk;
4% Sources | [Design Hierarchy = 17 input areset:
4p |18 input [31:001
Properties — 0O Q@ = |18 input [3:0]r
« =73 |20 dinput [0:07re
21 output realZ:

Figure 9-25: Adding Simulation Sources
3. Select Add or Create Simulation Sources in the Add Sources dialog box.
4. Click Next.
5. In the Add Sources dialog box, click the “+" symbol Figure 9-26 and select Add Files.

www.Xilinx.com

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

l Send Feedback I 216

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=216

i: XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-

¢/ Add Sources @

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HDL files, to add to your project. Create a new source file on disk and add ‘
it to your project.

Specify simulation set: |t sim_1 v
+

- Add Files...

Add Directories...

Create File...

Use Add Files, Add Directories or Create File buttons below

Add Files] I Add Directories] I Create File

Scan and add RTL include files into project
Copy sources into project
Add sources from subdirectories

Include all design sources for simulation

Figure 9-26: Add Source Dialog Window

6. Browse to the file realfft rtl tb.v in the tutorial directory
Using IP with IPI\labl\verilog tb.

7. Select it and click OK.
8. Select the checkbox Copy sources into the project (Figure 9-27).

High-Level Synthesis www.xilinx.com Send Feedback 217
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=217

i: XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE-

4. Add Sources @

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HOL files, to add to your project. Create a new source file on '?1‘/
disk and add it to your project.

Specify simulation set: | &= sim_1 -
Index Name Library Location
@ 1 realfft_rtl_tb.v work C:fVivado_HLS_Tutorial/Using_IP_with_IPI/labl/verilog_tb
b2
£
[AddFiles.. | I Add Directories... ‘ I Create File...

["] scan and add RTL include files into project
Copy sources into project
Add sources from subdirectories

Include all design sources for simulation

Next = Finish ‘I Cancel

Figure 9-27: Copy Design Sources

Note: When you copy the design source files into the project, edits to the file(s) are not
automatically propagated to the original source file.

9. Click Finish.

10. Click Run Simulation in the Flow Navigator (Figure 9-28) and select Run Behavioral
Simulation.

Flows Mavigator L
4 Project Manager

@ Project Settings

O? Add Sources

ﬁ IP Catalog

4 TP Integrator
Iﬁ,”‘ Create Block Design
--,b Open Block Design

4 Simulation
@ Simulation Settings
() Run Simulation

Run Behaviaral Sirmulation

4 RTLA

>

Figure 9-28: Execute Simulation

11. Once the simulation has started, click the Run All icon to complete simulation.

High-Level Synthesis www.xilinx.com Send Feedback 218
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=218

i: XI I_INX Chapter 9: Using HLS IP in IP Integrator

ALL PROGRAMMABLE

e
elp
b | 55 Default Layout - \1&\ 4] Em Jpiri 10 |us = | b= Q|8
ation - Functional - sim_1 - realfft_rtl_th Run Al (F3)
— O x Run the simulation until there are no more events or until a Verilog pp
= =1 '$finish' or '$stop’.
2| =GB | & ~ L T ST |
Design Unit Block Type | |Name Value Data Type | ‘r:]u Name

Figure 9-29: Run the Simulation to Conclusion

Conclusion

In this tutorial, you learned:

+ How to create Vivado HLS IP using a Tcl script.

« How to import a created design using IP integrator (IPI) and include both Xilinx IP and
the Vivado IP blocks.

« How to verify the design in IPL

High-Level Synthesis www.xilinx.com Send Feedback 219
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=219

& XILINX

ALL PROGRAMMABLE.

Chapter 10

Using HLS IP in a Zyng AP SoC Design

Overview

A common use of High-Level Synthesis design is to create an accelerator for a CPU - to
move code that executes on the CPU into the FPGA programmable logic to improve
performance. This tutorial shows how you can incorporate a design created with High-Level
Synthesis into a Zynq device.

This tutorial consists of two lab exercises:

Lab 1 Description

You create and configure a simple HLS design to work with the CPU on a Zynq device. The
HLS design used in this lab is simple to allow the focus of the tutorial to be on explaining
the connections to the CPU and how to configure the software drivers created by
High-Level Synthesis to control the device and manage interrupts.

Lab 2 Description

This lab illustrates a common high performance connection scheme for connecting
hardware accelerator blocks that consume data originating in the CPU memory and/or
producing data destined for it in a streaming manner. The lab highlights the software
requirements to avoid cache coherency issues.

Tutorial Design Description

You can download the tutorial design file can be downloaded from the Xilinx Website. See
the information in Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory Vivado HLS Tutorial\
Using IP with Zyng.

The sample design is a simple multiple accumulate block. The focus of this tutorial exercise
is the methodology, connections and integration of the software drivers. (The tutorial does
not focus on the logic in the design itself.)

High-Level Synthesis www.xilinx.com Send Feedback 220
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=220

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

Lab 1: Implement Vivado HLS IP on a Zynq Device

This lab exercise integrates both the High-Level Synthesis IP and the software drivers
created by HLS to control the IP in a design implemented on a Zynq device.

ﬁ IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create a Vivado HLS IP Block

1. Open the Vivado HLS Command Prompt.

- On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado HLS > Vivado HLS 2016.1 Command Prompt (Figure 10-1).

o On Linux, open a new shell.

Vivado 2016.1
_if: Add Design Tools or Devices 2016.1
‘n__w Manage Xilinx Licenses
$.. Uninstall 2016.1
B Vivado 2016.1 Tcl Shell
¢ Vivado 20161
System Generator
Vivado HLS
Bl Vivado HLS 2016.1 Command Promp
| vivado HLS 2016.1 ~

m

A n
Figure 10-1: Vivado HLS Command Prompt

2. Using the command prompt window, change the directory to
Vivado HLS TutoriallUsing IP with Zyng\labl\hls macc (Figure 10-2).

3. Typevivado hls -f run hls.tcl to create the HLS IP (Figure 10-2).

High-Level Synthesis www.xilinx.com Send Feedback 221
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=221

§: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

C:\Vivado_HLS_Tutorial>cd Using_IP_with_2Zynqg

C:\Vivado_HLS_Tutorial\Using_IP_with_2yng>cd labl

C:\Vivado_HLS_Tutorial\Using_IP_with_2Zyng\labl1>cd hls_macc

C:\Vivado_HLS_Tutorial\Using_IP_with_2Zyng\labl1\hls_macc>vivado_hls -f run_hls.tcliE

Figure 10-2: Create the HLS Design

When the script completes, there is a Vivado HLS project directory vhls prj, which
contains the HLS IP, including the Vivado IP Catalog archive for use in Vivado designs.

The remainder of this tutorial exercise shows how the Vivado HLS IP blocks can be
integrated into a Zynq design using IP Integrator.

Step 2: Create a Vivado Zynq Project
1. Launch the Vivado Design Suite (not Vivado HLS):

o On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado 2016.1.

o On Linux, type vivado in the shell.

2. From the Welcome screen, click Create New Project (Figure 10-3).

High-Level Synthesis www.xilinx.com Send Feedback 222
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=222

& XILINX

ALL PROGRAMMABLE-

3.

File Flow Tools Window Help

Chapter 10:

Using HLS IP in a Zynq AP SoC Design

VIVADO! s s

Quick Start
A ._ "@
Create Ne};’rmect Open Pm];.ct
Tasks
g
=
ME@IP Open Hardware Manager

Information Center

9 B

Documentation and Tutorials Quick Take Videos

E_

Open Bxample Project

Xilinx Tcl Store

Release Motes Guide

& XILINX

ALL PROGRAMMAHLE.

= Td Console

Figure 10-3:

In the New Project wizard:

a. Click Next.

Vivado Welcome Screen

b. In the Project Location text entry box, browse to the location of the tutorial file
directory Using IP with Zyng\labl and click Next (Figure 10-4).

c. On the Project Type page, select RTL Project and Do not specify sources at this
time (if it is not the default).

d. Click Next.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

| Send Feedback I 223

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=223

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

4 New Project @

Project Name

Enter a name for your project and specify a directory where the project data files will be stored ':]“/
Project name: | project_1
Project location: C:,-’Vivado_HLS_TutoriaI,-’Using_IP_with_Zynq,-’Iab1| I:l

| Create project subdirectory

Project will be created at: C:/Vivado_HLS_Tutorial/Using_IP_with_Zyng/lab1/project_1

m

< Back Cancel

Figure 10-4: Specify the Vivado Project Directory
4. On the Default Part page:
a. Click Boards.
b. Select the ZYNQ-7 ZC702 Evaluation Board (Figure 10-5).

High-Level Synthesis www.xilinx.com Send Feedback 224
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=224

8 XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-~

#. New Project =
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. '

Select: @ Parts |@ Boards

4 Filter
Vendor: All hd
Display Name: | All -
Board Rev: Latest hd
Reset All Filters
Search:

. ') ' Avali
Display Name Vendor Board Rev Part /O Pin Count File Version 0B
@ ZedBoard Zynq Evaluation and Development Kit em.avnet.com d @ xc72020clg484-1 484 1.3 200
@ Artix-7 AC701 Evaluation Platform xilinx.com kil @ xc7a200tfbg676-2 676 1.2 400
@ Kintex-7 KC705 Evaluation Platform xilinx.com 1.1 @ xc7k325tffga00-2 900 1.2 500
M Kintex-Ultrascale KCU105 Evaluation Platform xilinx.com 1.0 @ xckuo40-ffval156-2-e 1,156 1.0 520
@ Virtex-7 VC707 Evaluation Flatform xilinx.com 1.1 @ xc7wndB5tifg1761-2 1,761 1.2 700
@ Virtex-7 VC709 Evaluation Flatform xilinx.com 1.0 @ xc7vxR90tfgl761-2 1,761 1.6 850

¢ ZYNQ-7 ZC702 Evaluation Board halinccom— [1.0 %

B 7YNQ-7 ZC706 Evaluation Board xilinx.com 1.1 @ xc7z045ffgo00-2 900

1.2

362

4 i | =

’ < Back ” Mext =] Finish

Figure 10-5: Specify the Vivado Project Details
a. Click Next.

b. Click Finish on the New Project Summary Page.

The project workspace opens as shown in Figure 10-6.

High-Level Synthesis www.xilinx.com Send Feedback 225
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=225

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-

4. project.1 - [C/Vivado_HLS Tutorial/Using_IP with_Zyna/lbl/project 1fproject Lupr - Vivado 20151 ol s
File Edit Flow Tools Window Layout View Help Se om
Pl X X & DB & X LG Szt | &K|© Ready
Flow Navigator «| | Project Manager - project 1 X
a8 Sources ~ 02 x| L Project Summary X oe X
QFe ek BIE = a
4 Project Manager N Wl B 1 Project Settings Edit %
{3 Project Settings 0 Design Sources & Project niame: roject 1
! 4 [+ Constraints) ' project..
o*‘j’ Add Sources 5 Simulation Sources Project location: C:/Vivado_HLS_Tutorial/Using_IP_with_Zynq/lab1/project 1
) Language Templates ~Esim_1 Product family: ~ Zyng-7000
1F 1P Catalog Project part: ZYNQ-7 2C702 Evaluation Board (xc7z020clg484-1)
Top module name: - Hot defined
4 TP Integrator
7 Create Block Design Board Part %
v "
Open Block Design Display name: ZYNQ-7 ZC702 Evaluation Board
W Generate Block Design Board part name: xilinx.com:zc702:part0:1.2 =
4 Simulation Hierarchy | Libraries | Comple Order Repository path: C:/Xilinx/Vivado/2015.1/data/boards/board_files
3 simulation Settings & Sources | ¥ Templates URL: i conmfzc70
(@ Run Simulati Board overview: ZYNQ-7 ZC702 Evaluation Board
@ un smieton Properties -0 x
4 RTL Analysis %
{5 Elaboration Settings
» 5% Open Elaborated Design Synthesis % Implementation %
4 Syithesis Status: Mot ctarted Status: ot started
% Synthesis Setings Messages: No errors or wamings Messages: No errors or wamings
9 Run Syrthesis Select an object to see properties Part: XcT2020clgd84-1 Part: X200dgdsd-1
» B Open Synthesized Design Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Defaults
Incremental compile: None
4 Implementation
@ Implementation Settings d
Ner Vinltinne @~ Timinn @~
> Run Implementation
2 X
> ¥ Open Implemented Design F!eswgn fus =l
b A Name Congtraints ~ Status Progress WNS TNS WHS THS TPWS FaledRoutes LUT% LUTs FF% FFs BRAM% BRAMs DSP%
4P D =
rogrem and e & == synth_L constrs 1 Hot started 0%
& Bistrean Settings & himplL congtrs 1 Mot started 0%
ﬁ Generate Bitstream
» " Open Hardware Manager 7]
»
4
$
\'\\)
Kl ([} r
2Tdl Console | © Messages | & Log | 2 Reports, 3 Design Runs

Figure 10-6: Initial Vivado Zynq Project

Step 3: Add HLS IP to the IP Catalog

1. In the Project Manager area of the Flow Navigator pane, click IP Catalog.

High-Level Synthesis www.xilinx.com Send Feedback 226
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=226

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-

File Edit Flow Tools Window Layout View Help

Pl W] X|® b ¥ H K| L G | efault Layout i & B YK
Flow Navigator « Project Manager - project_1
Q E % Sources — O =

AZE et B
0 Design Sources
| Constraints

4 Project Manager
@ Project Settings

&% Add Sources 1= Simulation Sources

%/ Language Templates -l sim_1

1F 1P catalog
4 P Integrator

;7 Create Block Design

¥ Open Block Design

piGeneiatsRiocnesin Hierarchy | Libraries | Compile Order

4 Simulation £ Sources | V Templates

Figure 10-7: Open the IP Catalog

The IP Catalog appears in the main pane of the workspace.

2. Click the IP Settings icon (Figure 10-8).

i @ %K E 155 | ES Default Layout - \)
Project Manager - project_1

Sources N T4 E Project Summary x| 1F IP Catalog X
A= R

1 Design Sources
| Constraints (1)
7 Simulation Sources (1)

a1

Axl4

= Automotive & Industrial

A3 Infrastructure

BaselP

Basic Elements
Communication & Mebworking
Debug & Verification

Digital Signal Processing

ﬁ Embedded Processing

I% [#-[= FPGA Features and Design

IP Settings
Settings for IP Catalog, IP Generation, and IP Packager
- Standard Bus Interfaces

[#-[= Yideo & Image Processing

Hierarchy | Libraries | Compile Crder
& Sources | 7 Templates
Properties — 0O Q@ =

P

Details

|
Figure 10-8: Open the IP Catalog Settings

3. In the IP section of the Project Settings dialog box, click the "+” symbol to Add
Repository.

4. In the IP Repositories dialog box:

a. Browse to the location of the IP created by Vivado HLS,
Using_IP_with_Zynqg\lab1\hls_macc\vhls_prj\solutionI\impN\ip and click Select.

High-Level Synthesis www.xilinx.com Send Feedback 227
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=227

& XILINX

ALL PROGRAMMABLE-~

Chapter 10: Using HLS IP in a Zynq AP SoC Design

4. Project Settings

General

Q

Simulation

%

Elaboration

»

Synthesis

»

Implementation

R 2
100
oo

Bitstream

@:

P

Repository Manager rEackager rlP Cache]

() Add directories to the list of repositories. You may then add additional IP to a selected repository. If an IP
is disabled then a tool-tip will alert you to the reason.

TP Repositories
o+ c:fVivado_HLS_Tutorial/Using_IP_with_Zynq/labl/hls_macc/vhls_prj/solution1/impl/ip (Project)

t
+

Refresh all

TP in Selected Repository

o+ Hls_macc (xilinx.com:hls:hls_macc:1.0)

Refresh Repository

POk |[Cancel H Apply

Figure 10-9: IP Repository

5. Click OK to close the IP repository manager.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback l 228

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=228

& XILINX

Chapter 10: Using HLS IP in a Zynq AP SoC Design
ALL PROGRAMMABLE.

4. Project Settings

==

) P

w Repository Manager rEackager

General @ Add directories to the list of repositories. You may then add additional IP to a selected repository. If an IP
@\ is disabled then a tool-tip will alert you to the reason.
IF Repositories

Simulation . " " " " " .
= c:/Vivado_HLS_Tutorial/Using_IP_with_Zyng/labl/vivado_ip_repo (Project)

> 1
Synthesis 2

’ Add Repository...] ’ Refresh All

IP in Selected Repository

His_macc (xilinx.com:hls:hls_macc:1.0)

Add IP...] ’ Refresh Repository]

’ OK ” Cancel ” Apply

Figure 10-10: HLS IP in the Repository
6. There is now an HLS IP in the IP Catalog, HLS macc.

Step 4: Creating an IP Integrator Block Design of the System
1. In the IP Integrator area of the Flow Navigator, click Create Block Design and type
zyng Design in the dialog box.

High-Level Synthesis www.xilinx.com

| Send Feedback l 229
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=229

& XILINX

ALL PROGRAMMABLE-

File Edit Flow Tools Window

A 0o

Flow Navigator

Layout View

X [P D | & | X [|2 Default Layout ~ e K @

<«

Help

Project Manager - project_1

Chapter 10:

Using HLS IP in a Zynq AP SoC Design

QA= Sources — 0O = L Project Summary x | iFIP Catalog x
™ pldg 2 b T
4 Project Manager T RE R ?l] search:
. ; +{1 Design Sources = -1
P ct Sett H o
% roject Settings £ Constraints ~_| Name AXT4
@ Add Sources [Simulation Sources = |{F DUC/DDC Compiler AXI4-Stream
/ Language Templates =l sim_1 & iF ECC
Q P Catalo B iF Ethernet 1000BASE-X PCS/PMA or SGMII
2 % {F Ethernet PHY MII to Reduced MII
ER iF Fast Fourier Transform AXI4-Stream
9 UPIIEEy :ﬂ: £F FIFO Generator AXH4-Stream, A>
J Create Block Design VA £F FIR Compiler AXI4-Stream
¥ Open Block Design) =
B e ¢ Create Block Design m
B Generate Block Design Hierarchy | Libraries | Comy @ -Stree
4 Simulation & Sources | 7 Templat Please specify name of block design. ‘
% Simulation Settings IP Properties i
(@ Run Simulation = Design name: Zynq_Design| e
= R = = -Strez
4 RTL Analysis ik His_macc Directory: & <Local to Project> - m
- i
% Open Elaborated Design Version: 1.0 (Rev. 1409 Specify source set: 1 Design Sources ~
4 Synthesis Interfaces: AXI4
@ Synthesis Settings Description: An IP generate
& Run Synthesis Status: Pre-Production
" ; OK Cancel
> [@¥ Open Synthesized Design License: Included] ’
< I L | Stafueg: Pre-Broductinn
4 Implementation
% Implementation Settings Design Runs
[> Run Implementation N[Name Constraints ~ WNS ~ TNS WHS THS TPWS Failed Routes LUT
> ¥ Open Implemented Design | [=h=b synth_1 constrs_1
iy . e

Figure 10-11: Create the Zynqg Design

The Block Design view opens in the main pane, with a new Diagram tab, containing a blank
Block Design canvas.

2. Press the Add IP button on the main screen open the IP search dialog.

a. Type zyng into the Search text entry box.

b. Select ZYNQ7 Processing System and press Enter.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

wWww.Xili

nx.com

| Send Feedback I 230

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=230

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-

Z= Diagram x [mER
#] 4 Zynq_Design
-«

-3

Search: zynq (3 matches)

v 7| 5

IF Hls_macc

\T_7YNQ7 Processing System '

iF ZYNQ7 Processing System BFM

ENTER to select, ESC to cancel, Ctrl+Q for P details

This design is empty. Press the ﬁ button to add I

e 2R Ik) PR

Figure 10-12: Add a CPU Processor to the Design

An IP symbol for the ZYNQ7 Processing System appears on the canvas.

3. Double-click the ZYNQ IP symbol to open the associated Re-customize IP dialog box.
a. Click the Presets icon and select ZC702 (Figure 10-13).

High-Level Synthesis www.xilinx.com Send Feedback 231
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=231

8 XI I_I NX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-~

1F Re-customize IP [
ZYNQ7 Processing System (5.5)

il Documentation &3 Presets [TP Location %} Import XPS Settings

Fage Navigator Current Preset: None

Summary Report
Zyngq Block Design Save Configuration...
i lrals
PS-PL Configuration Apply Configuration... g;eral -
Default ezl S] Application Processor Unit (APU}
Peripheral /O Pins Microzed
] X ARM Cortex -A8 ARM Cortex “A8
ZC702
MIO Configuration ——— e P
ZC706 Control Regs e
Clock Configuration ZedBoard 3
1 . f__| T AcF
DDR. Configuration m; :"? 7 s Snoop Control unit 4
e <= s01 | —P‘ P l 512 KB L2 Cache and Controller Pors
SMC Timing Calculation e e
USB 1 > oeM 256 KB
Interrupts ENET O » Intercannact SRAM
3 Companants
: L__ENETH | Cantral
H Bank1 t
: MIO FLASH Mamary T
(53:16) interfaces f— B
L Memory N
Pragrammabla D DDR2/3 L FDDR2 |
—— PEVE I Logic to Mamary Controllar
‘SMC Timing
Calculation
' DMA Bync FE S
= 5 [0
Resats I I Gan:::(m | ; 5' : : Processing System(PS)
0]1]2]3 "
001 L2820 e 320 GP 320 GP C,';aﬁ‘ﬂs Conig [P High Parformamea XADC
Mo gm0y PSFPL AXI axl AES A1 320/64h Slave
Clock Ports Master Slave SHA Ports
Parls Ports

Programmable Logic(PL)

OK] [Cancel

Figure 10-13: Configure the Zyng AP SoC
4. Click MIO Configuration in the Page Navigator pane.

a. Expand the Application Processor Unit tree view.

b. Deselect Timer 0 (or any other timers if they are selected).

High-Level Synthesis www.xilinx.com

| Send Feedback l 232
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=232

8 XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-~

1F Re-customize IP
ZYNQ7 Processing System (5.3)

@ Documentation ﬁ Presets | IP Location @ Import XPS Settings

Page Navigator « ‘MIDConﬁguraﬁon
Zyng Block Design 4| Bank 0 10 Voltage Lvemos 1.8y~ Bank 110 Voltage | LVCMOS 1.8V ~
Q
PS-PL Configuration | Search: |Q
[£5]
rilhc
Peripheral /O Pins % Peripheral 10 Signal 10 Type Speed Pullup Direction
MID Configuration || ® ' VemaryInicilaces
: ail] [/0 Peripherals

Application Processor Unit

Clock Configuration

DDR Configuration
|:| Timer 1
SMC Timing Calculation
: [7] watchdog
Interrupts 3 Programmable Logic Test and Debug

Figure 10-14: Zynq AP SoC MIO Configuration
5. Click Interrupts in the Page Navigator pane.
a. Select Fabric Interrupts and expand its tree view.

b. Select IRQ_F2P[15:0] and click OK to close the Re-customize IP dialog box.

ﬂ Re-customize IP
Z¥YNQ7 Processing System (5.01)

ﬁ Documentation [IP Lacation @ Presets

Page Mavigator “ |Interrupts
Zynq Block Design : Search:
P5-PL Configuration T Interrupt Port) Description
[
) _ g | B Fabric Interrupts Enable PL Interrupts ko PS5 and vi
MIO Configuration = PL-PS Interrupt Parts
MIO Table Wi 9 , Enables 16-bit shared interrupt p
anle view [7] Cored_nFIg iz Enables Fast private interrupt sig
e @ [Cored_nIRG 31 Enables private interrupt signal fo
[[] Corel_nFIg] Enables Fast private interrupt sig
DDR Corfiguration] [Caorel_nIRG 31 Enables private interrupt signal f
=+ PS-PL Inkerrupt Parts
SMC Timing Calculation IRQ_P2F_DMAC_ABORT Enables shared interrupt abart sic
IRG_P2F_DMACD Enables shared interrupt signal 0
Interrupts IRG_P2F_DMACL Enables shared interrupt signal 1
P
IRG_P2F_DMACZ Enables shared interrupt signal 2

Figure 10-15: Zynq AP SoC Interrupt Configuration

IPI provides Designer Assistance to automate certain tasks, such as making the correct
external connections to DDR memory and Fixed I/O for the ZYNQ PS7.

High-Level Synthesis www.xilinx.com Send Feedback 233
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=233

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-

6. Click the Run Block Automation link under the title bar (Figure 10-16).
a. Ensure processing_system7_0 is selected.

b. Ensure Apply Board Presets is deselected. If this remains selected it re-applies the
timers that were disabled in step 4 and results in additional ports on the Zynq block
in Figure 10-16.

c. Click OK to complete in the resulting dialog box.

e Diagram X | B Address Editor X O x
#] 4 Zynq_Design
Q¢| (% Designer Assistance available. Run Block Automation
LN -
5 .
4. Run Block Automation
[
Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its
)
configuration options on the right. ‘
iy
Q @, |[=H{] All Automation (2 out of 1 selected) Description
= AR LAE dprocessing_system7_0
= N Zyng7 block automation applies current board preset and generates external
= = connections for FIXED_IO, Trigger and DDR interfaces.
& WOTE: Apply Board Preset will discard existing IP configuration - please uncheck
b this box, if you wish to retain previous configuration.
ﬁ: Instance: [processing_system?7_0
¥
@ Options
@ Make Interface External: FIXED IO, DDR
& Apply Board Preset: I
i
B Cross Trigger In: Disable
Cross Trigger Out: Disable -
l 0K] l Cancel l
4 b

Figure 10-16: Run Automation
7. To add HLS IP to the design:
a. right-click in an open space of canvas and select Add IP from the context menu.

b. Type hls in the Search text entry box and press Enter to add it to design
(Figure 10-17).

High-Level Synthesis www.xilinx.com Send Feedback 234
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=234

8 XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-

Tw
*

Z= Diagram X | B Address Editor X =
#[]| & Zyng_Design

QOy| (@ Designer Assistance available. Run Connection Automation

]

i -

processing_system7_0

&
= PTP_ETHERNET 045 |||
R DDR<h ||:BDDR
W FIXED_IO <k FIXED_IO
M_AXI_GPO_ACLK - — =
w IRQ_F2P[0:0] ZYNO T o
a, M_AXI_GPOb
FCLK_CLKO
& FCLK_RESETO_N
i,
i ZYNQ7 Processing System
&
e
@ hls_macc_0
&l

*,
+

“|dpbs_axi HLS_MACC_PERIPH_BUS)| Virado™ LS
ap_ck interrupt =
ap_rst_n '

Hls_macc (Pre-Production)

Figure 10-17: Processor and HLS IP

Designer assistance is also available to automate the interconnection of IP blocks.

8. Click the Run Connection Automation link at the top of the canvas.

9. Select /hls macc 0/S AXI HLS MACC_PERIPH BUS and click OK in the resulting
dialog box to automatically connect the HLS IP to the M_AXI GPO interface of the Zynq
Processor.

This adds an AXIInterconnect (block instance: processing system7 0), a Proc Sys Reset
block and makes all necessary AXI related connections to create the design shown in
Figure 10-18.

High-Level Synthesis www.xilinx.com Send Feedback 235
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=235

& XILINX

ALL PROGRAMMABLE-

Chapter 10: Using HLS IP in a Zynq AP SoC Design

Z= Diagram X | [Address Editor X
#] & Zyng_Design »
&
b
Wl processing_system7_0
PTP_ETHERNET_0:
f& DDR:
A M_AXL_GPO_ACLK - e
== USBIND_0<h
0:0° -
= morroo ZYNQ o
= FOLK_CLK
ﬁ FOLK_RESETO_Np—
[ZYNQ7 Processing System
3 rst_processing_systerm7_0_50M i tem7
3 processing_system
slowest_sync_ck mb_resst = [+ |
L@ his_macc_0 . . ’ e
Nt_reset_in bus_gnet_resat[0:0] A AT
& 1| dhs_ai_HLS_MACC_PERIPH BUS | vradxris —aw re=t_in peripheral_rest[0:0] jm ACLK
p_ck intermupt [~ —mb_debug_sys_rst t_aresetn{0:0] =

@ prst_n ' ={dom_locked peripheral_aresetn{(:0] pa— S00_ACLK D§
o : . 500 ARESETN
e_) His_macc (Pre-Production) Processor System Reset MO ACLE .
=4 00_ARESETN

AXI Interco

Figure 10-18: Design with AXI4 Interconnect

The only remaining connection necessary is from the HLS interrupt port to the PS7

IRQ_F2P port.

10. Mouse over the interrupt pin on the hls macc 0 IP symbol. When the cursor changes

to pencil shape, click

and drag to the IRQ F2P[0:0] port of the PS7 and release,

completing the connection.

11. Select the Address Editor tab and confirm that the hl1s macc 0 peripheral has been
assigned a master address range. If it has not, click the Auto Assign Address icon.

%= Diagram X | [Address Editor x
A el

Slave Interface Base Name Offset Address Range High Address
—_
e [=H4F processing_system?_0
% Bﬂ Data (32 address bits : 0x40000000 [1G])
- = hls_macc_0 s _axi_HLS_MA... Reg 0x43C0_0000 64K+ 0x43C0_FFFF

Owe

Figure 10-19: Address Editor

The final step in the Block Diagram design entry process is to validate the design.

12. Click the Validate Design icon in the toolbar.

13. Upon successful validation, save the Block Design.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

| Send Feedback I 236

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=236

& XILINX

ALL PROGRAMMABLE

Chapter 10:

Step 5: Implementing the System

Using HLS IP in a Zynq AP SoC Design

Before proceeding with the system design, you must generate implementation sources and
create an HDL wrapper as the top-level module for synthesis and implementation.

1. Return to the Project Manager view by clicking on Project Manager in the Flow

Navigator.

2. In the Sources browser in the main workspace pane, a

Block Diagram object called

zyng_ Design is at the top of the Design Sources tree view (Figure 10-20). Right-click

this object and select Generate Output Products.

3. In the resulting dialog box, click Generate to start the
necessary source files.

process of generating the

File Edit Flow Tools Window Layout View Help
A2 E o E X P D | H K L G S Default Layout ~| K| ©
Flow Navigator « Block Design - Zyng_Design *
Q== Sources — O % Z= Diagram X | Address Editc
QT 2 R|IE
4 Project Manager — g B :_\J Cell
y i 1y -
#% Project Settings =+ Design Sources (1) = | =H4F processing_system?7_0
" =R 7yng_Design (} B Data (32 address bits :
{3 Add Sources 145 Constraints & Source Node Properties... Ctrl+E ‘um hls macc 0
&/ Language Templates =1 Simulation Sourcq (¥ Open File Alt+0
1F 1P catalog 5 sim_1 (1) Create HDL Wrapper...
S 5 View Instantiation Template
egrator
™ N Generate Output Products...
/F Create Block Design
. Reset Output Products...
5% open Block Design -
Out-of-Context Settings...
&% Generate Block Design g
Package Block Design...
4 Simulati &
fmufation Hierarchy | IP Source
% Simulation Settings -
)) 44 Sources | El De
(I, Run Simulation Alt+1
4 RTL Analysis Source zle Riopeities * Remove File from Project... Delete
L i}
3 ; « >R Alt+Equals
> @Y Open Elaborated Design p - ! i
“ Zyng_Design.bd Disable File Alt+Minus
4 Synthesis -
@ _— . Location: C:/Vivadol Hierarchy Update ’
SYRInCSESS g Type: Hraihe @ Refresh Hierarchy
& Run Synthesis —] TP Hierarchy 4
> ¥ Open Synthesized Design)
General | Properties || **
4 Implementation
. . Tel Console
% Implementation Settings — Set Used In...
) LZ_] { et_property - - 1
[» Run Implementation | Blapply bd_autq Edit Constraints Sets... [Master "/proceasing_
3 = 1
> nen Implemented Design i create_bd ce it Simulation Sets... : - MEmory PoPE
¥ Open Impl ted Desig || 1 bd_cel Edit Simulation Set 06 . M (MB)
DD INFO: [Ipptcl Associate ELF Files poard Tab not created
4 Program and Debug @l| | </hls_macc_o/] kd into </processing_s
#% Bitstream Settings | Ciapply_bd_autq @ Add Sources... Alt+A 00:00:07 . Memory (ME

Figure 10-20: Generate Output Producs

4. Right-clickthe Zyng Design object again, select Create HDL Wrapper, and click OK to

exit the resulting dialog box.

The top-level of the Design Sources tree becomes the Zyng Design wrapper.v file. The
design is now ready to be synthesized, implemented and to have an FPGA programming

bitstream generated.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback I 237

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=237

{: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

5. Click Generate Bitstream to initiate the remainder of the flow.
a. Click Yes to implement the design.

6. In the dialog that appears after bitstream generation has completed, select Open
Implemented Design and click OK.

Step 6: Developing Software and Running it on the ZYNQ
System

You are now ready to export the design to Xilinx SDK. In SDK, you create software that runs
on a ZC702 board (if available). A driver for the HLS block was generated during HLS export
of the Vivado IP Catalog package. This driver must be made available in SDK so that the PS7
software can communicate with the block.

1. From the Vivado File menu select Export > Export Hardware.

Note: Both the IPI Block Design and the Implemented Design must be open in the Vivado
workspace for this step to complete successfully.

2. In the Export Hardware dialog box (Figure 10-21), ensure that the Include Bitstream is
enabled and click OK.

4. Export Hardware =

Export hardware platform for software
development tools.

Figure 10-21: Export Hardware Dialog Box
3. From the Vivado File menu, select Launch SDK.
4. Click OK to open SDK.
5. From the SDK File menu, select New > Application Project.

a. In the New Project dialog enter the project name Zyng Design Test.

b. Click Next.
c. Select the Hello World template.
d. Click Finish.

High-Level Synthesis www.xilinx.com Send Feedback 238
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=238

& XILINX

ALL PROGRAMMABLE-

Chapter 10:

Using HLS IP in a Zynq AP SoC Design

[ew Project

Application Project

Project narme: Zyng_Design_Test
[¥] Use default location
Civilinedvtutorialsh\HLS IPIntegratortlab2hproject_Thproject 1

default

Browese..,

Harduvare Platform I huw_platform_0

Processor ’ps?_cortexag_ﬂ

05 Platform Istandalone

Language @C (DC++

Board Support Package @) Create New Zyng_Design_Test_bsp

Use existing

@ <Back [Net> || Finish

Cancel

Figure 10-22:

Application Project

6. Power up the ZC702 board and test the Hello World application. Ensure the board has all
the connections to allow you to download the bitstream on the FPGA device. See the
documentation that accompanies the ZC702 development board.

7. Click Xilinx Tools > Program FPGA (or toolbar icon).

Notice that the Done LED (DS3) is now on.

8. Setup a Terminal in the tab at bottom of workspace:

a. Click the Connect icon (Figure 10-23).

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback I 239

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=239

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

Peripheral Drivers
Drivers present in the Board Support Package,
hls_mace_1 hls_rmacc_top
ps7_afi_ generic

bs7 afi 1 aeneric
4 m 3

Orverview | Source

[Z1 Problems | ¥ Tasks | E Console | = Properties | & Terminal 1 53 & = ._,E| M M =08
Mo Connection Selected

Figure 10-23: The Connect Icon
b. Select Connection Type > Serial.

c. Select the COM port to which the USB UART cable is connected (generally not COM1
or COM3). On Windows, if you are not sure, open the Device Manager and identify
the port with the Silicon Labs driver under Ports (COM & LPT).

d. Change the Baud Rate to 115200 (Figure 10-24).
e. Click OK to exit the Terminal Settings dialog box.

@Terminal Settings @

Wiewr Settings:
Wiew Title: Terrninal 1

Encading: 150-8839-1 R

Connection Type:

Serial -
Settings:

Port: COMS -
Baud Rate: 115200 -
Data Bits: 8 -
Stop Bits: 1 -
Parity: MNone -
Flow Control: |Mone -

Timeout {seci: 5

[Ok] | Cancel |

Figure 10-24: Terminal Settings

9. Right-click the application project Zynq_Design_Test in the Explorer pane
(Figure 10-25).

a. Click Run As > Launch on Hardware.

High-Level Synthesis www.xilinx.com Send Feedback 240
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=240

& XILINX

ALL PROGRAMMABLE

- -

v o

L[Praject Explarer &2 =08 L systemaxml

==
a g hu_platform_0
|&| psT_init.c Pewr
a| ps?_inith
fa) ps _!n! Go Into
@ psT_inithtml
@] psT_init.tcl Open in Mew Windou
systerm.bit
I systernxml =| Copy Ctrl+C
125 Zyng_Design_Tes Paste Ctrl+y
a [Tynq_Design_Tes ¢ Delete Delete
i BSP Documet
Source
- = ps?_cortexad
|| libgen.log Move...
libgen.option Rename.., F2
Makefile
ru
Hh, systermn.mss 2 Import.
i Export.,
Build Project
Clean Project
& Refresh FS

Close Project:

Close Unrelated Projects

Build Configurations
hake Targets

Index

Show in Remote Systerns wiew
Convert Tou,

Run A3

Debug &s

Profile As

Teamn

Cormpare Yifith

ke L Fumn N Restare frarn | aeal Histane

Figure 10-25:

Chapter 10:

Hh systermumss B2

Zyng_Design_Test_bsp Board Support Package

rommpiled to run on the following target.

redtutorial s\HLS_ IPIntegratorab2yproject_1vproje
ortexald_l

a simple, low-level softoare layer, It provides acce
d exceptions as well as the basic features of a hoste
rtand exit,

309 a

port Package,
c_top

sale &2 = Properties | & Terminal 1

1 Launch on Hardware
2 Local C/C++ Application
3 Remote ARM Linux Application

MM

Run Configurations..,

Run the Application Project

10. Switch to the Terminal tab and confirm that Hello World was received.

FETIPNEral LTIYers
Drivers present in the Board Support Package,

hls_mace_1 hls_rmacc_top
ps7_afi_ generic

bs7 afi 1 aeneric
4 m

Orverview | Source

[£4 Problems | ¥ Tasks | El Console | =l Properties | 4 Terminal 1 &3

Serial: (COMS, 115200, 8, 1, None, Mone - CONMECTED] - Encoding: (I50-8859-1)
Hello Weorld

Mone - CONMMECTED) - Encoding: (I50-8859-1)

Figure 10-26:

High-Level Synthesis www.xilinx.com

UG871 (v2016.2) June 8, 2016

A EEHE &2

Console Output

Using HLS IP in a Zynq AP SoC Design

l Send Feedback I 241

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=241

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

Step 7: Modify software to communicate with HLS block

The completely modified source file is available in the arm code directory of the tutorial
file set. The modifications are discussed in detail below.

1. Open the helloworld.c source file.

2. Several BSP (and standard C) header files need to be included:

#include <stdlib.h> // Standard C functions, e.g. exit()

#include <stdbool.h> // Provides a Boolean data type for ANSI/ISO-C
#include "xparameters.h" // Parameter definitions for processor peripherals
#include "xscugic.h" // Processor interrupt controller device driver
#include "xHls macc.h" // Device driver for HLS HW block

3. Define variables for the HLS block and interrupt controller instance data. The variables
will be passed to driver API calls as handles in the respective hardware.

// HLS macc HW instance

XHls macc HlsMacc;

//Interrupt Controller Instance
XScuGic ScuGic;

4. Define global variables to interface with the interrupt service routine (ISR).

volatile static int RunHlsMacc = 0;
volatile static int ResultAvailHlsMacc = 0;

5. Define a function to wrap all run-once API initialization function calls for the HLS block.

int hls macc init (XHls macc *hls maccPtr)
{

XHls macc Config *cfgPtr;

int status;

cfgPtr = XHls macc_ LookupConfig (XPAR XHLS MACC 0 DEVICE ID);

if (!cfgPtr) {
print ("ERROR: Lookup of accelerator configuration failed.\n\r");
return XST FAILURE;

}

status = XHls macc CfgInitialize (hls maccPtr, cfgPtr);

if (status != XST SUCCESS) {
print ("ERROR: Could not initialize accelerator.\n\r");
return XST FAILURE;

}

return status;

}

6. Define a helper function to wrap the HLS block API calls required to enable its interrupt
and start the block.

void hls macc_start(void *InstancePtr) {
XHls macc *pAccelerator = (XHls macc *)InstancePtr;
XHls macc InterruptEnable (pAccelerator,1);
XHls macc InterruptGlobalEnable (pAccelerator);
XHls macc_ Start (pAccelerator);

High-Level Synthesis www.xilinx.com Send Feedback 242
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=242

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

An interrupt service routine is required in order for the processor to respond to an interrupt
generated by a peripheral.

Each peripheral with an interrupt attached to the PS must have an ISR defined and
registered with the PS’s interrupt handler.

The ISR is responsible for clearing the peripheral’s interrupt and, in this example, setting a
flag that indicates that a result is available for retrieval from the peripheral. In general, ISRs
should be designed to be lightweight and as fast as possible, essentially doing the
minimum necessary to service the interrupt. Tasks such as retrieving the data should be left
to the main application code.

void hls macc_isr(void *InstancePtr) {
XHls macc *pAccelerator = (XHls macc *)InstancePtr;

//Disable the global interrupt

XHls macc InterruptGlobalDisable (pAccelerator);
//Disable the local interrupt

XHls macc_InterruptDisable (pAccelerator, Oxffffffff);

// clear the local interrupt
XHls macc InterruptClear (pAccelerator,1);

ResultAvailHlsMacc = 1;
// restart the core if it should run again
if (RunHlsMacc) {
hls macc start (pAccelerator);
}
}

7. Define a routine to setup the PS interrupt handler and register the HLS peripheral’s ISR.

int setup interrupt ()
{

//This functions sets up the interrupt on the ARM
int result;
XScuGic Config *pCfg = XScuGic LookupConfig (XPAR SCUGIC SINGLE DEVICE 1ID);
if (pCfg == NULL) {

print ("Interrupt Configuration Lookup Failed\n\r");

return XST FAILURE;
}
result = XScuGic CfgInitialize (&ScuGic,pCfg,pCfg->CpuBaseAddress) ;
if (result != XST SUCCESS) {

return result;
}
// self-test
result = XScuGic SelfTest (&ScuGic) ;
if (result != XST SUCCESS) {

return result;
}
// Initialize the exception handler
Xil ExceptionInit();
// Register the exception handler
//print ("Register the exception handler\n\r");
Xil ExceptionRegisterHandler (XIL EXCEPTION ID INT,

(Xil ExceptionHandler)XScuGic_ InterruptHandler, &ScuGic);

//Enable the exception handler

High-Level Synthesis www.xilinx.com Send Feedback 243
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=243

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-

Xil ExceptionEnable();
// Connect the Adder ISR to the exception table
//print ("Connect the Adder ISR to the Exception handler table\n\r");
result = XScuGic Connect (&§ScuGic, XPAR FABRIC HLS MACC 0 INTERRUPT INTR,
(Xil InterruptHandler)hls macc isr, &HlsMacc) ;
if (result != XST SUCCESS) {
return result;
}
//print ("Enable the Adder ISR\n\r");
XScuGic Enable (&ScuGic,XPAR FABRIC HLS MACC 0 INTERRUPT INTR);
return XST SUCCESS;

Define a software model of the HLS hardware functionality with which you can compare
reference results.

void sw _macc(int a, int b, int *accum, bool accum clr)
{
static int accum reg = 0;
if (accum clr)
accum reg = 0;
accum _reg += a * b;
*accum = accum_reg;

}

Modify main() to use the HLS device driver API and the functions defined above to test
the HLS peripheral hardware.

int main ()
{
print ("Program to test communication with HLS MACC peripheral in PL\n\r");
int a = 2, b = 21;
int res hw;
int res sw;
int 1i;
int status;

//Setup the matrix mult

status = hls macc_init (&HlsMacc) ;

if (status != XST SUCCESS) {
print ("HLS peripheral setup failed\n\r");
exit (-1);

}

//Setup the interrupt

status = setupiinterrupt();

if (status != XST SUCCESS) {
print ("Interrupt setup failed\n\r");
exit (-1);

//set the input parameters of the HLS block
XHls macc_SetA(&HlsMacc, a);

XHls macc SetB(&HlsMacc, b);

XHls macc SetAccum clr (&HlsMacc, 1);

if (XHls macc IsReady (&HlsMacc))
print ("HLS peripheral is ready. Starting... ");
else {

High-Level Synthesis www.xilinx.com l Send Feedback I 244

UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=244

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

print ("!!! HLS peripheral is not ready! Exiting...\n\r");
exit (-1);

if (0) { // use interrupt
hls macc start (&HlsMacc) ;
while (!ResultAvailHlsMacc)
; // spin
res hw = XHls macc GetAccum(&HlsMacc) ;
print ("Interrupt received from HLS HW.\n\r");
} else { // Simple non-interrupt driven test
XHls macc_Start (&HlsMacc) ;
do {
res_hw = XHls macc GetAccum(&HlsMacc) ;
} while (!XHls macc_ IsReady (&HlsMacc));
print ("Detected HLS peripheral complete. Result received.\n\r");

//call the software version of the function
sw_macc (a, b, &res sw, false);

printf ("Result from HW: %d; Result from SW: %d\n\r", res hw, res_sw);

if (res hw == res sw) {
print ("*** Results match ***\n\r");
status = 0;

}

else {
print ("!!! MISMATCH !!!\n\r");
status = -1;

cleanup platform();
return status;
}
10. Save the modified source file. When you save the file, SDK automatically attempts to
re-build the application executable. If the build fails, fix any outstanding issues.

Run the new application on the hardware and verify that it works as expected. Ensure that
a TCF hardware server is running, that the FPGA is programmed and a terminal session is
connected to the UART. Then Launch on Hardware, as you did for the previous Hello World
application code.

Upon success, the Terminal session looks similar to Figure 10-27.

[20 Problems | ¥4 Tasks | E] Console | & Properties | 4% Terrninal 1 52 HEL ug| M - =8
Serial: (COMS, 115200, 8, 1, None, Mone - CONMECTED] - Encoding: (I50-8859-1)
Result from HW: 42; Result from SW: 42 -

SWoand HW results match!

Frogram to test communication with HLS MACC bleck in PL

fccelerator is ready. Starting... Detected HLS bleock complete. Result received.
Result from HW: 42; Result from SW: 42

#% Sl oand HW results match ##*

m

Figure 10-27: Console Output with Updated C Program

High-Level Synthesis www.xilinx.com Send Feedback 245
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=245

2: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

Lab 2: Streaming Data Between the Zynq CPU and
HLS Accelerator Blocks

This lab illustrates a common high-performance connection scheme for connecting
hardware accelerator blocks that consume data originating in the CPU memory and/or
producing data destined for it, in a streaming manner.

« This tutorial uses the same Vivado HLS and XFFT IP blocks created in Lab 1 of the
tutorial “Using HLS IP in IP Integrator”. In this lab exercise these blocks are connected
to the HPO Slave AXI4 port on a Zynq7 processing system via an AXI DMA IP core.

« The hardware accelerator blocks are free-running and do not require drivers; as long as
data is pushed in and pulled out by the CPU (often simply referred to as the Processing
System or PS).

« The lab highlights the software requirements to avoid cache coherency issues.

Step 1: Generate the HLS IP

1. From the Vivado HLS command prompt used in Lab 1, change to the 1ab2 directory as
shown in Figure 10-27.

2. Run Vivado HLS to create two HLS IP blocks by typing vivado hls -f run hls.tcl.

[Vivado HLS 2013.2 Command Prompt == EoE <™

C:\Vivado_HLS_Tutorial\Using_IP_with_2Zyng\labl>cd .. -

C:\Vivado_HLS_Tutorial\Using_IP_with_2ynq>cd lab2

C:\VUivado_HLS_Tutorial\Using_IP_with_2yng\lab2>cd hls_designs

C:\Vivado_HLS_Tutorial\Using_IP_with_2Zyng\lab2\hls_designs>vivado_hls -f run_hls{E
.tel b

Figure 10-28: Setup for Zynq Lab 2

When the script completes, there are two Vivado HLS project directories, fe vhls pr]
and be _vhls prj, which contain the HLS IP, including the Vivado IP Catalog archives for
use in Vivado designs.

« The "front-end” IP archive is located at fe vhls prj/IPXACTExport/impl/ip/

« The "back-end” IP archive is located at be_vhls prj/IPXACTExport/impl/ip/

Step 2: Create a Vivado Design Suite Project

1. Launch the Vivado Design Suite (not Vivado HLS):

High-Level Synthesis www.xilinx.com Send Feedback 246
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=246

{: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

o On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado 2016.1.

o On Linux, type vivado in the shell.
2. From the Welcome screen, select Create New Project.
3. Click Next on the first page of the Create a New Vivado Project wizard.

4. Click the ellipsis button to the right of the Project location text entry box and browse to
the 1ab2 tutorial directory.

5. Set the project name to project_1, if it is not already specified.
6. Click Next to move to the Project Type page of the wizard.
a. Select RTL Project.
b. Select do not specify sources at this time (if not the default); just click Next.

7. On the Default Part page, under Specify, click Boards and select the ZYNQ-7 ZC702
Evaluation Board. Click Next.

8. On the New Project Summary Page, click Finish to complete the new project setup.

Step 3: Add HLS IP to an IP Repository

1. In the Project Manager area of the Flow Navigator pane, click IP Catalog.
2. The IP Catalog appears in the main pane of the workspace. Click the IP Settings icon.

3. In the IP section of the Project Settings dialog box, click the "+" symbol to Add
Repository.

4. 1In the IP Repositories dialog box:
a. Browse to the 1ab2 tutorial directory .
b. Click the Create New Folder icon.
c. Entervivado ip repo in the resulting dialog box.
d. Click OK.
e. Click Select to close the IP Repository window.
5. On returning to the IP Setting dialog box:
a. Click the "+" symbol to Add IP.

b. In the IP Repositories dialog box, browse to the location of the HLS IP
lab2/hls designs/fe vhls prj/IPXACTExport/impl/ip/ or, if using IP
created in previous tutorial, browse to the corresponding path.

c. Selectthe xilinx com hls hls real2xfft 1 00 a.zip file.

d. Click OK.

High-Level Synthesis www.xilinx.com Send Feedback 247
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=247

{: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

6.

Follow the same procedure to add the second HLS IP package, in directory
lab2/hls designs/be vhls prj/IPXACTExport/impl/ip/, to the repository:
xilinx com hls hls xfft2real 1 00 a.zip.

The new HLS IP now appears in the IP Setting dialog box.
Click OK to exit the dialog box.
There is now HLS IP in the IP Catalog (HIs_real2xfft and Hls_xfft2real).

Step 4: Create a Top-level Block Design

1.

Click Create Block Diagram under IP Integrator in the Flow Navigator.
a. In the resulting dialog box, name the design Zyng RealFFT.

b. Click OK.

In the Diagram tab, click the Add IP button to add IP

a. Inthe Search box, type fourier.

b. Select the Fast Fourier Transform and double-click with the mouse.

Double-click the new Fast Fourier Transform IP symbol to open the Re-customize IP
dialog box. On the Configuration tab:

a. Change the Transform Length to 512.

b. Change the Target Clock Frequency to 100 MHz.

¢. In the Architecture Choice section, select Pipelined, Streaming 1/0.
Select the Implementation tab:

a. Select ARESETN (active-Low) in the Control Signals group.

b. Verify that Bit/Digit Reversed Order is selected under Output Ordering Options.
c. Verify that Non Real Time is selected as Throttle Scheme.

d. Click OK to exit Re-customize IP dialog

Add one instance of each of the HLS generated blocks to the design.

a. Right-click in any space in the canvas and select Add IP.

b. Type hls into the Search text entry box.

c. Highlight both IPs. (Click the control key and select both.)

d. Press Enter.

Connect the HLS blocks to the FFT block.

a. Mouse over the dout interface connector of the hls real2xftt block until a
pencil cursor appears.

High-Level Synthesis www.Xilinx.com l Send Feedback I 248

UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=248

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-

b. Left-click and hold down the mouse button to start a connection.

c. Dragthe connectionlinetothe S AXIS DATA input port connector of the FFT block
and release when a green check mark appears next to it.

7. In a similar fashion:

a. Connect the FFT's M AXIS DATA interface to the din input interface of the
hls xfft2real block.

8. Put the data processing blocks into their own level of hierarchy.
a. Select everything in the current digram by pressing Ctrl+A.

b. Right-click the canvas and select Create Hierarchy from the context menu.

%= Diagram x oe x
]| # Zynq_RealFFT

@
o
Y
i @ Block Properties... Cirl+E
Highlight »
{“'5 % Delet Delet
- elele elete
e S K
& Copy Ctrl+C
? : iy
L 9 Search... Ctrl+F
a3 b Select Al Ctrl+A
@ -
P £ AddPP.. Ctrl+]
i Customize Block... i _
2 . ; Xfft_0 his_xfft2real_0
o Edit in TP Packager F o] I . |
3 Orientation + M_AXIS_DATA g | -1 2 iy _V/
k- | TP Settings... o e T
| @ validate Design F6 mm{oLS AXIS DATA bl #LHJ.‘ & dout_Ve
i Mark Debug e Ver Ul ={ap_clk '
" =tap rst n
=ACIK
Create Hierarchy... e L - *
==aresetn 5 (Pre-Production)
Create Comment i His_xfft2real (Pre-Production
Create Port... Ctrl+K
Create Interface Port... Ctrl+L L
@ Regenerate Layout
B save as PDF File...

Figure 10-29: Create a Hierarchy Block
c. In the Create Hierarchy dialog box, enter RealFFT as the Cell name.

d. Ensure that the Move ‘3’ selected blocks to new hierarchy option is checked, as
shown in Figure 10-30.

High-Level Synthesis www.xilinx.com Send Feedback 249
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=249

8 XI I_I NX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-~

2 Create Hierarchy
Please specify name of hierarchical cell to create in Zyng_RealFFT.
You can also move selected blocks to new hierarchy. ‘

Cell name: | 3E5lE30

Move '3' selected blocks to new hierarchy

’ 0K ” Cancel]

Figure 10-30: Name Hierarchy Block
e. Click OK.

The diagram will appear as shown in Figure 10-31.

| &= Diagram x| m]
#[]| # Zynq_RealFFT »

[P
*

RealFFT

m

CREQE My PG EIEL L

4
=
£3

Figure 10-31: New Hierarchy Block

Add pins to the RealFFT hierarchical block so that you can connect it at the top-level.

9. Double-click the RealFFT block to open its diagram.

High-Level Synthesis www.xilinx.com Send Feedback 250
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=250

& XILINX

Chapter 10: Using HLS IP in a Zynq AP SoC Design
ALL PROGRAMMABLE..

Z= Diagram x |- Diagram - RealFFT x Ow
#[]| 4 Zynq_RealFFT » [RealFFT

a .
(63

X

[§

L]
@ hls_real2xfft_0 xfft_0 his_xfft2real_0

O—\ A=din_V_V . M_AXIS_DATA R

gh Vivado™ HLS ot A tarted

= - event_frame_s

K ' R = +:_$:_$-I‘:AFIG event_tlast_unexpected

E 3 = :;k— - event_tlast_missing

¥ — evert_status_channel_halt

& His_real2xfft (Pre-Production) aresetn event data i channel halt Hls_xfft2real (Pre-Production)

@ event_data_out_channel_halt

@f Fast Fourier ?ransfﬁrm

I

q v

Figure 10-32:

RealFFT Diagram

10. Right-click the din VvV _V pin of the hls real2xfft 0 block and select Create

Interface Pin from the context menu.

High-Level Synthesis www.xilinx.com

UG871 (v2016.2) June 8, 2016

l Send Feedback l 251

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=251

iA XI LINX Chapter 10: Using HLS IP in a Zynq AP SoC Design
ALL PROGRAMMABLE.
Z= Diagram X |Z= Diagram - RealFFT X O %
#[]| £ Zyng_RealFFT » [RealFFT
al -
o r his_real2xfft_0 . Xfft_0 his_xfft2real_0
A
__: [—J‘* —] [— M_AXIS_DATASF = e din_V o e
[| & Block Interface Properties... Ctrl+E . N e storted " - ivado " .
o J # Highlight " p—— event_tlast_unexpected ap_clk ‘
=) | AXIS_CONFIG .
Ly 4 X Delete event_tlast_missing ap_rst_n
Q | @ Copy Ctrl+C Lin event_status_channel_halt — e
& B Cirl+v [et cannellhalt His_xfft2real (Pre-Production)
Oy, S, Search... Ctrl+F event_data_out_channel_halt
3 k Select Al Ctri+A Fast Fourier Transform
] & Add IP... Ctrl+]
5 ®% Make External Ctrl+T
] @ IP Settings...
el ¥ Validate Design =
I Start Connection Mode Ctrl+H
Make Connection...
Cregte Hierarchy...
Create Comment
Create Pin... Ctrl+K
Create Interface Pin... Ctrl+L
@ Regenerate Layout
B Save as FDF File...
4 L9

Figure 10-33:

Creating an Interface Pin

11.In the Create Interface Pin dialog box, change the Interface name to

realfft s axis din.

a. Accept all other defaults and click OK.

4. Create Interface Pin @
Create interface pin for cell RealFFT. ‘
Interface name:

VLNV: xilinx.com:interface:axis_rtl:1.0 A
Mode: SLAVE A
Qonnect to selected interface din_V_V

’ 0K] ’ Cancel]

Figure 10-34:

Naming an Interface Pin

12. Right-click the ap clk pinofthehls real2xfft 1 block and select Create Pin from

the context menu.

High-Level Synthesis

www.Xilinx.com

UG871 (v2016.2) June 8, 2016

| Send Feedback I 252

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=252

8 XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-

a. Change the name to aclk and click OK.

H-ra s para

% Block Pin Properties... Ctrl+E
x Delete
& Copy Ctrl+C
| Ctrl+¥/
& Select Al Ctrl+4,
@ addIp.. Ctrl+1
®r Make External Ctrl+T
[Walidate Design Fé
Start Connection Mode Ctrl+H

Create Hierarchy...
Create Comment
Create Pin.., Ctrl+K
et_hd_intf_pins Create Interface Pin.., Ctrl+L pd_intf pinsz /RealFl

de Jlawve -vinv x @ Regenerate Layout Falfft s axis_din'

B Save as PDF File..,

Figure 10-35: Create a Clock Pin

After you create this clock pin, the RealFFT diagram appears as shown in Figure 10-36.

Z= Diagram X | &= Diagram - RealFFT x L
#]| & Zynq_RealFFT » [l RealFFT
& o
o
a
1§
[hls_real2xfft_0 xfft_0 his_xfft2real_0
() e di = ol
:.v realfft_s_axis_din D—“ A VY = M_AXIS_DATA - [=
=N sFap_cirl = = event_frame_started
dout_V4k = = 45 AXIS_DATA
& adk [Zy——=janck =45 _AXIS_CONFIG m—tm—uw
==a3p_rst n event_tlast_missing

®x, — = event_statis_channel_hatt
% Hls_real 2xfft (Pre-Production) aresetn et Tt Hls_xfft2real (Pre-Production)
L@ event_data_out_channel_halt
@ Fast Fourier Transform
&l
€+

4 L3

Figure 10-36: RealFFT Diagram with Interface Pin and Clock Pin
13. Following the procedures in steps 10 to 12:

a. Create an interface pin called realfft m axis dout connected to the dout V
pin of the hls xfft2real component.

b. Create a pin for aresetn (from any one of the blocks).

High-Level Synthesis www.xilinx.com Send Feedback 253
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=253

8 XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-

After this step, the RealFFT diagram appears as shown in Figure 10-37.

Z= Diagram % | 5= Diagram - RealfFT = Ow =
3| # Zyng_RealFFT » [RealFFT
- o~
ag
A
):4
= his_real2xfft_0 «fft_0 his_xfft2real_0
b - o
Q, realift_s axis_din [Cpm—|dhdin VY M_AXIS_DATAZ: | =
Jl[eFap_cxt event_fame started - L)
- dout
Eﬁ’- ack il = =N] remilfit_m_anis_dout
aresetn event_fast_missing f-
b 3 event_satus_chamnel_halt -
His_real 2«fft { Pre-Production) event_dita_in_ channel hakt |- Hls_xfft2real { Pre-Production)
% event_data_out_channel_halt
[}
é Fast Fourier Transform
&l
<+
4 r K

Figure 10-37: RealFFT Diagram with All Pins

Finalize RealFFT block internal connections. The ap_start pins for the HLS blocks are
tied HIGH, and the aclk and aresetn pins on all blocks are tied together.

14. Right-click the canvas and select Add IP from the context menu.
a. Type const into the search box and press Enter.

b. Double-click the x1constant 0 component and verify that the Const Val field in
the Customize IP dialog is set to 1.

High-Level Synthesis www.xilinx.com Send Feedback 254
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=254

& XILINX

ALL PROGRAMMABLE

Chapter 10:

Using HLS IP in a Zynq AP SoC Design

1F Re-customize IP
Constant (1.1)

iﬂ Documentation |2 IP Location

Show disabled ports

Component Name | xlconstant_0

Const Width | 1| [1 - 4096]
Constval |1

oK | ‘ Cancel

Figure 10-38:

Create a Constant 1 Tie-Off

15. Expand the ap_ctrl interface by clicking the + sign next to it onthe hls real2xfft
and hls xfft2real block symbols and:

a. Connect the output pin of x1constant 0 tothe ap start pin of

hls real2xfft O.

b. Connect the output pin of x1constant 0 to the ap start pin of

hls xfft2real O.

16. Similarly, connect all remaining component dout V and reset pins to the RealFFT

block diagram aclk and aresetn pins respectively.

17. Add another x1constant block and configure it with a Const Width of 16 and Const

Val of 0.

18. Expand the S AXIS CONFIG interface of the FFT block and connect
s axis config tdataand s axis config tvalid to the new constant block.

Leave all other output pins of the components disconnected. The final RealFFT diagram
appears with the connections shown in Figure 10-39.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback I 255

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=255

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

&= Diagram X | = Diagram - RealFFT X [
#[]| & Zyng_RealFFT » [Z RealFFT
(5% 3
-
[
his_realdxfft_0

= realfft_s_axis_din [
Ly nstant 0
C.\ sconstant_0] his_fft2real_0

T T s aas_pamm M_1S. AT [Bl dn v
5]__'5}:_ H=15 s cowFle vt Fame_stated [|= 2_cx
E ack P zrrg a1 5] et 1&:1u:=lx:fsd- m dne

' aresstn [= a‘fs . weady i . .srar. kst Veh o realfft_m_axis_dout
s s config_ Bvaic r Az el '
H ol - ey
- - &
L\/ ran
o] S
[
&l
LT
4 2

Figure 10-39: Final RealFFT Diagram
19. Close the RealFFT diagram tab and return to the top-level Zyng RealFFT diagram.
20. Create the Zynq system.

a. Right-click the canvas of the top-level diagram and select Add IP from the context
menu.

b. Type zyng in the search box, select ZYNQ7 Processing System and press Enter.

c. Notice that designer assistance is available and click the Run Block Automation
link. Accept the defaults in the dialog by clicking OK.

d. Double-click the processing_system7_0 component to enter the Re-customize IP
wizard for the ZYNQ7.

e. Click the Presets button near the top of the wizard screen, select the ZC702
Development Board Template, and click OK.

f. Click PS-PL Configuration in the Page Navigator pane on the left of the wizard.

g. Expand the HP Slave AXI Interface category and check the box for the S AXI HPO
interface, leaving the S AXI HPO DATA WIDTH at 64.

High-Level Synthesis www.xilinx.com Send Feedback 256
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=256

8 XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-~

ﬁ Re-custormize IP
ZY¥YNQ7 Processing System (5.2)

m Documentation |) IP Location @ Presets

Page Mavigator ks |PS-PL Configuration
Zynq Block Design ;t Search:
PS-PL Configuration Z Marmne Select Description
g | General
il i A
Peripheral I/ Pins = {5 DMA Controller
MIQ Configuration -- GF Master AXI Interface
[~ GP Slave AXI Interface
Clock Configuration E| HP Slave AXI Interface

1ables AxI high performance slave interface 0

DR Configuration

5 AXI HPO DATA WIDTH - Allows HPO to be used in 32/64 bit data width mode

SMC Timing Calculation AXIHP1 interface Enables AxI high performance slave interface 1

AXIHPZ interface Enables AxI high performance slave interface 2

OO@e

Inkerrupks i
-5 BRI HP3 interface

H ACP Slave AXI Interface

Enables AxI high performance slave interface 3

Figure 10-40: Configuring Port HPO

h. Select Clock Configuration in the Page Navigator, expand PL Fabric Clocks, and
change the requested frequency to 100 (MHz).

ﬁ Re-custormize IP
ZY¥YNQ7 Processing System (5.2)

m Documentation |) IP Location @ Presets

Page Mavigator ks |Clock Configuration
Zynq Block Design & Input Frequency (MHz) 33.333333 CPU Clock Ratio) 6:2:1 -
,) A Search:
PS-PL Configuration Z
Peripheral [} Pins =3 | Comparent Clock Source Requested Frequen... Actual Frequency(M... Range{MHz)
E% [Processor/Memory Clacks
MIC Configuration +- 10 Peripheral Clocks
Clock Configuration
DDR Canfiguration <[] Folk_CLkt 10 PLL 50 50,000000 0,100000 ; 250, 000000
SMC Timing Calculation - [] Folk_CLkz IO PLL 50 50,000000 0,100000 : 250,000000
g I:‘ FCLE_CLES IO PLL =) 50,000000 0,100000 : 250,000000

Inkerrupks H

[+ System Debug Clocks

[l Timers

Figure 10-41: Configuring the Clock
i. Leave all other settings at their defaults; click OK to apply customizations.

21. Make a connection from RealFFT block’s realffft_s_axis_din to Zynq AP SoC’'s S_AXI_HPO,
accept the defaults in the Make Connection dialog and click OK.

IPI will place several new blocks require to complete the connection automatically,
including an AXI DMA core, an AXI Interconnect and a Processor System Reset block.

High-Level Synthesis www.xilinx.com Send Feedback 257
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=257

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-

22. Make a connection from the RealFFT block’s realfft_m_axis_dout to the Zynq's
S_AXI_HPO interface. Accepting the defaults in the Make Connection dialog will cause IPI
to use the existing AXI DMA (which has an unused write channel) and AXI Interconnect
to make the ‘S2MM'’ connection.

23. Note that Designer Assistance is again available. Run Connection Automation on
/axi_dma/S_AXI_LITE and click OK in the resulting dialog box.

24. Connect the aclk and aresetn ports of the RealFFT hierarchical block to nets
processing_system7_0 pin FCLK_CLKO and rst_processing_system7_0_100M pin
peripheral_aresetn respectively.

25.To complete the design, run Validate Design. When validation completes successfully,
the block diagram should look like Figure 10-42.

Step 5: Implementing the System

E= Diagram X | B Address Editor X O =

Bl | &, Zyno_RealFFT »

Q¢ |_3 Designer Assistance available, Run Connection Automation

processing_system7_1

processing_system?_1_axi_periph I35 a0 ree_prvo e
1.5 A _HeO

Hoonsax ZYNG

QU ¥ 8Dz B R

proc_sys_reset
slowest_sync_clk mi_reset|

et ressen i Bus_stues_reset{00]
—laux_reset_in peripheral_reset{0:0)
—rnl_detug_sys et intereanned_arsem[0:0]
—demn_Jacked perheral_aresetn 0:0)]

Proc Sys Reset

2s_prmey_reset_aut_n
mm2s_entrl_reset_out_n
S2mem_pemey_reset_aut_n
s2mem_sts_reset_out_n

mm2s_introut|
s2mm_introut|

Figure 10-42: Zynq Diagram with Internal Connections

Before proceeding with the system design, you must generate implementation sources and
create an HDL wrapper as the top-level module for synthesis and implementation.

1. Return to the Project Manager view by clicking Project Manager in the Flow Navigator.

2. In the Sources browser in the main workspace pane, a Block Diagram object called
Zyng_ RealFFT appears at the top of the Design Sources tree view. Right-click this
object and select Generate Output Products.

High-Level Synthesis www.xilinx.com Send Feedback 258
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=258

{: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

3. In the resulting dialog box, click OK to start the process of generating the necessary
source files.

4. Right-click the zyng RealFFT object again, select Create HDL Wrapper, and click OK
to exit the resulting dialog box.

The top-level of the Design Sources tree becomes the Zyng RealFFT wrapper.v file.
You are now ready to synthesize, implement, and generate an FPGA programming bitstream
for the design.

5. Click Generate Bitstream to initiate the remainder of the flow.

6. In the dialog that appears after bitstream generation has completed, select Open
Implemented Design and click OK.

Step 6: Setup SDK and Test the ZYNQ System

You are now ready to export the design to Xilinx SDK. In SDK, you create software to run on
a ZC702 board (if available). A driver for the HLS block was generated during HLS export of
the Vivado IP Catalog package and must be made available in SDK for the PS7 software to
communicate with the block.

1. From the Vivado File menu select Export > Export Hardware for SDK.

Note: Both the IPI Block Design and the Implemented Design must be open in the Vivado
workspace for this step to complete successfully.

2. Inthe Export Hardware for SDK dialog box, ensure that the Include Bitstream option is
checked, and click OK.

3. From the Vivado File menu, select Launch SDK.
4. Click OK to launch SDK.
5. CreateaHello World application (also creates BSP).
a. Select File > New > Application Project.
b. Enter the project name Zyng RealFFT Test.
c. Click Next.
d. Select Hello World (if it is not the default).
e. Click Finish.
6. Power up the ZC702 board and program the FPGA.

Ensure the board has all the connections to allow you to download the bitstream on the
FPGA device. Refer to the documentation that accompanies the ZC702 development
board.

7. Click XilinxTools > Program FPGA. The Done LED (DS3) goes on.

High-Level Synthesis www.xilinx.com Send Feedback 259
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=259

{: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

8. Set up a Terminal in the tab at bottom of workspace:

a.

b.

Click the Connect icon.
Select Connection Type > Serial.

Select the COM port to which the USB UART cable is connected (generally not COM1
or COM3). On Windows, if you are not sure, open the Device Manager and identify
the port with the Silicon Labs driver under Ports (COM & LPT).

Change the Baud Rate to 115200.
Click OK to exit Terminal Settings dialog box.

Check that terminal is connected by message in tab title bar.

9. Right-click application project Zyng Design Test in the Explorer pane.

a.

Select Run As > Launch on Hardware.

10. Switch to the Terminal tab and confirm that Hello World was received.

11. This project uses the C math library (1ibm), so you must adjust the build settings to link
to it.

a.

Right-clickthe zyng realfft test projectinthe Project Explorer pane and select
C/C+ Build Settings (Figure 10-43).

@ CHC++ - zyng_realf Run &5 4
File Edit Source Debug As Yol
- Profile As 3
G- E@ . B
> 3
= earn
Cormpare Yifith 3
NSRS AR Restore from Local History.., !
= ‘{5“ Run C/C++ Code Analysis Su
a 3 hoe_platfarm_
[@ psT_init.c Generate Linker Script
5] psT_init.h I}, Change Referenced BSP
@ psi_init.ht B Create BootImage
(8] ps7_init.tc C/C++ Build Settings -
systermn.bit dte
I systern.r Properties Alt+Enter e
< 3
4 [myng_realfft_test Target Processor ps7_cortexad_0
» [Includes
» [= Debug 0 .
perating System
4 [src
- &) helloworld.c Board Support Package O3,
. [n] platform_canfig.h Marne: standalone
- g platform.c Wersion: 3.10.a
. [n] platform.b Description: Standalone is a simple, |
] Iscript.d as weell as the basic feat
a [zyng_realfft_test_bsp Documentation: standalone w3 10 a

Figure 10-43: Specify C/C++ Build Settings

b. Add the ARM gcc linker libraries.

i. Inthe Tool Settings tab, select ‘“ARM gcc linker’ > Libraries.

ii. Click the Add icon.

High-Level Synthesis www.Xilinx.com I Send Feedback I 260

UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=260

& XILINX

ALL PROGRAMMABLE

Chapter 10:
@ CHC++ - zyng_realf Run &5 4
File Edit Source Debug As Yol
- Profile As 3
G- E@ . B
> 3
= earn
Cormpare Yifith 3
NSRS AR Restore from Local History.., !
= Run C/C++ Code Analysis Su
a g hoe_platfarm_
[@ psT_init.c Generate Linker Script
[& ps7_inith | M, Change Referenced BSP
@ psT_initht P Create BootImage
(8] ps7_init.tc C/C++ Build Settings -
systermn.bit dte
I systern.r Properties Alt+Enter e
T E
4 [myng_realfft_test Target Processor ps7_cortexad_0
» [Includes
» [= Debug 0 .
perating System
4 [src
- &) helloworld.c Board Support Package O3,
> platforrm_config.h Marne: standalone
- g platform.c Wersion: 3.10.a
> platfarmm.h Description: Standalone is a simple, |
] Iscript.d as weell as the basic feat

Docurnentation: standalone w3 10 a

a [zyng_realfft_test_bsp

Figure 10-44: C/C++ Build Settings

Using HLS IP in a Zynq AP SoC Design

c. Enter min the text field in the Enter Value dialog box and click OK.

@ Properties for zyng_realfft_test

fype filter text

- Resource
Builders
4 C/C++ Build
Build Wariables
Discovery Options
Ervironment
Logging
Settings
Tool Chain Editor
. CfC++ General
Project References
Run/Debug Settings

Settings

i Tool Settings Build Steps

Build Artifactl [av Binary Parsers | @ Error Parsers|

a 15 ARM gec assembler
General

Libraries (-

&)

a4 B3 ARM gec compiler

2 Symbals

22 Warnings

Optimization

(2 Debugging

2 Profiling

(22 Directaries

(2 Miscellaneous

4 (2 Inferred Options
(2 Software Platform
(22 Processor Options

ARM gec linker

General

« &

| Add... |

Libraries .
Miscellaneous Library search path (-L}

]

@ Linker Script |

Figure 10-45: Library Setting

d. Click OK to exit the Properties for the zyng realfft test dialog box.

Step 7: Modify software to communicate with HLS block

The completely modified source file is available in the arm code directory of the tutorial
file set. The modifications are discussed in detail below.

High-Level Synthesis
UG871 (v2016.2) June 8, 2016

www.Xilinx.com

l Send Feedback I 261

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=261

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

1.
2.

5.

Open the helloworld.c source file.

Several BSP (and standard C) header files must be included:

#include <stdlib.h> // Std C functions, e.g. exit()
#include <math.h> // libm header: sqrt(), cos(), etc
#include "xparameters.h" // System parameter definitions
#include "xaxidma.h" // Device driver API for AXI DMA

Define the (real data) transform length of the FFT:
#define REAL FFT LEN 1024
Define a custom complex data type with 16-bit real and imaginary members:

typedef struct {
short re;
short imj;

} complexl6;

Declare helper functions before the definition of main () ; they will be defined later.

Note: The init dma () function wraps up all run-once, initialization AXI DMA driver API calls and
checks that hardware initialization is successful before returning or exiting on an error condition.
The generate waveform() function fills an array with a simple, periodic waveform to be used as
input stimulus for the RealFFT accelerator.

int init dma (XAxiDma *axiDma) ;
void generate waveform(short *signal buf, int num samples);

Modify main () to generate and send input data to the RealFFT accelerator and receive
the spectral data from it via the AXI DMA engine. Sections of particular importance will
be discussed in detail.

// Program entry point
int main ()

{
a. Declare an XAxiDma instance to use as a handle to the AXI DMA hardware:

// Declare a XAxiDma object instance
XAxiDma axiDma;

b. Declare variable for local data storage:

// Local variables

int i, 3J;

int status;

static short realdata[4*REAL FFT LEN];

volatile static complexl6 realspectrum[REAL FFT LEN/2];

¢. Run platform and DMA initialization functions:

// Initialize the platform

init platform();

print (M---------—m—mm \n\r");
print ("- RealFFT PL accelerator test program -\n\r");

High-Level Synthesis www.xilinx.com l Send Feedback I 262

UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=262

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

// Initialize the (simple) DMA engine

status = init dma (&axiDma) ;
if (status != XST SUCCESS) {
exit (-1);

}
d. Generate a stimulus waveform:

// Generate a waveform to be input to FFT
for (i = 0; 1 < 4; 1i++)
generate waveform(realdata + i * REAL FFT LEN, REAL FFT LEN);

e. Before making the DMA transfer request, the buffer containing the data must be
flushed from the processor’s data cache. Without this step, the DMA might pull stale
data from the DRAM.

// *IMPORTANT* - flush contents of 'realdata' from data cache to memory
// before DMA. Otherwise DMA is likely to get stale or uninitialized data
Xil DCacheFlushRange ((unsigned)realdata, 4 * REAL FFT LEN * sizeof (short));

f. Request DMA transfer from PS to PL. Enough data to fill the front-end block and the
FFT processing pipelines must be sent in order for spectral data to be ready when
the PL to PS transfer is requested. Therefore, four data sets are sent before the first
output set is requested:

// DMA enough data to push out first result data set completely
status = XAxiDma SimpleTransfer (&axiDma, (u32)realdata,
4 * REAL_FFT LEN * sizeof (short), XAXIDMA DMA TO DEVICE);

// Do multiple DMA xfers from the RealFFT core's output stream and

// display data for bins with significant energy. After the first frame,
// there should only be energy in bins around the frequencies specified
// in the generate waveform() function - currently bins 191~193 only
for (1 = 0; 1 < 8; i++) {

g. Request DMA transfer of a frame of FFT spectral data from PL to PS then poll for
completion of the transfer before proceeding.

// Setup DMA from PL to PS memory using
// AXI DMA's 'simple' transfer mode
status = XAxiDma SimpleTransfer (&axiDma, (u32)realspectrum,
REAL FFT LEN / 2 * sizeof (complex16), XAXIDMA DEVICE TO DMA);
// Poll the AXI DMA core
do {
status = XAxiDma Busy(&axiDma, XAXIDMA DEVICE TO DMA) ;
} while (status);

h. Before attempting to use the spectral data, the processor’'s data cache copy of the
buffer must be invalidated to avoid use of stale data.

// Data cache must be invalidated for 'realspectrum' buffer after DMA
Xil DCacheInvalidateRange ((unsigned)realspectrum,
REAL FFT LEN / 2 * sizeof (complexl16));

i. Push another set of stimulus data to the PL in order to start the accelerator
processing the next frame:

High-Level Synthesis www.xilinx.com Send Feedback 263
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=263

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE-

// DMA another frame of data to PL
if (!XAxiDma Busy (&axiDma, XAXIDMA DMA TO DEVICE))
status = XAxiDma SimpleTransfer (&axiDma, (u32)realdata,
REAL FFT LEN * sizeof (short), XAXIDMA DMA TO DEVICE) ;

printf ("\n\rFrame #%d received:\n\r");

j. Do something to verify that the accelerator is functioning. In this case, the spectral
data is scanned for bins that contain significant energy. The expectation is to detect
only energy in bins around the single tone (192) generated by the
generate waveform() function.

// Detect energy in spectral data above a set threshold
for (j = 0; J < REAL FFT LEN / 2; j++) {
// Convert the fixed point (s.15) values into floating point values
float real = (float)realspectrum[j].re / 32767.0f;
float imag = (float)realspectrum[j].im / 32767.0f;
float mag = sqgrtf(real * real + imag * imag);
if (mag > 0.00390625f) {
printf ("Energy detected in bin %3d - ",3J);
printf ("{%8.5f, %8.5f}; mag = %8.5f\n\r", real, imag, mag);

}
printf ("End of frame.\n\r");

}

printf("***************\n\rll);
printf ("* End of test *\n\r");
printf("***************\n\r\n\ru);
return 0;

}

7. Define the helper function that generates the waveform data sets. This version simply
fills a buffer with a single tone with 192 cycles per num samples data window with
values in a S.15 fixed point format.

void generate waveform(short *signal buf, int num samples)
{
const float cycles per win = 192.0f;
const float phase = 0.0f;
const float ampl = 0.9f;
int i;
for (i = 0; i < num samples; i++) {
float sample = ampl *
cosf((i * 2 * M PI * cycles per win / (float)num samples) + phase);
signal buf[i] = (short) (32767.0f * sample);

8. Define a routine to set up the and initialize the AXI DMA engine, wrapping all driver API
calls that only need to be run once at startup.

int init dma (XAxiDma *axiDmaPtr) {
XAxiDma Config *CfgPtr;
int status;
// Get pointer to DMA configuration
CfgPtr = XAxiDma LookupConfig (XPAR AXIDMA 0 DEVICE ID);
if (ICfgPtr) {
print ("Error looking for AXI DMA config\n\zr");

High-Level Synthesis www.xilinx.com Send Feedback 264
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=264

i: XI I_INX Chapter 10: Using HLS IP in a Zynq AP SoC Design

ALL PROGRAMMABLE

return XST_FAILURE;
}
// Initialize the DMA handle
status = XAxiDma CfgInitialize (axiDmaPtr,CfgPtr);
if (status != XST SUCCESS) {
print ("Error initializing DMA\n\r");
return XST FAILURE;
}
//check for scatter gather mode - this example must have simple mode only
if (XAxiDma HasSg (axiDmaPtr)) {
print ("Error DMA configured in SG mode\n\r");
return XST FAILURE;
}
//disable the interrupts
XAxiDma IntrDisable (axiDmaPtr, XAXIDMA IRQ ALL MASK,XAXIDMA DEVICE TO DMA) ;
XAxiDma IntrDisable (axiDmaPtr, XAXIDMA IRQ ALL MASK,XAXIDMA DMA TO DEVICE);

return XST SUCCESS;

9. Save the modified source file. As soon as you save the file, SDK automatically attempts
to re-build the application executable. If the build fails, fix any outstanding issues.

10. Run the new application on the hardware and verify that it works as expected. Ensure
that the FPGA is programmed and a terminal session is connected to the UART. Then
Launch on Hardware, as done for the previous Hello World application code.

Conclusion

In this tutorial, you learned:

+ How to create Vivado HLS IP using a Tcl script.
 How to import an HLS design as IP into IP Integrator.

+ How to connect HLS IP to a Zynq AP SoC using AXI4-Lite interfaces and AXI4-Stream
interfaces.

« How to configure HLS IP with AXI4-Lite in software.

+ How to control DMAs using AXI4-Stream in software.

High-Level Synthesis www.xilinx.com Send Feedback 265
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=265

& XILINX

ALL PROGRAMMABLE.

Chapter 11

Using HLS IP in System Generator for DSP

¥

Overview

The RTL created by High-Level Synthesis can be packaged as IP and used inside System
Generator for DSP (Vivado). This tutorial shows how this process is performed and
demonstrates how the design can be used inside System Generator for DSP.

This tutorial consists of a single lab exercise.

Lab 1 Description

Generates a design using Vivado HLS and package the design for use with System Generator
for DSP. Then include the HLS IP into a System Generator for DSP design and execute an RTL
simulation.

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory Vivado HLS Tutoriall\
Using IP with SysGen.

The sample design is a FIR filter that uses streaming interfaces modeled with the High-Level
Synthesis hls::stream class. The design is fully pipelined at the function level. The
optimization directives are embedded into the C code as pragmas.

Lab 1: Package HLS IP for System Generator

This lab exercise integrates the High-Level Synthesis IP into System Generator for DSP.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial.

High-Level Synthesis www.Xilinx.com I Send Feedback I 266

UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=266

2: XI I_INX Chapter 11: Using HLS IP in System Generator for DSP

ALL PROGRAMMABLE

If the tutorial data directory is unzipped to a different location, or on Linux systems, adjust the few
pathnames referenced, to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create a Vivado HLS IP Block

Create two HLS blocks for the Vivado IP Catalog using the provided Tcl script. The script
runs HLS C-synthesis, runs RTL co-simulation, and package the IP for the two HLS designs
(hls real2xfft and hls xfft2real).

1. Open the Vivado HLS Command Prompt.

- On Windows, go to Start > All Programs > Xilinx Design Tools > Vivado 2016.1
> Vivado HLS > Vivado HLS 2016.1 Command Prompt.

o On Linux, open a new shell.

Vivado 2016.1
'.:1'-: Add Design Tools or Devices 2016.1
}___ Manage Xilinx Licenses
§- Uninstall 2016.1
B Vivado 2016.1 Tcl Shell
¢ Vivado 2016.1
System Generator

m

Vivado HLS
B8 Vivado HLS 2016.1 Command Promp
[] vivado HLS 2016.1 -
1 Back
| Search programs and file ,D|

Figure 11-1: Vivado HLS Command Prompt

2. Using the command prompt window, change the directory to
Vivado HLS Tutoriall\Using IP with SysGen\labl.

3. Type vivado hls -f run hls.tcl to create the HLS IP.

& Vivado HLS 2013.2 Command Prompt

C:\Vivado_HLS_Tutorial>cd Using_IP_with_SysGen

C:\Vivado_HLS_Tutorial\Using_IP_with_SysGen>cd labl

4 (M

C:\Uivado_HLS_Tutorial\Using_IP_with_SysGen\lab1>vivavo_hls -f run_hls.tcl

Figure 11-2: Create the HLS Design

High-Level Synthesis www.xilinx.com Send Feedback 267
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=267

i: XI LINX Chapter 11: Using HLS IP in System Generator for DSP

ALL PROGRAMMABLE-

A key aspect of the Tcl script used to create this IP is the command export design -
format sysgen. This command creates an IP package for System Generator. When the
script completes there is a Vivado HLS project directories fir prj, which contains the HLS
IP, including the IP package for use in a System Generator for DSP design.

The remainder of this tutorial exercise shows how to integrate the Vivado HLS IP block into
a System Generator design.

Step 2: Open the System Generator Project

1. Open System Generator for DSP.

o On Windows use the desktop icon.

o On Linux, open a new shell and type sysgen.

@

System
Generat...

Figure 11-3: System Generator Icon

2. When Matlab invokes, click the Open toolbar button. As shown in Figure 11-4.

HOME

- P New Variable Analyze Code
[y I:Il:ll:I - [Find Files J'j’ 0w = l&_\:
_ [Open Variable Run and Time
New New W =] compare Import Save = s
Script Data Workspace [/ Clear Workspace = [77 Clear Comman

#Open... Ctrl=0

Figure 11-4: Open the System Generator Design

3. Navigate to the tutorial directory
Vivado HLS Tutoriall\Using IP with SysGen\labl and select the file
fir sysgen.slx, as shown in Figure 11-5.

High-Level Synthesis www.xilinx.com Send Feedback 268
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=268

8 XI LINX Chapter 11: Using HLS IP in System Generator for DSP

ALL PROGRAMMABLE-

4 Open x5
@Ov\ |« Vivado_HLS Tutorial » Using IP with SysGen » labl » ~| 49 || search tab1 Pl
Organize ~ New folder =~ 1 &
Name Date modified Type
) Libraries
L. fir_prj 9/2/2015 1:23 PM File folder
. Documents
) fircpp 3/29/2013 838 AM C++ Source
4. Music
) firh 7/6/2012 218 PM C/C++ Head
~. Pictures
) " fir_sysgen.six 3/11/2015 1215 PM Simulink Mo
% Videos -
] fir_test.cpp 7/6/2012 2:23 PM C++ Source
3. Vivado_HLS
‘& Computer
& 0SDisk (C) =
% duncanm (\\wcocl2) ()
< duncanm (\\xsj-smbj) (¥:) [
— gdrive (\\ppdeng) (£:)
v 4| 1] P
File name: fir_sysgen.six h lAII MATLAR files (*.rpt*tmf; vl
l Open H ‘ Cancel ‘

Figure 11-5: Select File fir_sysgen.slx

When System Generator invokes, all blocks and ports except the HLS IP are already
instantiated in the design.

4. Right-click in the canvas and select Xilinx BlockAdd, as shown in Figure 11-6.

High-Level Synthesis www.xilinx.com Send Feedback 269
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=269

i: XI LINX Chapter 11: Using HLS IP in System Generator for DSP

ALL PROGRAMMABLE-

’iﬂr_sysgen
File Edit View Display Diagram Simulation Analysis Code Tools Help
k-8 a e -E 4P © ~ 10 @~

fir_sysgen

%al fir_sysgen

®

b E®

SR Xilinx BlockAdd

[25]
= Xilinx BlockConnect
| Xilinx Tools ' g
E_.D -------- | Xilinx View Signals ...
Constant ot "
Explore]
T
I%I- | Can't Undo Ctrl+Z >
Pubke Generstor
Can't Redo Ctrl+Y

I NN | »
D ? Ctrl+V et

. Paste
Pukse Generator1 input_val V_dout
Paste Duplicate Inport

.—;.1 : |_________: | V_din
| Ctrl+A

o input_val V_empy_n Select All
2 o V_wrie »
| Find Referenced Variables... -
[—
| Most Frequently Used Blocks 4
Corstant? output_val V_full_n | W _hwr
Remove Highlighting Ctrl+5Shift+H —
pe
:3}_: Update Diagram Ctrl+D

Figure 11-6: Adding a New Block
5. Type hls in the Add Block field.
6. Select Vivado HLS.

Add block | hls
Vivado HLS

Figure 11-7: Selecting a Vivado HLS IP Block
7. Double-click the Vivado HLS block to open the Vivado HLS dialog box.

8. Navigate to the fir prj project and click Choose to select the solutionl folder.

i? IMPORTANT: System Generator for DSP uses the location of the solution folder to identify the IP.

9. Click OK to load the IP block, as shown in Figure 11-8.

High-Level Synthesis www.xilinx.com Send Feedback 270
UG871 (v2016.2) June 8, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=270

8 XI LINX Chapter 11: Using HLS IP in System Generator for DSP

ALL PROGRAMMABLE-

5¢ Vivado HLS (Xilinx High Level Sy...| = || B |[mt3m]

This block allows including C,C++ and SystemC source files in
System Generator for DSP designs.

Solution with_SysGen/lab1/fir_prj/solution1/" w

|:| Use C simulation model if available

|:| Display signal types

Output Sample Times’SimuIink system period v]

’ OK ” Cancel ” Help ” Apply]

Figure 11-8: Selecting the FIR IP Block

The FIRIP block is instantiated into the design.

10. Connect the design I/O ports to the ports on the FIR IP block, as shown in Figure 11-9.

" sysgen ==
File Edit View Display Diagram Simulation Analysis Code Tools Help
] =l (ol (
-8 = OB 4OP » ©- w @~
fir_sysgen
@ |[*alfir_sysgen v
@)
= 8
ap_do > Out
Constant ap_rst ap_don=
. S
- T P lapide
S ap_idle
ap_start
ConsEnt - . =’—0m|
- L U 1 ap ready
°mpm—al—v—iﬂ’fﬁ{:mh:del ey
C 2 output_val_V_full_n . N |
ensen D P Out It V.din
output_val V_din
_ input_val_V_dout
input_val V_dout output_val_V_write > Out 1
Pulse Genaratorl put_val v L 1 ouput i v e
output_val_V_wrie
. input_val_¥_empty n input_val_V_read '—"—Outl
Constnt1 input_al V_empy_n input_swal V_read nput_val V_read
Vivado HLS
Soope
>
Ready 94% oded5 .

Figure 11-9: Design with All Connections

11. Ensure the simulation stop time says 300.

High-Level Synthesis www.xilinx.com Send Feedback 271
UG871 (v2016.2) June 8, 2016 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=271

i: XI LINX Chapter 11: Using HLS IP in System Generator for DSP

ALL PROGRAMMABLE

12. Click the Run button on the toolbar to execute simulation.

13. Double-click the Scope block to view the simulation waveforms.

Conclusion

In this tutorial, you learned:

« How to create Vivado HLS IP using a Tcl script.

« How to import an HLS design as IP into System Generator for DSP.

High-Level Synthesis www.xilinx.com Send Feedback 272
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=272

& XILINX

ALL PROGRAMMABLE.

Appendix A

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs

Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

« From the Vivado IDE, select Help > Documentation and Tutorials.
+ On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

« At the Linux command prompt, enter: docnav

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

« In the Xilinx Documentation Navigator, click the Design Hubs View tab.

« On the Xilinx website, see the Design Hubs page.

High-Level Synthesis www.xilinx.com Send Feedback 273
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=273

8 XI LINX Appendix A: Additional Resources and Legal Notices

ALL PROGRAMMABLE

References

1. Introduction to FPGA Design with Vivado High-Level Synthesis (UG998)

2. Vivado® Design Suite User Guide: High-Level Synthesis (UG902)

3. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)
4. Vivado Design Suite Documentation

Training Resources

Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training

resources:
1. C-based Design: High-Level Synthesis with the Vivado HLS Tool Training Course
2. C-based HLS Coding for Hardware Designers Training Course

3. C-based HLS Coding for Software Designers Training Course

4. Vivado Design Suite QuickTake Video Tutorials

5. Vivado Design Suite QuickTake Video Tutorials: Vivado High-Level Synthesis

6. Vivado Design Suite QuickTake Video: Getting Started with High-Level Synthesis
7. Vivado Design Suite QuickTake Video: Verifying your Vivado HLS Design

8. Vivado Design Suite QuickTake Video: Analyzing your Vivado HLS Design

9. Vivado Design Suite QuickTake Video: Creating Different Types of Projects

10. Vivado Design Suite QuickTake Video: Designing with Vivado IP Integrator

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of

updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any

High-Level Synthesis www.xilinx.com Send Feedback 274
UG871 (v2016.2) June 8, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.2;t=vivado+release+notes
http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.2;t=vivado+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.2;d=ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/high-level-synthesis-with-vivado-hls.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/c-based-hld-coding-for-hardware-designers.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/c-based-hld-coding-for-software-designers.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-high-level-synthesis.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/getting-started-vivado-high-level-synthesis.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/verifying-your-vivado-hls-design.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/analyzing-your-vivado-hls-design.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/creating-different-types-of-projects.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/designing-with-vivado-ip-integrator.html
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=274

8 XI LI NX Appendix A:

ALL PROGRAMMABLE

Additional Resources and Legal Notices

application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

© Copyright 2012-2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynqg, and other designated

brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.

High-Level Synthesis www.xilinx.com

l Send Feedback I 275
UG871 (v2016.2) June 8, 2016

http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2016.2&docPage=275

	Vivado Design Suite Tutorial: High-Level Synthesis
	Revision History
	Table of Contents
	Ch. 1: Tutorial Description
	Overview
	High-Level Synthesis Introduction
	C Validation
	Interface Synthesis
	Arbitrary Precision Types
	Design Analysis
	Design Optimization
	RTL Verification
	Using HLS IP in IP Integrator
	Using HLS IP in a Zynq AP SoC Design
	Using HLS IP in System Generator for DSP

	Software Requirements
	Hardware Requirements
	Locating the Tutorial Design Files
	Preparing the Tutorial Design Files

	Ch. 2: High-Level Synthesis Introduction
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description

	Tutorial Design Description
	Lab 1: Creating a High-Level Synthesis Project
	Introduction
	Step 1: Creating a New Project
	Understanding the Graphical User Interface (GUI)

	Step 2: Validate the C Source Code
	Step 3: High-Level Synthesis
	Step 4: RTL Verification
	Step 5: IP Creation

	Lab 2: Using the Tcl Command Interface
	Introduction
	Step 1: Create a Tcl file

	Lab 3: Using Solutions for Design Optimization
	Introduction
	Step 1: Creating a New Project
	Step 2: Optimize the I/O Interfaces
	Step 3: Analyze the Results
	Step 4: Optimize for the Highest Throughput (Lowest Interval)

	Conclusion

	Ch. 3: C Validation
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description

	Tutorial Design Description
	Lab 1: C Validation and Debug
	Overview
	Step 1: Create and Open the Project
	Step 2: Review Test Bench and Run C Simulation
	Step 3: Run the C Debugger

	Lab 2: C Validation with ANSI C Arbitrary Precision Types
	Introduction
	Step 1: Create and Open the Project
	Step 2: Run the C Debugger

	Lab 3: C Validation with C++ Arbitrary Precision Types
	Overview
	Step 1: Create and Open the Project
	Step 2: Run the C Debugger

	Conclusion

	Ch. 4: Interface Synthesis
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description
	Lab 4 Description

	Tutorial Design Description
	About the Labs

	Lab 1: Block-Level I/O Protocols
	Overview
	Step 1: Create and Open the Project
	Step 2: Create and Review the Default Block-Level I/O Protocol
	Step 3: Modify the Block-Level I/O protocol

	Lab 2: Port I/O Protocols
	Overview
	Step 1: Create and Open the Project
	Step 2: Specify the I/O Protocol for Ports

	Lab 3: Implementing Arrays as RTL Interfaces
	Introduction
	Step 1: Create and Open the Project
	Step 2: Synthesize Array Function Arguments to RAM Ports
	Step 3: Using Dual-Port RAM and FIFO Interfaces
	Step 4: Partitioned RAM and FIFO Array interfaces
	Step 5: Fully Partitioned Array Interfaces

	Lab 4: Implementing AXI4 Interfaces
	Introduction
	Step 1: Create and Open the Project
	Step 2: Create an Optimized Design with AXI4-Stream Interfaces
	Step 3: Implementing an AXI4-Lite Interfaces

	Conclusion

	Ch. 5: Arbitrary Precision Types
	Overview
	Lab 1 Description
	Lab 2 Description

	Tutorial Design Description
	Lab 1: Arbitrary Precision
	Step 1: Create and Open the Project
	Step 2: Review Test Bench and Run C Simulation
	Step 3: Synthesize the Design and Review Results

	Lab 2: Arbitrary Precision
	Introduction
	Step 1: Create and Simulate the Project
	Step 2: Synthesize the Design and Review Results

	Conclusion

	Ch. 6: Design Analysis
	Overview
	Lab 1 Description

	Tutorial Design Description
	Lab 1: Design Optimization
	Step 1: Create and Open the Project
	Step 2: Review the Source Code and Create the Initial Design
	Step 3: Review the Performance Using the Synthesis Report
	Step 4: Review the Performance Using the Analysis Perspective
	Step 5: Apply Loop Pipelining and Review for Loop Optimization
	Step 6: Apply Loop Optimization and Review for Bottlenecks
	Step 7: Partition Block RAMs and Analyze Concurrency
	Step 8: Partition Block RAMs and Apply Dataflow optimization
	Step 9: Optimize the Hierarchy for Dataflow

	Conclusion

	Ch. 7: Design Optimization
	Overview
	Lab 1 Description
	Lab 2 Description

	Tutorial Design Description
	Lab 1: Optimizing a Matrix Multiplier
	Step 1: Create and Open the Project
	Step 2: Synthesize and Analyze the Design
	Step 3: Pipeline the Product Loop
	Step 4: Pipeline the Col Loop
	Step 5: Reshape the Arrays
	Step 6: Apply FIFO Interfaces
	Step 7: Pipeline the Function

	Lab 2: C Code Optimized for I/O Accesses
	Step 1: Create and Open the Project

	Conclusion

	Ch. 8: RTL Verification
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description

	Tutorial Design Description
	Lab 1: RTL Verification and the C Test Bench
	Step 1: Create and Open the Project
	Step 2: Perform RTL Verification
	Step 3: Modify the C test bench

	Lab 2: Viewing Trace Files in Vivado
	Step 1: Create an RTL Trace File using Vivado Simulator

	Lab 3: Viewing Trace Files in ModelSim
	Step 1: Create an RTL Trace File using ModelSim
	Step 2: View the RTL Trace File in ModelSim

	Conclusion

	Ch. 9: Using HLS IP in IP Integrator
	Overview
	Lab 1 Description

	Tutorial Design Description
	Lab 1: Integrate HLS IP with a Xilinx IP Block
	Step 1: Create Vivado HLS IP Blocks
	Step 2: Create a Vivado Design Suite Project
	Step 3: Add HLS IP to an IP Repository
	Step 4: Create a Block Design for RealFFT
	Step 5: Verify the Design

	Conclusion

	Ch. 10: Using HLS IP in a Zynq AP SoC Design
	Overview
	Lab 1 Description
	Lab 2 Description

	Tutorial Design Description
	Lab 1: Implement Vivado HLS IP on a Zynq Device
	Step 1: Create a Vivado HLS IP Block
	Step 2: Create a Vivado Zynq Project
	Step 3: Add HLS IP to the IP Catalog
	Step 4: Creating an IP Integrator Block Design of the System
	Step 5: Implementing the System
	Step 6: Developing Software and Running it on the ZYNQ System
	Step 7: Modify software to communicate with HLS block

	Lab 2: Streaming Data Between the Zynq CPU and HLS Accelerator Blocks
	Step 1: Generate the HLS IP
	Step 2: Create a Vivado Design Suite Project
	Step 3: Add HLS IP to an IP Repository
	Step 4: Create a Top-level Block Design
	Step 5: Implementing the System
	Step 6: Setup SDK and Test the ZYNQ System
	Step 7: Modify software to communicate with HLS block

	Conclusion

	Ch. 11: Using HLS IP in System Generator for DSP
	Overview
	Lab 1 Description

	Tutorial Design Description
	Lab 1: Package HLS IP for System Generator
	Step 1: Create a Vivado HLS IP Block
	Step 2: Open the System Generator Project

	Conclusion

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

